# Homework Assignment 11 due Friday November 15

References : all answers are based on information obtained from Wikipedia.

1. 11-1. In physics, what is ether? And what is ethernet?

In physics, ether (or aether) is the fictitious medium that supports light waves. Ethernet:

Ethernet is a family of computer networking technologies used in local area networks (Wikipedia)

Information is transmitted to and from a computer on the network, using a coaxial cable.

3 points

2. 11-2. What are the frequencies used by your cell phone?

### <u>Cell phones</u>

My cell phone is an iPhone 8 + using an AT & T network. The frequency band (PCS - 1900) is

1850 - 1910 MHz (mobile to base), and

1930 - 1990 MHz (base to mobile)

2 points

**3.** 11-3. What are the frequencies used for WiFi communication?

### WiFi communication

WLAN (Wireless Local Area Network) channels are frequently accessed using IEEE 802.11 protocols and are sold mostly under the trademark Wi-Fi.

The 802.11 standard provides several distinct radio frequency ranges for use in Wi-Fi communications :

900 MHz 2.4 GHz, 3.6 GHz, 4.9 GHz, 5 GHz, 5.9 GHz and 60 GHz bands.

Channels used in the 2.4 GHz frequency range , in MHz :

channel center range

- 1 2412 2401-2423
- 2 2417 2406-2428
- 3 2422 2411-2433

| 4  | 2427 | 2416-2438 |
|----|------|-----------|
| 5  | 2432 | 2421-2443 |
| 6  | 2437 | 2426-2448 |
| 7  | 2442 | 2431-2453 |
| 8  | 2447 | 2436-2458 |
| 9  | 2452 | 2441-2463 |
| 10 | 2457 | 2446-2468 |
| 11 | 2462 | 2451-2473 |

**4.** 11-4. Jackson Problem 8.2

We did the ideal field calculations for this example in the lecture Monday November 4.

2 points

**5.** 11-5. What is the impedance of free space? *Explain.* 

### The impedance of free space

• The impedance of free space  $Z_0$  is a physical constant relating the magnitudes of the electric and magnetic fields of electromagnetic radiation travelling through free space. That is,

 $Z_0 = \frac{|\mathcal{E}|}{|\mathcal{H}|}$ 

where |E| is the electric field strength and |H| is the magnetic field strength.

• The impedance of free space (for a plane wave in free space)

is equal to the  $\mu_0 c$ .

• The presently accepted value is

Z<sub>0</sub> = 376.730313668 (57) ohms.

A good approximation is  $Z_0 \approx 120 \pi$  ohms.

```
(*verify unit:*)
(* curl H = J = σ E; also, R = ρ L/A; *)
(* [H]/[m] = [σ][E]; [R]= 1/[σ] [m]/[m<sup>2</sup>] = [σ]<sup>-1</sup>[m]<sup>-1</sup>;*)
(* So ... [E]/[H] = [σ]<sup>-1</sup> [m]<sup>-1</sup> = [R] = ohm *)
(* verify: μ0*c= (4Pi*<sup>-7</sup>)*(3*/*<sup>8</sup>) = 120 Pi *)
```

The next problems concern a rectangular waveguide with  $\delta x = a = 5$  cm and  $\delta y = b = 2.5$  cm;

also, set  $\mu = \mu_0$  and  $\epsilon = \epsilon_0$ .

**6.** 11-6. Calculate the cutoff frequency and the corresponding wavelength for the  $TE_{10}$  mode.

#### The TE<sub>10</sub> mode

The dispersion relation for the wave guide is given by  $\gamma^2 = \mu \epsilon \omega^2 - k^2$ . The TE<sub>10</sub> mode has  $\gamma_{10} = \pi/a$ , and the cutoff frequency is  $\omega_{10} = \frac{1}{\sqrt{\mu\epsilon}} \gamma_{10} = c \gamma_{10}$ .

```
Thus \omega_{10} = c\pi/a = 1.88 \times 10^{10} s^{-1}.
```

```
ln[43]≔ 3.0*^8 * Pi / 0.05
% / (2 * Pi)
```

```
Out[43]= 1.88496 \times 10^{10}
```

```
Out[44]= 3. \times 10^9
```

The corresponding wavelength is  $\lambda_{10} = \frac{2 \pi c}{\omega_{10}} = 2a = 10$  cm.

 $\omega_{10} = 1.88 \times 10^{10} / \text{s or}$   $f_{10} = 3.0 \text{ GHz}$ ;  $\lambda = 10 \text{ cm}$ 

```
2 points
```

**7.** 11-7. Calculate the energy flux of the  $TE_{10}$  mode. [Hint: the fields are the Real Parts of the complex functions in (8.46). Take the real parts before you calculate the Poynting vector. ]

## The energy flux of the TE<sub>10</sub> mode

The energy flux is  $\vec{S} = \vec{E} \times \vec{H}$  where the fields are  $H_z = H_0 \cos(\pi x/a) \cos(kz - \omega t)$   $H_x = (ka/\pi) HO \sin(\pi x/a) \sin(kz - \omega t)$   $E_y = (-\omega a \mu/\pi) HO \sin(\pi x/a) \sin(kz - \omega t)$   $S = \begin{pmatrix} i & j & k \\ 0 & Ey & 0 \\ Hx & 0 & Hz \end{pmatrix} = ex Ey Hz - ez Ey Hx$   $Sx = H_0^2 (-\omega a \mu/\pi) \sin(\pi x/a) \sin(kz - \omega t) \cos(\pi x/a)\cos(kz - \omega t)$   $Sx = (-1/4) H_0^2 (\omega a \mu/\pi) \sin(2\pi x/a) \sin[2(kz - \omega t)]$   $Sz = -H_0^2 (-\omega a \mu/\pi) \sin(\pi x/a) \sin(kz - \omega t) (ka/\pi) \sin(\pi x/a)\sin(kz - \omega t)$   $Sz = H_0^2 (\omega a \mu/\pi) \sin(\pi x/a) \sin(kz - \omega t) (ka/\pi) \sin(\pi x/a)\sin(kz - \omega t)$   $Sz = H_0^2 (\omega a \mu/\pi) (ka/\pi) \sin^2(\pi x/a) \sin^2(kz - \omega t)$ Averaging over the time,  $S = \hat{e}_z \langle S_z \rangle$  where  $Sz = H_0^2 \left(\frac{\mu \omega k a^2}{2\pi^2}\right) \sin^2\left(\frac{\pi x}{a}\right)$ 

$$\langle S_z \rangle = H_0^2 \left( \frac{\mu \, \omega k \, a^2}{2 \, \pi^2} \right) \sin^2 \left( \frac{\pi x}{a} \right)$$

2 points

**8.** 11-8. Calculate the cutoff frequencies for the TM modes. Hand in a Table like the table below (8.46); the elements of the table should be  $\omega_{\text{cutoff}}(\text{TM}_{\text{mn}}) / \omega_{\text{cutoff}}(\text{TE}_{10})$ .

TM modes of the rectangular waveguide

For the TM modes, both m and  $n \in \{1 \ 2 \ 3 \ ... \}$ . Recall  $\gamma^2 = \mu \epsilon \ \omega^2 - k^2$ . Therefore the cutoff frequencies are  $\omega_{mn} = \gamma_{mn} / \sqrt{\mu \epsilon} = \frac{1}{\sqrt{\mu \epsilon}} \left[ (m\pi/a)^2 + (n\pi/b)^2 \right]^{1/2}$ 

```
In[45]:= Do[Do[tbl[m, n] = SetPrecision[
```

Sqrt[(m\*Pi)^2+4\*(n\*Pi)^2]/Pi,3],

{m, 1, 3}], {n, 1, 3}];

row[0] = {"", "n=1", "n=2", "n=3"};

col[0] = {"", "m=1", "m=2", "m=3"};

Do [

row[i] = {col[0][[i+1]], tbl[i, 1], tbl[i, 2], tbl[i, 3]}, {i, 1, 3}]; Style[TableForm[Join[{row[0]}, {row[1]}, {row[2]}, {row[3]}]], {24, Purple, Bold}]

|                     | n=1  | n=2  | n=3  |
|---------------------|------|------|------|
| m=1                 | 2.24 | 4.12 | 6.08 |
| Dut[49]= <b>m=2</b> | 2.83 | 4.47 | 6.32 |
| m=3                 | 3.61 | 5.00 | 6.7  |

3 points

**9.** 11-9. For the waveguide mode  $TE_{32}$  ... hand in a sketch (better: a computer graphic) of the effective surface current density  $\mathbf{K}(x,y)$  at the wall of the waveguide with y = 0, for  $\omega = 2 \omega_{32}$ .

#### The TE<sub>32</sub> waveguide mode

The goal is to calculate the surface current density K(x,y) at y = 0.

Recall the boundary condition:  $\Delta H_{\text{tangential}} = \mathbf{K} \times \hat{n}$  .

For a perfect conductor,  $\mathbf{H} = 0$  inside the conductor; so the boundary condition is  $H_{\text{tangential}} = \mathbf{K} \times \hat{n}$ . For the wall at y = 0, the normal direction is  $-\hat{e}_y$ ,

and the tangential directions are  $\hat{e}_x$  and  $\hat{e}_z$ .

To calculate:  $\mathbf{K} = \hat{\mathbf{n}} \times (\hat{\mathbf{e}}_x H_x + \hat{\mathbf{e}}_z H_z) = \hat{\mathbf{e}}_z H_x - \hat{\mathbf{e}}_x H_z$  (evaluated at y = 0) Fields of the TE<sub>32</sub> mode:

$$H_{z} = H_{0} \cos\left(\frac{3\pi x}{a}\right) \cos\left(\frac{2\pi y}{a}\right) \cos(kz - \omega t) = H_{0} \cos\left(\frac{3\pi x}{a}\right) \cos(kz - \omega t) @y=0$$
$$H_{z} = \frac{kH_{0}}{3\pi} \sin\left(\frac{3\pi x}{a}\right) \cos\left(\frac{2\pi y}{a}\right) \sin(kz - \omega t) = \frac{kH_{0}}{3\pi} \sin\left(\frac{3\pi x}{a}\right) \sin(kz - \omega t) @y=0$$

$$H_{y} = \frac{kH_{0}}{y^{2}} \frac{2\pi}{b} \cos\left(\frac{3\pi x}{a}\right) \sin\left(\frac{2\pi y}{a}\right) \sin(kz - \omega t) = 0 @y=0$$

The current density on the wall at y=0

$$K_{x} = -H_{z} = H_{0} \cos\left(\frac{3\pi x}{a}\right) \cos(kz - \omega t)$$

$$K_{z} = H_{x} = H_{0} \frac{3\pi k}{a\gamma^{2}} \sin\left(\frac{3\pi x}{a}\right) \sin(kz - \omega t);$$
here,  $\gamma^{2} = (3\pi/a)^{2} + (2\pi/b)^{2}$  and  $\gamma^{2} = \mu \epsilon \omega^{2} - k^{2}$ .  
Numerical parameters  
 $a = 5 \text{ cm}; b = 2.5 \text{ cm}; \mu = \mu_{0}; \epsilon = \epsilon_{0}$   
 $\gamma = \pi \text{ cm}^{-1}; \omega = 2\gamma/c = 2\pi/c \text{ cm}^{-1}; k = \sqrt{3}\pi \text{ cm}^{-1}$   
 $K_{x} = H_{0} \cos[3\pi x/(5 \text{ cm})] \cos(kz - \omega t)$   
 $K_{z} = H_{0} \left(\frac{3\sqrt{3}}{5}\right) \sin[3\pi x/(5 \text{ cm})] \sin(kz - \omega t)$ 

 $\inf\{ \text{Sqrt}[(3 * \text{Pi} / 5)^2 + (2 * \text{Pi} / 2.5)^2], 3^2 + 4^2, \text{Sqrt}[4 * \gamma^2 - \gamma^2] /. \{\gamma \rightarrow \text{Pi}\} \}$   $Out[*]= \left\{ 3.14159, 25, \sqrt{3} \pi \right\}$ 

```
 \begin{split} & \text{Im}[*] \coloneqq \ \text{Kx}[x_{,},z_{]} = \text{Cos}[3*\text{Pi}*x/5]*\text{Cos}[\text{Sqrt}[3]*\text{Pi}*z]; \\ & \text{Kz}[x_{,},z_{]} = (3*\text{Sqrt}[3]/5)*\text{Sin}[3*\text{Pi}*x/5]*\text{Sin}[\text{Sqrt}[3]*\text{Pi}*z]; \\ & \text{StreamPlot}[\{\text{Kx}[x,z],\text{Kz}[x,z]\}, \{x,0,5\}, \{z,0,5\}, \\ & \text{PlotRange} \rightarrow \{\{0,5\}, \{0,5\}\}, \text{AspectRatio} \rightarrow 1, \text{StreamPoints} \rightarrow \text{Automatic}, \\ & \text{Frame} \rightarrow \text{True}, \text{FrameLabel} \rightarrow \{"x", "z"\}, \text{BaseStyle} \rightarrow 18] \end{split}
```



5 points

- **10.** 11-10. Consider the TE<sub>mn</sub> wave with  $\omega > \omega_{mn}$ .
  - (a) Calculate the phase velocity and show that it is is greater than c.
  - (b) Calculate the group velocity and show that  $v_{\text{group}} = c^2 / v_{\text{phase}}$ .

Phase velocity and group velocity

Assume  $\mu = \mu_0$  and  $\epsilon = \epsilon_0$ . Recall  $\gamma^2 = \mu_0 \epsilon_0 \omega^2 - k^2 = \mu_0 \epsilon_0 \omega_{mn}^2$ . Therefore,  $\omega^2 = \omega_{mn}^2 + c^2 k^2$ . (A) The phase velocity is  $v_{phase} = \frac{\omega}{k} = \frac{c \omega}{\sqrt{\omega^2 - \omega_{mn}^2}} > c$ (B) The group velocity is  $v_{group} = \frac{d\omega}{dk} = \frac{c^2 k}{\omega} = \frac{c \sqrt{\omega^2 - \omega_{mn}^2}}{\omega} = \frac{c^2}{v_{phase}}$ . (A)  $\omega/k$  AND (B)  $c^2k/\omega$ 

4 points

11. 11-11. Why is a waveguide sometimes better than a coaxial cable? Explain, and define "better".

Both waveguides and coaxial cables can be used to carry energy and information in microwaves.

When is a waveguide better than a coaxial cable? From a Google search:

- The waveguide has no inner conductor, so it is easier to manufacture.
- The waveguide has less energy loss than a coaxial line:
  - no power is lost through radiation
  - no dielectric loss
- The waveguide can handle higher power than a coaxial cable:

The interior of the waveguide is air, and the breakdown voltage is 30 kV/cm; whereas there is a dielectric material in the coaxial cable with a lower breakdown voltage.

These are advantages of waveguide but there are also disadvantages, so sometimes the coaxial cable is better.

4 points