
Lecture 0 (Wed Aug 28)

Review of Microscopic Electrodynamics

In PHY 841 you studied “microscopic 

electrodynamics” — that is, electric and 

magnetic fields with isolated charges 

and currents in empty space.

(Of course the space is not really empty 

because there are fields and charges 

and currents present.)

What we mean by “empty space” is that 

there are no macroscopic materials 

present.

Macroscopic materials:

• solids • liquids • gases • plasmas

↦ materials with huge numbers of 

molecules, atoms, ions, nuclei, ...

How huge is huge?

Exercise: How many electrons are in a 

liter of water?

We cannot deal with all the individual 

particles, so we average over “small”

volumes that contain “large” numbers 

of particles. (How small is “small”? 

How large is “large”?)
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EXAMPLE. The microscopic charge

density is

ρpt (x
→

) =  Σ
i
 qi δ3( x

→
 – x

→
i) .

What would a graph of ρpt(x
→

) look like?

We'll  replace ρpt(x
→

) by the macroscopic 

charge density

ρ(x
→

) ≡ 1
ΔV

 ∫ ΔV
 ρpt (x

→
) d 3x =  1

ΔV
 Σ
i ∈ΔV

 qi .

ρ(x
→

) is a continuous function. (What 

would a graph look like?)

This is the charge density of  macro-

scopic electrodynamics — the subject 

of PHY 842.
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Review of Microscopic Electrodynamics

Microscopic electrodynamics means 

the theory of charges, currents, fields 

in “empty space”.

◼ Field equations

microscopic electrodynamics

∇ • E
→
= ρ /ϵ0 ∇ × E

→
= - ∂B→ /∂t

∇ • B
→
= 0 ∇ × B

→
= μ0 J→ + μ0 ϵ0 ∂ E→ /∂t

In SI units we need two parameters, vacuum permeability 

μ0 and permittivity ϵ0.  (These are not necessary in

Gaussian units, which is why Gaussian units are superior.)

Homework: what are the exact values and units?
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The continuity equation for charge is

∇•J→ = - ∂ρ /∂t .
This equation says that charge is locally 

conserved.

◼ The forces on a test charge q

F
→
= q ( E

→
+ v

→
x B

→
)

i.e.,

F
→
(x
→
,t) = q [ E

→
(x
→
,t) + v

→
(t) x B

→
(x
→
,t) ]

where x
→

 is the position of the charge q

at time t, and v
→

 = dx
→

 /dt.

These forces acting on a test charge q, 

may be taken to define the fields E
→

  and 

B
→

.
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◼ Energy and Momentum

You already know these quantities 

from PHY 841. 

• The field energy in a volume Ω is 

U(t) = Ω
u(x

→
,t) d 3x

u(x
→
,t) = {

ϵ0
2
E2 +

1

2μ0 B
2 } (x

→
,t)

• The work per unit time per unit

volume is  J
→

 • E
→

 (x
→

, t) ;

this is the work (per unit time per unit volume) 

done on the charge by the fields.
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• The energy flux is 

S
→
=
1

μ0 E
→
x B

→

= the Poynting vector (units are W m–2 )

• Poynting’s  theorem, for microscopic 

electrodynamics,

∇ • S
→
= -∂u /∂t - J→•E→

Note that Poynting' s theorem is the

continuity equation for energy. It says 

that energy is locally conserved.
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THREE SPECIAL CASES

1. Electrostatics

2. Magnetostatics

3. E.M. waves in vacuum

1-ELECTROSTATICS

⟺ a static system with

ρ(x→) and E→(x→) (independent of time)
J
→
(x
→
) = 0 and B

→
(x
→
) = 0

The field equations are

∇ • E
→
= ρ /ϵ0 and ∇ × E

→
= 0
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Because curl E
→

 = 0, we may write

E
→
= – ∇Φ with –∇2Φ = ρ/ϵ0

⟹ we’ll encounter Poisson' s equation 

and Laplace’s  equation;

an important issue will be, what are the 

boundary conditions?
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2-MAGNETOSTATICS

⟺ a static system with

ρ = 0 and E
→
= 0

J
→
(x) and B

→
(x)

∇ • J
→
= 0

The field equations are

∇ • B
→
= 0 and ∇ × B

→
= μ0 J→
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Because ∇ × B
→

 = 0 we may write 

B
→
= ∇ x A→

Also, by gauge invariance we may 

require ∇•A→ = 0 ( the “Coulomb gauge 

condition”). However,  this is not 

necessary.

homework
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3-ELECTROMAGNETIC WAVES

E
→
(x
→
,t) = E

→
0 cos(k

→
• x
→
-ω t)

B
→
(x
→
,t) = B

→
0 cos(k

→
• x
→
-ω t)

with ω = ck and k
→
×E

→
0 = ω B0

→
.

Also ...

c =
1

ϵ0 μ0

All the equations so far are for micro-

scopic electrodynamics.

You studied these equations in PHY 841 

and I’ll assume that you are familiar 

with them.

Reading Assignment : Chapter 4
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