Homework Assignment #1 (due in class Wed 9/4)

Instructions:

• You may work with other students (in fact, I recommend that) but do not copy solutions. Write your own solutions in your own words.

■ Solutions should be complete but concise, and legible.

■ To aid in grading, draw a box around your final answer, using red pencil.

1-1. How many electrons are in a liter of water?

1-2. What are the <u>exact</u> values of ϵ_0 and μ_0 ? Also, what are the *decimal values* accurate to 4 significant

figures?

1-3. (a) Draw a picture of an isolated electron at rest.

(b) Draw a picture of an isolated electron that is moving with constant velocity $\vec{v} = 0.9 \text{ c} \hat{e}_z$

1-4. Consider a metal sphere with radius a centered at the origin. The charge of the sphere is 0,and there is a point-like charge q at (x,y,z) = (2a,0,0).

(a) Determine the electric field at (0,0,2a).

(b) Determine the electric field at (-2a,0,0).

Express the answers in the form $\vec{E} = \frac{q}{4\pi\epsilon_0 a^2} (f_x, f_y, f_z)$.

1-5. Consider a magnetostatic system with current density $\vec{J}(\vec{x})$. Assume $\vec{J}(\vec{x}) = 0$ outside a finite vol-

ume Ω . Determine an integral formula for $\vec{A}(\vec{x})$, valid for all \vec{x}