Lecture 1–1 Elementary treatment of electrostatics with ponderable materials

Jackson: Sections 4.1 4.2 4.3

Recall ...

... the field equations of microscopic electrostatics ,

 $\nabla \cdot \vec{E} = \rho / \epsilon_0$ and $\nabla \times \vec{E} = 0$

Here $\rho(\vec{x})$ is the total charge density that creates the field $\vec{E}(\vec{x})$; and these functions are independent of time . In principle the solution is

$\vec{\mathsf{E}}(\vec{\mathsf{x}}) = \int \frac{\left(\vec{\mathsf{x}} - \vec{\mathsf{x}}'\right)}{4 \pi \epsilon_0 | \vec{\mathsf{x}} - \vec{\mathsf{x}}' |^3} \rho(\vec{\mathsf{x}}') \, \mathsf{d}^3 \mathsf{x}'$

This is OK if $\rho(\vec{x})$ consists of a few isolated charges or simple charge densities. But what if ρ includes charges from a macroscopic sample of matter?

2

¶ All electric charge comes from electrons and nuclei. The number of charged particles is terribly large, like Avogadro's number! We cannot handle a calculation that treats each particle individually. Instead, we average over small volumes ΔV that contain large numbers of particles. It's a subtle limiting process,

/ 3

molecule $\ll \Delta V \ll V$,

which is possible because the size of a molecule is so tiny.

The macroscopic density and the macroscopic field

$$\rho_{\text{macro}}(\vec{x}) = \langle \rho(\vec{x}) \rangle = \frac{1}{\Delta V} \int_{\Delta V} \rho(\vec{x} + \vec{\xi}) d^{3}\xi$$
$$\vec{E}_{\text{macro}}(\vec{x}) = \langle \vec{E}(\vec{x}) \rangle = \frac{1}{\Delta V} \int_{\Delta V} \vec{E}(\vec{x} + \vec{\xi}) d^{3}\xi$$

4

Draw a picture!

Free charge and bound charge

Next, we divide $\langle \rho(\vec{x}) \rangle$ into two parts,

/ 5

 $\langle \rho(\vec{x}) \rangle = \rho_{\text{free}}(\vec{x}) + \rho_{\text{bound}}(\vec{x})$

Make sure that you understand the meanings of these two charge densities!

For insulators ("dielectrics"): ρ_{free} is the "excess charge" added to the system;

 $ho_{\rm bound}$ is the charge that belongs to the molecules in the material.

For metals ("conductors"): $\rho_{\rm free}$ is the "excess charge" plus conduction electrons;

 ho_{bound} is the charge that belongs to ions in the material.

Derivation of ρ_{bound}

Suppose the molecular density at the point \vec{x} is N(\vec{x}). You might think that we could write

 $\rho_{\text{bound}}(\vec{x}) = N(\vec{x}) \langle \rho_{\text{molecule}}(\vec{x}) \rangle$ where

 $\rho_{\text{mol.}}(\vec{x}) = \sum_{i \in \text{mol.}} e_i \, \delta^3(\vec{x} - \vec{x}_i);$

but that is certainly wrong, at least for dielectrics, because $\langle \rho_{\text{mol.}} \rangle = 0$! Molecules are electrically neutral; $\sum_{i} e_i = 0$.

 $\rho_{\text{mol.}}(\vec{x})$ is not zero, but $\langle \rho_{\text{mol.}}(\vec{x}) \rangle$ is zero; the averaging over ΔV gives 0. (Metals are a little different.)

— Then what is *ρ*_{bound}? —
For a dielectric, the answer is

 $\rho_{\text{bound}}(\vec{x}') = -\nabla' \cdot (N(\vec{x}') \langle \vec{p}_{\text{mol},x'} \rangle)$ where $\vec{p}_{\text{mol},x'}$ = the electric dipole moment of a molecule centered at \vec{x} '; and $\langle \rangle$ means the average over ΔV .

 $\vec{p}_{\text{mol},x'} = \int \vec{\xi} \rho_{\text{mol},x'}(\vec{\xi}) d^3\xi$ The above equation introduces a vector function $\vec{P}(\vec{x}')$ called the *polarization*, defined by

> $\vec{P}(\vec{x'}) = N(\vec{x'}) \langle \vec{p}_{mol,x'} \rangle$ = the dipole moment density.

Theorem

/ 7

$$\mathcal{O}_{\text{bound}}(\vec{x}) = -\nabla \cdot \vec{P}(\vec{x})$$

Proof ...

Start with the electric field created by the charges in a single molecule at \vec{x}' ; call that $\vec{e}_1(\vec{x})$; let $\vec{r} = \vec{x} - \vec{x}'$;

$$\vec{e}_{1}(\vec{x}) = \int \frac{\left(\vec{r} - \vec{\xi}\right)}{4 \pi \epsilon_{0} | \vec{r} - \vec{\xi} |^{3}} \rho_{mol}(\vec{\xi}) d^{3}\xi$$
$$= -\nabla \int \frac{\rho_{mol}(\vec{\xi}) d^{3}\xi}{4 \pi \epsilon_{0} | \vec{r} - \vec{\xi} |}$$

Here the integration is over the tiny interior of the molecule, ie, where $\rho_{mol} \neq 0$.

We will eventually average over ΔV which is large compared to the molecule. So we can approximate \vec{e}_1 by taking $r \gg \xi$;

/ 9

$$\frac{1}{\left|\vec{r}-\vec{\xi}\right|} \approx \frac{1}{r} + \frac{\hat{r}\cdot\vec{\xi}}{r^2} + O\left(\frac{\xi^2}{r^3}\right)$$
$$\therefore \Phi_1(\vec{x}) \approx \frac{1}{4\pi\epsilon_0} \left\{ \frac{q_1}{r} + \frac{\hat{r}\cdot\vec{p}_1}{r^2} + \text{neglect} \right\}$$
$$q_1 = \int \rho_{\text{mol}}(\vec{\xi}) d^3\xi = \Sigma e_i = 0$$

 $\vec{p}_{1} = \int \rho_{mol}(\vec{\xi}) \vec{\xi} d^{3}\xi = \text{dipole moment}$ $= \Sigma e_{i} \vec{\xi}_{i}$ $\Phi_{1}(\vec{x}) = \frac{1}{4\pi\epsilon_{0}} \frac{\hat{r} \cdot \vec{p}_{1}}{r^{2}}$ where $\vec{r} = \vec{x} - \vec{x}'$.
Now replace \vec{p}_{1} by $\langle \vec{p}_{1} \rangle$; and multiply by N(\vec{x}'); and integrate over \vec{x}' ; the result is the macroscopic potential at \vec{x} ...

10

$$\Phi(\vec{x}) = \int \frac{(\vec{x} - \vec{x}') \cdot \vec{P}(\vec{x}')}{4 \pi \epsilon_0 | \vec{x} - \vec{x}' |^3} d^3x'$$

/ 11

The result is obvious, isn't it? $\vec{P}(\vec{x}') \delta V'$ = the net dipole moment of the volume $\delta V'$. Now we need a bit of calculus to derive $\rho_{\text{bound}}(\vec{x})$.

 $\overline{\phi}(\overline{x}) = \frac{1}{4\pi\epsilon_0} \left(\frac{(\overline{x} - \overline{x}') \cdot \overline{\rho}(\overline{x}')}{(\overline{x} - \overline{x}')^3} \right)^3 x'$ = k (P(x)) . V' 1/2-21/ d3/ $=k\int \{ \nabla' \left(\frac{\overline{P}(\overline{x}')}{|\overline{x}-\overline{x}'|} \right) - \frac{\nabla' \overline{P}(\overline{x}')}{|\overline{x}-\overline{x}'|} \right\} B_{x}'$ Luce Gauss'steoren = { <u>n'. P(x')</u> dA' = 1 5 Thomas n'idA' + 1 Samuelix' nha $\int_{bound} (\vec{x}') = -\nabla \cdot \vec{P}(\vec{x}') / (a \in \mathcal{V})$

12

<u>Result</u>

If the molecules are polarized, and the polarization function is $\vec{P}(\vec{x})$, then: • there is a *surface charge density* σ_{bound} on the boundary of V,

$\sigma_{\text{bound}} = \hat{\mathbf{n}} \cdot \vec{\mathbf{P}}$

• and there is a *volume charge density* ρ_{bound} inside the volume,

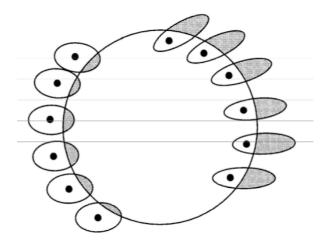
 $\rho_{\text{bound}} = -\nabla \cdot \vec{P}$

Comments

| 13

Study this figure from Jackson

14



Polarization does not necessarily produce a volume charge density. But *divergence* of polarization does produce a volume charge density.

The macroscopic field equations in electrostatics

Start with the microscopic field equations,

 $\nabla \cdot \vec{E} = \rho/\epsilon_0$ and $\nabla x \vec{E} = 0$.

Now derive the macroscopic field equations.

■ Average over small volume elements ∆V throughout the medium.

• Replace $\langle \rho(\vec{x}) \rangle$ by

$$\rho_{\text{free}}(\vec{x}) + \rho_{\text{bound}}(\vec{x}) = \rho_{\text{free}}(\vec{x}) - \nabla \cdot \vec{P}(\vec{x}).$$

• Replace $\langle \vec{E}(\vec{x}) \rangle$ by $\vec{E}(\vec{x})$.

the average of the microscopic field is the macroscopic field; [be careful: we're using the same symbol for both!] • Define the *displacement field* $\vec{D}(\vec{x})$ by

16

 $\vec{D} = e_0 \vec{E} + \vec{P}$

Thus,

| 15

$$\nabla \cdot \vec{D} = \rho_{\text{free}}$$
 and $\nabla x \vec{E} = 0$

