start

Lecture 1-2 (Wed Sept 4)

Boundary Value Problems with Dielectrics
Jackson: Section 4.4
The equations of macroscopic electrostatics ...

$$
\begin{aligned}
& \nabla \times \vec{E}=0 \text { and } \nabla \cdot \vec{D}=\rho_{\text {free }} \\
& \text { where } \vec{D}=\epsilon_{0} \vec{E}+\vec{P}
\end{aligned}
$$

$\vec{P}(\vec{x})=$ polarization in the medium
$=$ dipole moment density

Boundary conditions; at any surface,
$\mathrm{E}_{\text {tangential }}$ is continuous;
$D_{\text {normal }}$ is continuous,
or $\Delta D_{n}=\sigma_{\text {free }}$

Constitutive Equations

\longrightarrow relations between \vec{E} and \vec{P}
(or, \vec{E} and \vec{D} where $\vec{D}=\epsilon_{0} \vec{E}+\vec{P}$.)
The simplest model for polarization (a linear model)

Recall, $\vec{P}(\vec{x})=\mathrm{N}(\vec{x})\left\langle\vec{p}_{\text {mol }, x}\right\rangle$.
Assume $\vec{P}(\vec{x})$ is proportional to $\vec{E}(\vec{x})$.
How can this fail? (Actually, it can fail!)
Assuming the material is uniform and isotropic, we write

$$
\vec{P}(\vec{x})=\epsilon_{0} \chi_{\mathrm{e}} \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{x}})
$$

$\chi_{e} \equiv$ electric susceptibility
What are the units of χ_{e} ?

Or,

$$
\begin{aligned}
& \vec{D}(\vec{x})=\epsilon_{0} \vec{E}(\vec{x})+\vec{P}(\vec{x})=\epsilon_{0}\left(1+\chi_{e}\right) \overrightarrow{\mathrm{E}}(\vec{x}) \\
& \vec{D}(\vec{x})=\epsilon \overrightarrow{\mathrm{E}}(\vec{x}) \text { where } \epsilon=\epsilon_{0}\left(1+\chi_{e}\right) \\
& \quad \epsilon=\text { electric permittivity }
\end{aligned}
$$

Later we'll try to derive Xe from theory, but for now just take it as a lab measurement.

Boundary Value Problems

Example 1

First, draw a picture to define the problem.

The problem is to calculate the electric field $\vec{E}(\vec{X})$. The field equations are

$$
\begin{gathered}
\nabla \cdot \overrightarrow{\mathrm{D}}=\rho_{\text {free }}(\overrightarrow{\mathrm{x}})=\mathrm{q} \delta^{3}\left(\overrightarrow{\mathrm{x}}-\hat{\mathrm{e}}_{\mathrm{z}} \mathrm{~d}\right) \\
\nabla \times \overrightarrow{\mathrm{E}}=0
\end{gathered}
$$

... with these constitutive equations

$$
\begin{aligned}
& \vec{D}=\epsilon_{1} \vec{E} \text { in region R1 }(z>0) \\
& \vec{D}=\epsilon_{2} \vec{E} \text { in region } R 2(z<0)
\end{aligned}
$$

Solution

First, because $\nabla \times \vec{E}=0$ we can write $\vec{E}(\vec{x})=-\nabla \Phi(\vec{x})$;
now the problem is to determine $\Phi(\vec{x})$.
Next, $\nabla \cdot \vec{D}=\rho_{\text {free }}$ where $\vec{D}=\epsilon \vec{E}=-\epsilon \nabla \Phi$.
$\begin{cases}\epsilon_{1} \nabla^{2} \Phi=-\mathrm{q} \delta^{3}\left(\overrightarrow{\mathrm{x}}-\hat{\mathrm{e}}_{\mathrm{z}} \mathrm{d}\right) & \text { in region } \mathrm{R} 1(\mathrm{z}>0) \\ \epsilon_{2} \nabla^{2} \Phi=0 & \text { in region } \mathrm{R} 2(\mathrm{z}<0)\end{cases}$
The problem has cylindrical symmetry, but we won't use that to find the solution.
Instead we will use the familiar trick called the method of images.

Region R1 For z>0,

$$
\epsilon_{1} \Phi(\vec{x})=\frac{q}{4 \pi\left|\vec{x}-\hat{e}_{z} d\right|}+\Phi^{\prime}(x)
$$

where $\nabla^{2} \Phi^{\prime}=0$. This does not mean that Φ^{\prime} $=0$! We can "guess" that the form of Φ ' is the potential due to a fictitious "image" charge q ' at $-\hat{e}_{z} \mathrm{~d}$ (over in region $R 2$). So

$$
\begin{gathered}
4 \pi \epsilon_{1} \Phi(\vec{x})= \\
=\frac{q}{\left|\vec{x}-\hat{e}_{z} d\right|}+\frac{q^{\prime}}{\left|\vec{x}+\hat{e}_{z} d\right|}, \text { for } \vec{x} \in R 1
\end{gathered}
$$

Region R2 For z < 0,
$\nabla^{2} \Phi=0$. This does not mean that $\Phi=0!$ We can "guess" that the form of $\Phi=$ the potential due to a fictitious "image" charge q " at $+\hat{e}_{z}$ d (over in region R1). So

$$
\begin{aligned}
& 4 \pi \epsilon_{2} \Phi(\vec{x})= \\
= & \frac{q^{\prime \prime}}{\left|\vec{x}-\hat{e}_{z} d\right|} \text { for } \vec{x} \in R 2
\end{aligned}
$$

So, now we have $\nabla \cdot \vec{D}=\rho_{\text {free }}$, guaranteed! But what are q' and q"?

Apply the boundary conditions.

- $D_{\text {norm. }}$ is continuous at $\mathrm{z}=0$ (no free charge on the surface) \Longrightarrow

$$
\begin{gathered}
\epsilon_{2} \frac{\partial \Phi}{\partial z}(x, y, 0-)=\epsilon_{1} \frac{\partial \Phi}{\partial z}(x, y, 0+) \\
\therefore q^{\prime \prime}=q-q^{\prime}
\end{gathered}
$$

- $E_{\text {tang. }}$ is continuous at z $=0 \Longrightarrow$
merl $=\operatorname{Style}\left[" \frac{\partial \Phi}{\partial x}(x, y, 0-)=\frac{\partial \Phi}{\partial x}(x, y, 0+) ", f f\right]$
Style[" $\left.\quad \therefore \quad \frac{q^{\prime \prime}}{\epsilon_{2}}=\frac{q+q^{\prime}}{\epsilon_{1}}{ }^{\prime}, f f\right]$

$$
\begin{aligned}
& \frac{\partial \Phi}{\partial x}(x, y, 0-)=\frac{\partial \Phi}{\partial x}(x, y, 0+) \\
& \therefore \frac{q^{\prime \prime}}{\epsilon_{2}}=\frac{q+q^{\prime}}{\epsilon_{1}}
\end{aligned}
$$

Now solve for q' and q" .
mrl $=\operatorname{style}\left[" q^{\prime}=-\frac{\epsilon_{2}-\epsilon_{1}}{\epsilon_{2}+\epsilon_{1}}\right.$ q and $\left.q^{\prime \prime}=\frac{2 \epsilon_{2}}{\epsilon_{2}+\epsilon_{1}} q^{\prime \prime}, f f\right]$

$$
\mathrm{q}^{\prime}=-\frac{\epsilon_{2}-\epsilon_{1}}{\epsilon_{2}+\epsilon_{1}} \mathrm{q} \text { and } \mathrm{q}^{\prime \prime}=\frac{2 \epsilon_{2}}{\epsilon_{2}+\epsilon_{1}} \mathrm{q}
$$

See Figure 4.5.

What is plotted here?
Is it \vec{E} or \vec{D} ?

Exercises

- Determine the surface charge density on the boundary surface.

$$
\sigma_{\text {micro }}=\mathrm{E}_{2 \mathrm{n}}-\mathrm{E}_{1 \mathrm{n}}
$$

- Determine the force on q. Is it attractive or repulsive?

Example 2

A dielectric sphere is placed in a uniform external electric field. Calculate $\vec{E}(\vec{x})$. First, draw a picture to define the problem.

Far from the sphere, i.e., as $r \longrightarrow \infty, \Phi$ must approach the potential for a uniform field $=-E_{0} \mathrm{z}=-E_{0} r \cos \theta$. Therefore $B_{1}=-E_{0}$ and $B_{1}=0$ for $1 \neq 1$.
Now we have $\nabla^{2} \Phi=0$, guaranteed.
Next, apply the boundary conditions.
$E_{\text {tang. }}$ is continuous at $\mathrm{r}=\mathrm{a}$; implies

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{in}, \theta}(\mathrm{a}, \theta)=\mathrm{E}_{\text {out }, \theta}(\mathrm{a}, \theta) \\
& -\frac{1}{\mathrm{a}}\left[\frac{\partial \Phi_{\text {in }}}{\partial \theta}\right]_{\mathrm{r}=\mathrm{a}}=-\frac{1}{\mathrm{a}}\left[\frac{\partial \Phi_{\text {out }}}{\partial \theta}\right]_{\mathrm{r}=\mathrm{a}} \\
\therefore & \mathrm{~A}_{1}=-\mathrm{E}_{0}+\frac{\mathrm{C}_{1}}{\mathrm{a}^{3}} \text { for the case } \mathrm{l}=1
\end{aligned}
$$

$D_{\text {norm. }}$ is continuous \Longrightarrow

$$
\begin{aligned}
& \epsilon \mathrm{E}_{\mathrm{in}, \mathrm{r}}(\mathrm{a}, \theta)=\epsilon_{0} \mathrm{E}_{\mathrm{in}, \mathrm{r}}(\mathrm{a}, \theta) \\
& -\epsilon\left[\frac{\partial \Phi_{\mathrm{in}}}{\partial \mathrm{r}}\right]_{\mathrm{r}=\mathrm{a}}=-\epsilon_{0}\left[\frac{\partial \Phi_{\text {out }}}{\partial \mathrm{r}}\right]_{\mathrm{r}=\mathrm{a}} \\
\therefore & \in \mathrm{~A}_{1}=-\epsilon_{0} \mathrm{E}_{0}-\frac{2 \epsilon_{0} \mathrm{C}_{1}}{\mathrm{a}^{3}} \text { for } \mathrm{l}=1
\end{aligned}
$$

Exercise : Show that $A_{l}=0$ and $C_{l}=0$ for $1 \neq 1$; this is sort of obvious.
(* Calculation *)
eqs $=\left\{A 1=-E 0+C 1 / a^{\wedge} 3, \epsilon * A 1=-\in 0 * E 0-2 \in 0 C 1 / a^{\wedge} 3\right\} ;$
A1 /. Part[Solve[eqs, \{A1, C1\}] // Simplify, 1]
C1 /. Part[Solve[eqs, \{A1, C1\}] // Simplify, 1]

$$
\begin{gathered}
-\frac{3 E 0 \in 0}{\epsilon+2 \epsilon 0} \\
\frac{a^{3} E 0(\epsilon-\epsilon 0)}{\epsilon+2 \epsilon 0}
\end{gathered}
$$

Thus, solving for A_{1} and C_{1},

$$
\mathrm{A}_{1}=-\frac{3 \epsilon_{0}}{\epsilon+2 \epsilon_{0}} \mathrm{E}_{0} \text { and } \mathrm{C}_{1}=\frac{\epsilon-\epsilon_{0}}{\epsilon+2 \epsilon_{0}} a^{3} \mathrm{E}_{0}
$$

- The potential inside the sphere corresponds to a constant electric field,

$$
\begin{gathered}
\Phi_{\text {in }}=-\frac{3 \epsilon_{0}}{\epsilon+2 \epsilon_{0}} \mathrm{E}_{0} \mathrm{r} \cos \theta \\
\therefore \overrightarrow{\mathrm{E}}_{\text {in }}=\frac{3 \epsilon_{0}}{\epsilon+2 \epsilon_{0}} \mathrm{E}_{0} \hat{\mathrm{e}}_{z}
\end{gathered}
$$

The potential outside the sphere corresponds to the applied electric field plus the field of an electric dipole,

$$
\begin{gathered}
\Phi_{\text {out }}=-\mathrm{E}_{0} \mathrm{r} \cos \theta+\frac{\epsilon-\epsilon_{0}}{\epsilon+2 \epsilon_{0}} \frac{\mathrm{E}_{0} \mathrm{a}^{3}}{\mathrm{r}^{2}} \cos \theta ; \\
\therefore \overrightarrow{\mathrm{E}}_{\text {out }}=\mathrm{E}_{0} \hat{\mathrm{e}}_{z}-\nabla\left(\frac{\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{p}}}{4 \pi \epsilon_{0} \mathrm{r}^{3}}\right) \\
\overrightarrow{\mathrm{p}}=\left(\frac{\epsilon-\epsilon_{0}}{\epsilon+2 \epsilon_{0}}\right) \mathrm{a}^{3} \mathrm{E}_{0} \hat{\mathrm{e}}_{z}
\end{gathered}
$$

So comparing to the final results from Example 2,

$$
\vec{E}_{\text {in the cavity }}=\frac{3 \epsilon}{2 \epsilon+\epsilon_{0}} \overrightarrow{\mathrm{E}}_{0}
$$

i.e., the electric field is stronger in the cavity; and,

$$
\overrightarrow{\mathrm{p}}_{\text {outside }}=\frac{\epsilon-\epsilon_{0}}{2 \epsilon+\epsilon_{0}} a^{3} \mathrm{E}_{0}\left(-\hat{\mathrm{e}}_{z}\right)
$$

i.e., the dipole moment due to the cavity points antiparallel to the applied field (+ and - charges are reversed!).

