Homework Assignment 8 due Monday October 28

To aid in grading, draw a box around your answer, using a red pencil.

8-1. Use Fresnel's equations and Snell's law. Show that at Brewster's angle the reflected and transmitted waves are perpendicular.

Brewster's angle: When $\theta = \theta_B$, there is no reflection for TM polarization. The TM Fresnel coefficient is N/D where $N = (n')^2 \cos(\theta) - n\sqrt{(n')^2 - n^2 \sin^2(\theta)} = (n')^2 \cos(\theta) - n n' \cos(\theta')$ $D = (n')^2 \cos(\theta) + n\sqrt{(n')^2 - n^2 \sin^2(\theta)}$ Reflection = 0 \implies n' $\cos(\theta_B) = n \cos(\theta')$ Also, Snell's law is $n \sin(\theta_B) = n' \sin(\theta')$ Combine these equations $\implies \frac{\cos(\theta')}{\cos(\theta)} = \frac{\sin(\theta)}{\sin(\theta')}$; $\therefore \theta' = \frac{\pi}{2} - \theta$; or, $\theta + \theta' = 90$ degrees. 8-2. A fish in a lake sees the entire sky compressed into a cone. Calculate the cone angle \equiv the angle from the center axis to the cone surface, in degrees.

The cone angle is equal to the critical angle for total internal reflection of light

on a water \rightarrow air interface.

 $\therefore \theta_{\text{cone}} = \arcsin[n_{\text{air}} / n_{\text{water}}] = \arcsin[1 / 1.33] = 48.8 \text{ degrees.}$

8-3. (a) Derive the wave equation for an electromagnetic wave in a material with permittivity ϵ and conductivity g. (Ignore magnetization.) (b) Solve the equation for a plane wave with frequency ω . (c) Calculate the absorption length.

(A)
$$\nabla \times \vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t}$$
 and $\nabla \times \vec{H} = g \vec{E} + \epsilon \frac{\partial \vec{E}}{\partial t}$.
Evaluate $\nabla \times (\nabla \times \vec{E})$ and simplify $\Rightarrow \mu_0 \epsilon \frac{\partial^2 \vec{E}}{\partial t^2} - \nabla^2 \vec{E} + \mu_0 g \frac{\partial \vec{E}}{\partial t} = 0$
(B) A plane wave solution requires $k^2 = \mu_0 \epsilon \omega^2 + i \mu_0 g \omega$.
(C) Write $k = \beta + \frac{i\alpha}{2}$ where α is the absorption coefficient.
Absorption length $= \delta = 1/\alpha$.

Algebra
$$\Rightarrow \alpha = \sqrt{2 \epsilon \mu_0 \omega^2} \left[-1 + \sqrt{1 + (g/\epsilon \omega)^2} \right]^{1/2}$$

In[*]:= (*algebra by Mathematica*)sol = Solve[{ $\beta^2 - \alpha^2/4 == \mu^0 * \epsilon * \omega^2, \alpha * \beta == \mu^0 * g * \omega$ }, { α, β }]; Length[sol] AC = α /. sol[[4]]; AC = AC /. $\mu^0 \rightarrow \rho / (2 * \epsilon * \omega^2)$ // FullSimplify; AC = (AC /. $\rho \rightarrow 1$) * ρ

Out[•]= 4

$$Out[*]= \rho \sqrt{-1 + \sqrt{1 + \frac{g^2}{\epsilon^2 \omega^2}}}$$

8-4. Jackson Problem 7.5 This problem answers the question "Why are metals shiny".

Solution by Mathematica is attached.

8-5. Jackson Problem 7.13.

Solution by Mathematica is attached.

8-6. The index of refraction of diamond is 2.417 for $\lambda = 589.3$ nm. The static dielectric constant is 5.50. Consider the Lorentz model for dispersion, assuming a single resonant frequency with $\gamma/\omega_0 \rightarrow 0$. Calculate $\hbar\omega_0$ in eV.

Given two pieces of data, we can determine two model parameters.

The Lorentz model for dispersion, with $\gamma = 0$...

$$\frac{\epsilon(\omega)}{\epsilon_0} = 1 + \frac{N e^2}{\epsilon_0 m} f_0 [\omega_0^2 - \omega^2]^{-1}$$

$$n(\omega) = \sqrt{\frac{\epsilon(\omega)}{\epsilon_0}}$$

where f_0 and ω_0 are coefficients to be determined from the data.

Parameters ...

```
In[*]:= \operatorname{Remove}["Global`*"] 
rho = 3.51*^3 * kg / meter^3; 
MC = 12.01 * amu /. {amu <math>\rightarrow 1.66*^-27 * kg}; 
NC = rho / MC; 
e = 1.6*^-19 * coulomb; 
m = 9.1*^-31 * kg; 
cl = 3.0*^8 * meter / second; 
e0 = 1 / (\mu0 * c^2) /. {\mu0 \rightarrow 4 * Pi * 1.0*^-7, c \rightarrow 3.0*^8}; 
e0 = e0 * coulomb^2 / meter / joule; 
const = NC * e^2 / (e0 * m) /. {joule \rightarrow kg * meter^2 / second^2}
Out[*]= \frac{5.60153 \times 10^{32}}{\text{second}^2}
```

First equation: $\epsilon / \epsilon_0 = dc = 5.50$ at $\omega = 0$

```
In[*]:= dc = 5.50;
sol = Solve[1 + const * f0 / w0^2 == dc, f0];
f0v = f0 /. sol[[1]]
Out[*]= 8.03351 × 10<sup>-33</sup> second<sup>2</sup> w0<sup>2</sup>
```

Second equation: $\sqrt{\epsilon/\epsilon_0}$ = nref = 2.417 at ω = $2\pi c/(589.3 \text{ nm})$

```
In[*]:= nref = 2.417;
```

ω1 = 2 * Pi * cl / (589.3*^-9 * meter); EQ = {1 + const * f0v / (ω0^2 - ω1^2) == nref^2}; sol2 = Solve[EQ, ω0]; ω0v = ω0 /. sol2[[2]]; hbar = 197.0*^-9 * eV * meter / cl; resonantenergy = hbar * ω0v

Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding exact system and numericizing the result.

Out[•]= 7.9045 eV

The result is $\hbar\omega_0 = 7.9045 \text{ eV}$.

Go back and evaluate $f_{0.}!$

In[*]:= fov $\omega 0v$ $fov /. \{ \omega 0 \rightarrow \omega 0v \}$ $Out[*]= 8.03351 \times 10^{-33} \operatorname{second}^2 \omega 0^2$ $Out[*]= \frac{1.20373 \times 10^{16}}{\operatorname{second}}$

Out[•]= 1.16403

which makes sense.