start

Lecture 1–2 (Wed Sept 4) Boundary Value Problems with Dielectrics

Jackson: Section 4.4

The equations of macroscopic electrostatics ...

 $\nabla x \vec{E} = 0$  and  $\nabla \cdot \vec{D} = \rho_{\text{free}}$ where  $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ 

 $\vec{P}(\vec{x}) =$  polarization in the medium = dipole moment density

Boundary conditions; at any surface,

 $E_{tangential}$  is continuous;  $D_{normal}$  is continuous, or  $\Delta D_n = \sigma_{free}$ 

## **Constitutive Equations**

 $|\longrightarrow \text{ relations between } \vec{E} \text{ and } \vec{P}$ ( or,  $\vec{E}$  and  $\vec{D}$  where  $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ .)

The simplest model for polarization (a linear model)

Recall,  $\vec{P}(\vec{x}) = N(\vec{x}) \langle \vec{p}_{mol,x} \rangle$ . Assume  $\vec{P}(\vec{x})$  is proportional to  $\vec{E}(\vec{x})$ . How can this fail? *(Actually, it can fail! )* Assuming the material is uniform and isotropic, we write

 $\vec{P}(\vec{x}) = \epsilon_0 \chi_e \vec{E}(\vec{x})$ 

 $\chi_e \equiv$  electric susceptibility What are the units of  $\chi_e$ ?

# Or,

 $\vec{D}(\vec{x}) = \epsilon_0 \vec{E}(\vec{x}) + \vec{P}(\vec{x}) = \epsilon_0 (1 + \chi_e) \vec{E}(\vec{x})$  $\vec{D}(\vec{x}) = \epsilon \vec{E}(\vec{x}) \text{ where } \epsilon = \epsilon_0 (1 + \chi_e)$  $\epsilon = \text{electric permittivity}$ 

Later we'll try to derive  $\chi_e$  from theory, but for now just take it as a lab measurement.

# **Boundary Value Problems**

## Example 1

3

First, draw a picture to define the problem.

4



The problem is to calculate the electric field  $\vec{E}(\vec{x})$ . The field equations are

$$\nabla \cdot \vec{\mathbf{D}} = \rho_{\text{free}}(\vec{\mathbf{x}}) = \mathbf{q} \ \delta^3(\vec{\mathbf{x}} - \hat{\mathbf{e}}_z \ \mathbf{d})$$
$$\nabla \mathbf{x} \vec{\mathbf{E}} = \mathbf{0}$$

... with these constitutive equations

 $\vec{D} = \epsilon_1 \vec{E}$  in region R1 (z > 0)  $\vec{D} = \epsilon_2 \vec{E}$  in region R2 (z < 0)

#### Solution

5

First, because  $\nabla \times \vec{E} = 0$  we can write  $\vec{E}(\vec{x}) = -\nabla \Phi(\vec{x});$ now the problem is to determine  $\Phi(\vec{x})$ . Next,  $\nabla \cdot \vec{D} = \rho_{\text{free}}$  where  $\vec{D} = \epsilon \vec{E} = -\epsilon \nabla \Phi$ . 6

 $\begin{cases} \epsilon_1 \nabla^2 \Phi = -q \, \delta^3 \left( \vec{x} - \hat{e}_z \, d \right) & \text{in region R1} \, (z > 0) \\ \epsilon_2 \, \nabla^2 \Phi = 0 & \text{in region R2} \, (z < 0) \end{cases}$ 

The problem has cylindrical symmetry, but we won't use that to find the solution. Instead we will use the familiar trick called the *method of images*.

## <u>Region R1</u> For z > 0,

$$\epsilon_1 \Phi(\vec{x}) = \frac{q}{4 \pi |\vec{x} - e_z d|} + \Phi'(x)$$

where  $\nabla^2 \Phi' = 0$ . This does not mean that  $\Phi' = 0$ ! We can "guess" that the form of  $\Phi'$  is the potential due to a fictitious "image" charge q' at  $-\hat{e}_z d$  (*over in region R2*). So

| 7

$$4\pi \epsilon_1 \Phi(\vec{x}) =$$

$$= \frac{q}{\left| \vec{x} - \hat{e}_z d \right|} + \frac{q'}{\left| \vec{x} + \hat{e}_z d \right|}, \text{ for } \vec{x} \in \mathbb{R}1$$

<u>Region R2</u> For z < 0,

 $\nabla^2 \Phi = 0$ . This does not mean that  $\Phi = 0$ ! We can "guess" that the form of  $\Phi$  = the potential due to a fictitious "image" charge q" at + $\hat{e}_z$ d (*over in region R1*). So

8

$$4\pi \epsilon_2 \Phi(\vec{x}) =$$

$$= \frac{q''}{\left| \vec{x} - e_z d \right|} \text{ for } \vec{x} \in \mathbb{R}^2$$

So, now we have  $\nabla \cdot \vec{D} = \rho_{\text{free}}$ , guaranteed! But what are q' and q"? Apply the boundary conditions.

■  $D_{\text{norm.}}$  is continuous at z = 0 (no free charge on the surface)  $\Longrightarrow$ 

| 9

$$\epsilon_2 \frac{\partial \Phi}{\partial z}(x,y,0-) = \epsilon_1 \frac{\partial \Phi}{\partial z}(x,y,0+)$$
  
$$\therefore q'' = q - q'$$

■  $E_{\text{tang.}}$  is continuous at  $z = 0 \implies$ 

$$E_{q,j=} \text{ Style}\left[ \begin{array}{c} \left[ \begin{array}{c} \frac{\partial \Phi}{\partial x}(x,y,\theta) - \right] = \frac{\partial \Phi}{\partial x}(x,y,\theta) \\ \text{ style}\left[ \left[ \begin{array}{c} \left[ \begin{array}{c} \frac{\partial \Phi}{\partial x} \right] = \frac{q+q'}{\varepsilon_1} \\ \end{array} \right] \\ \frac{\partial \Phi}{\partial x}(x,y,0-) = \frac{\partial \Phi}{\partial x}(x,y,0+) \\ \end{array} \right] \\ \frac{\partial \Phi}{\partial x}\left( \begin{array}{c} x,y,0- \right) = \frac{\partial \Phi}{\partial x}(x,y,0+) \\ \frac{\partial \Phi}{\partial x}(x,y,0-) = \frac{\partial \Phi}{\partial x}(x,y,0+) \\ \end{array} \right]$$

Now solve for q' and q".



Is it  $\vec{E}$  or  $\vec{D}$ ?

## Exercises.

• Determine the surface charge density on the boundary surface.

# $\sigma_{\text{micro}} = E_{2n} - E_{1n}$

• Determine the force on q. Is it attractive or repulsive?

## Example 2

| 11

A dielectric sphere is placed in a uniform external electric field. Calculate  $\vec{E}(\vec{x})$ . First, draw a picture to define the problem.



| 13

Far from the sphere, i.e., as  $r \rightarrow \infty$ ,  $\Phi$  must approach the potential for a uniform field =  $-E_0 z = -E_0 r \cos\theta$ . Therefore  $B_1 = -E_0$  and  $B_l = 0$  for  $l \neq 1$ . Now we have  $\nabla^2 \Phi = 0$ , guaranteed. Next, apply the boundary conditions.

 $E_{\text{tang.}}$  is continuous at r = a ; implies

$$E_{in,\theta}(a,\theta) = E_{out,\theta}(a,\theta)$$
$$-\frac{1}{a} \left[\frac{\partial \Phi_{in}}{\partial \theta}\right]_{r=a} = -\frac{1}{a} \left[\frac{\partial \Phi_{out}}{\partial \theta}\right]_{r=a}$$
$$\therefore A_1 = -E_0 + \frac{C_1}{a^3} \quad \text{for the case } l = 1$$

 $D_{\text{norm.}}$  is continuous  $\Longrightarrow$ 

$$\epsilon \operatorname{E}_{\operatorname{in},r}(a,\theta) = \epsilon_0 \operatorname{E}_{\operatorname{in},r}(a,\theta)$$
$$-\epsilon \left[\frac{\partial \Phi_{\operatorname{in}}}{\partial r}\right]_{r=a} = -\epsilon_0 \left[\frac{\partial \Phi_{\operatorname{out}}}{\partial r}\right]_{r=a}$$
$$\therefore \epsilon \operatorname{A}_1 = -\epsilon_0 \operatorname{E}_0 - \frac{2 \epsilon_0 \operatorname{C}_1}{a^3} \quad \text{for } l = 1$$

Exercise : Show that  $A_l = 0$  and  $C_l = 0$  for  $l \neq 1$ ; this is sort of obvious.

```
(* \text{ Calculation } *)
eqs = \{A1 = -E0 + C1/a^{3}, e * A1 = -e0 * E0 - 2 e 0 C1/a^{3}\};
A1 /. \text{ Part[Solve[eqs, {A1, C1}] // Simplify, 1]}
C1 /. \text{ Part[Solve[eqs, {A1, C1}] // Simplify, 1]}
-\frac{3 E0 e 0}{e + 2 e 0}
\underline{a^{3} E0 (e - e 0)}{e + 2 e 0}
```

| 15

Thus, solving for  $A_1$  and  $C_1$ ,

$$A_1 = -\frac{3\epsilon_0}{\epsilon + 2\epsilon_0} E_0$$
 and  $C_1 = \frac{\epsilon - \epsilon_0}{\epsilon + 2\epsilon_0} a^3 E_0$ 

■ The potential inside the sphere corresponds to a constant electric field,

$$\Phi_{in} = -\frac{3\epsilon_0}{\epsilon + 2\epsilon_0} E_0 r \cos\theta$$
$$\therefore \vec{E}_{in} = \frac{3\epsilon_0}{\epsilon + 2\epsilon_0} E_0 \hat{e}_z$$

The potential outside the sphere corresponds to the applied electric field plus the field of an electric dipole,

$$\Phi_{out} = -E_0 r \cos\theta + \frac{\epsilon - \epsilon_0}{\epsilon + 2\epsilon_0} \frac{E_0 a^3}{r^2} \cos\theta;$$
  
$$\therefore \vec{E}_{out} = E_0 \hat{e}_z - \nabla(\frac{\vec{x} \cdot \vec{p}}{4\pi\epsilon_0 r^3})$$
  
$$\vec{p} = (\frac{\epsilon - \epsilon_0}{\epsilon + 2\epsilon_0}) a^3 E_0 \hat{e}_z$$



# Example 3

A spherical *cavity* in a dielectric medium with an applied electric field.

First, draw a picture to define the problem.



This is the same as Example 2, except for the replacement  $\epsilon/\epsilon_0 \longrightarrow \epsilon_0/\epsilon$  .

| 19

So comparing to the final results from Example 2,

$$\vec{E}_{\text{in the cavity}} = \frac{3\epsilon}{2\epsilon + \epsilon_0} \vec{E}_0$$

i.e., the electric field is stronger in the cavity; and,

 $\vec{p}_{\text{outside}} = \frac{\epsilon - \epsilon_0}{2 \epsilon + \epsilon_0} a^3 E_0 (-\hat{e}_z)$ 

i.e., the dipole moment *due to the cavity* points antiparallel to the applied field (+ and – charges are reversed!).