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Lecture 1–2 (Wed Sept 4)
Boundary Value Problems with Dielectrics

Jackson:  Section  4.4

The equations of macroscopic electrostatics ...

∇ x E
→
= 0 and ∇ • D

→
= ρfree

where D
→
= ϵ0 E

→
+ P

→

P
→

(x
→

) = polarization in the medium
= dipole moment density

Boundary conditions;  at any surface,

Etangential is continuous;

Dnormal is continuous,
or ΔDn= σfree

Constitutive Equations

|⟶    relations between E
→

 and P
→

( or, E
→

 and D
→

 where D
→

 = ϵ0 E
→
+ P

→
 . )

The simplest model for polarization (a linear 
model)

Recall, P
→

(x
→

) =  N(x
→

) 〈 p
→

mol,x〉.

Assume P
→

(x
→

) is proportional to E
→

(x
→

).
How can this fail?  (Actually, it can fail! )
Assuming the material is uniform and 
isotropic, we write

P
→
(x
→
) = ϵ0 χe E

→
(x
→
)

χe ≡ electric susceptibility
What are the units of χe ?
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Or,

D
→
(x
→
) = ϵ0 E

→
(x
→
) + P

→
(x
→
) = ϵ0 (1 + χe) E

→
(x
→
)

D
→
(x
→
) = ϵ E

→
(x
→
) where ϵ = ϵ0 (1 + χe)

ϵ = electric permittivity

Later we’ll try to derive χe from theory, but for 
now just take it as a lab measurement.
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Boundary Value Problems

Example 1
First, draw a picture to define the problem.

The problem is to calculate the electric field 

E
→

(x
→

). The field equations are
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∇ • D
→
= ρfree(x

→
) = q δ3(x

→
– e/z d)

∇ x E
→
= 0

... with these constitutive equations

D
→
= ϵ1 E

→
in region R1 (z > 0)

D
→
= ϵ2 E

→
in region R2 (z < 0)
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Solution

First, because ∇ × E
→

 = 0 we can write 

E
→

(x
→

) = –∇Φ(x
→

);

now the problem is to determine Φ(x
→

).

Next, ∇•D
→

 = ρfree   where   D
→

 = ϵ E
→

 = – ϵ ∇Φ .

ϵ1 ∇2Φ = -qδ3 x
→
- e/z d in region R1 (z > 0)

ϵ2 ∇2Φ = 0 in region R2 (z < 0)
The problem has cylindrical symmetry, but 
we won’t use that to find the solution. 
Instead we will use the familiar trick called 
the method of images.
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Region R1   For z > 0,

ϵ1 Φ(x
→
) =

q

4π x
→
- e
^
z d

+ Φ'(x)

where ∇2Φ ' = 0. This does not mean that Φ’ 
= 0! We can “guess” that the form of Φ’  is the 
potential due to a fictitious “image” charge 
q’ at –e.zd (over in region R2).  So

4π ϵ1 Φ(x
→
) =

=
q

x
→
- e
^
z d

+
q'

x
→
+ e
^
z d

, for x
→
∈ R1
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Region R2   For z < 0,
∇2Φ = 0. This does not mean that Φ = 0! We 
can “guess” that the form of Φ = the potential 
due to a fictitious “image” charge q’’ at +e.zd 
(over in region R1). So

4π ϵ2 Φ(x
→
) =

=
q''

x
→
- e
^
z d

for x
→
∈ R2

So, now we have  ∇ • D
→

= ρfree , guaranteed!
But what are q’ and q’’?
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Apply the boundary conditions.

▮ Dnorm. is continuous at z = 0  (no free 
charge on the surface) ⟹

ϵ2
∂Φ
∂z

(x,y,0-) = ϵ1
∂Φ
∂z

(x,y,0+)

∴ q'' = q - q'

▮ Etang. is continuous at z = 0   ⟹

In[:]:= Style"
∂Φ

∂x
(x,y,0-) =

∂Φ

∂x
(x,y,0+)", ff

Style" ∴
q''

ϵ2
=
q + q'

ϵ1
", ff

∂Φ
∂x

(x,y,0-) =
∂Φ
∂x

(x,y,0+)

∴
q''
ϵ2

=
q + q'
ϵ1

Now solve for q’ and q’’ .
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In[:]:= Style"q' = -
ϵ2 - ϵ1

ϵ2 + ϵ1
q and q'' =

2 ϵ2

ϵ2 + ϵ1
q", ff

q' = -
ϵ2 - ϵ1
ϵ2 + ϵ1

q and q'' =
2 ϵ2

ϵ2 + ϵ1
q

See Figure 4.5.
In[:]:= Show[figex1, ImageSize → 480]

What is plotted here?

Is it  E
→

 or D
→

 ?
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Exercises. 
◼ Determine the surface charge density on 
the boundary surface.

σmicro = E2n – E1n
◼ Determine the force on q. Is it attractive or 
repulsive?
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Example 2
A dielectric sphere is placed in a uniform 

external electric field. Calculate E
→

(x
→

).
First, draw a picture to define the problem.

Φin = Σ
l=0

∞
Al rl Pl(cosθ) (r<a)

Φout = Σ
l=0

∞
(Bl rl+Clr-(l+1)) Pl(cosθ) (r>a)
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Far from the sphere, i.e., as r ⟶ ∞, Φ must 
approach the potential for a uniform field
=  – E0 z = -E0 r cosθ . Therefore B1 = -E0 and 
Bl  = 0  for l ≠ 1.
Now we have ∇2Φ = 0, guaranteed.
Next, apply the boundary conditions.

Etang. is continuous at r = a ; implies

Ein,θ (a,θ) = Eout,θ (a,θ)

-
1
a
[
∂Φin

∂θ
]r=a= -

1
a
[
∂Φout

∂θ
]r=a

∴ A1 = -E0 +
C1
a3

for the case l = 1
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Dnorm. is continuous ⟹

ϵ Ein,r (a,θ) = ϵ0 Ein,r (a,θ)

-ϵ [
∂Φin

∂r
]r=a= -ϵ0 [

∂Φout

∂r
]r=a

∴ ϵ A1 = -ϵ0 E0 -
2 ϵ0 C1
a3

for l = 1

Exercise : Show that  Al = 0 and Cl  = 0 
for l ≠ 1; this is sort of obvious. 
(* Calculation *)

eqs = {A1 ⩵ -E0 + C1/a^3, ϵ*A1 ⩵ -ϵ0 *E0 - 2 ϵ0 C1/a^3};

A1 /. Part[Solve[eqs, {A1, C1}] // Simplify, 1]

C1 /. Part[Solve[eqs, {A1, C1}] // Simplify, 1]

-
3 E0 ϵ0
ϵ + 2 ϵ0

a3 E0 (ϵ - ϵ0)
ϵ + 2 ϵ0
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Thus, solving for A1 and C1 ,

A1 = -
3 ϵ0

ϵ + 2 ϵ0
E0 and C1 =

ϵ - ϵ0
ϵ + 2 ϵ0

a3 E0

▮ The potential inside the sphere corre-
sponds to a constant electric field,

Φin=–
3 ϵ0

ϵ + 2 ϵ0
E0 r cosθ

∴ E
→
in =

3 ϵ0
ϵ + 2 ϵ0

E0 e/z

 |   15

The potential outside the sphere corre-
sponds to the applied electric field plus the 
field of an electric dipole,

Φout=– E0 r cosθ +
ϵ - ϵ0
ϵ + 2 ϵ0

E0 a3

r2
cosθ ;

∴ E
→
out = E0 e/z - ∇(

x
→
•p
→

4πϵ0 r3
)

p
→
= (

ϵ - ϵ0
ϵ + 2 ϵ0

) a3 E0 e/z
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plotting the E
→

 field lines in the xz-plane, for 
ϵ = 3 ϵ0 .
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Example 3
A spherical cavity in a dielectric medium 
with an applied electric field.
First, draw a picture to define the problem.

This is the same as Example 2, except for the 
replacement ϵ / ϵ0 ⟶  ϵ0/ϵ .
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So comparing to the final results from Exam-
ple 2, 

E
→
in the cavity =

3 ϵ
2 ϵ + ϵ0

E
→
0

i.e., the electric field is stronger in the cav-
ity; and,

p
→
outside =

ϵ - ϵ0
2 ϵ + ϵ0

a3 E0 (– e/z)

i.e., the dipole moment due to the cavity 
points antiparallel to the applied field (+ and 
– charges are reversed!).
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