start	Now derive the Clausius-Mossotti formula
Lecture 1-3 (Fri, Sept 6)	$\chi_{\mathrm{e}}=\frac{\mathrm{N} \gamma_{\mathrm{mol}}}{1-\frac{1}{3} N \gamma_{\mathrm{mol}}} \quad[\mathrm{CM} .1]$
Molecular Polarizability (γ_{mol}) and Electric Susceptibility $\left(\chi_{e}\right)$ and Permittivity (ϵ). Jackson Section 4.5	or, $\gamma_{\text {mol }}=\frac{3}{N}\left(\frac{\epsilon / \epsilon_{0}-1}{\epsilon / \epsilon_{0}+2}\right) \quad[C M .2]$
Review χ_{e} and ϵ $\begin{aligned} & \vec{D}=\epsilon_{0} \vec{E}+\vec{P} \quad \text { and } \quad \vec{P}=\chi_{e} \epsilon_{0} \vec{E} \\ & \vec{D}=\epsilon \vec{E} \quad \text { and } \quad \epsilon=\left(1+\chi_{e}\right) \epsilon_{0} \end{aligned}$	It relates a molecular quantity γ_{mol}, to a macroscopic quantity ϵ. I'll show you the simplest derivation of these results, but not the best justified. Jackson has a more complete derivation, but it gives the same results.

Derivation

We have defined χ_{e} by these equations

$$
\begin{aligned}
& \vec{P}(\vec{x})=\vec{N}(\vec{x})\left\langle\vec{p}_{\text {mol }}\right\rangle_{\vec{x}} \\
& \vec{P}(\vec{x})=\chi_{e} \epsilon_{0} \vec{E}(\vec{x})
\end{aligned}
$$

Here $\vec{E}(\vec{x})$ is the macroscopic field, i.e., averaged over $\Delta \mathrm{V} \gg$ molecule.
A first guess is $\vec{p}_{\text {mol, }, x}=\chi_{e} \epsilon_{0} \vec{E}(\vec{x})$, but that is not quite good enough,

We need a better calculation of $\vec{p}_{\text {molecule }}$.

- The macroscopic field may be called an "external" field, because it comes from external sources-charge outside the region of the single molecule that we are considering.
$\vec{E}(\vec{x})$ is the average due to a large number ($\sim 10^{23}$) of molecules in some macroscopic (but small) $\Delta \mathrm{V}$ around \vec{x}.
- But there is also an "internal" field, coming from nearby sources. For nearby molecules we should not just average over large numbers. Their field will also affect $\vec{p}_{\text {mol }}$. So, we should write

$$
\begin{gathered}
\overrightarrow{\mathrm{p}}_{\text {mol }}=\gamma_{\text {mol }} \epsilon_{0} \overrightarrow{\mathrm{E}}_{\text {mol }} \\
\text { where } \overrightarrow{\mathrm{E}}_{\text {mol }}=\overrightarrow{\mathrm{E}}_{\text {ext }}+\overrightarrow{\mathrm{E}}_{\text {int }}
\end{gathered}
$$

The parameter $\gamma_{\mathrm{mol}} \equiv$ molecular polariz-ability-a property of a single molecule.

Estimating the local field $\vec{E}_{\text {mol }}$
Ideally we would use a full quantum theory for the molecules. Clausius (1850) and Mossotti (1979) used a classical theory.

- Imagine a microscopic sphere of radius R enclosing the molecule, and estimate the field at the center of the sphere.
- Treat the sphere as a cavity in the dielectric \Longrightarrow Example 3 from last time. (See Jackson page 161: "it is a good working assumption that $\vec{E}_{\text {near }} \approx 0$ for most materials.)

$$
\vec{E}_{\mathrm{mol}}
$$

Recall from Example 3, we had

$$
\begin{aligned}
& \quad \overrightarrow{\mathrm{E}}_{\text {in }}=\frac{3 \epsilon}{2 \epsilon+\epsilon_{0}} \mathrm{E}_{0} \hat{\mathrm{e}}_{z} \\
& \text { and } \quad \overrightarrow{\mathrm{E}}_{\text {out }}=\mathrm{E}_{0} \hat{\mathrm{e}}_{z}-\nabla\left(\frac{\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{x}}}{4 \pi \epsilon_{0} r^{3}}\right)
\end{aligned}
$$

where the distant field is $E_{0} \hat{e}_{z}$.

- Approximate

$$
\vec{E}_{\text {macro }} \approx \mathrm{E}_{0} \hat{\mathrm{e}}_{z} \text { and } \quad \overrightarrow{\mathrm{E}}_{\text {mol }} \approx \overrightarrow{\mathrm{E}}_{\text {in }}
$$

■ Now we have the following calculation...

$$
\begin{aligned}
& \overrightarrow{\mathrm{P}}=\epsilon_{0} \chi \overrightarrow{\mathrm{E}}_{\text {macro }} \quad \text { (def.) } \\
& \overrightarrow{\mathrm{P}}=\mathrm{N} \overrightarrow{\mathrm{p}}_{\text {mol }}=\mathrm{N} \gamma \epsilon_{0} \overrightarrow{\mathrm{E}}_{\text {mol }} \\
& \overrightarrow{\mathrm{E}}_{\text {mol }}=\frac{3 \epsilon}{2 \epsilon+\epsilon_{0}} \overrightarrow{\mathrm{E}}_{0}=\frac{3 \epsilon_{0}(1+\chi)}{2 \epsilon_{0}(1+\chi)+\epsilon_{0}} \overrightarrow{\mathrm{E}}_{0} \\
& =\frac{3+3 X}{3+2 \chi} \overrightarrow{\mathrm{E}}_{0}=\left(1+\frac{\chi}{3+2 \chi}\right) \overrightarrow{\mathrm{E}}_{0} \\
& \approx\left(1+\frac{\chi}{3}\right) \overrightarrow{\mathrm{E}}_{\text {macro }} \\
& \therefore \epsilon_{0} X \mathrm{E}_{\text {macro }}=\mathrm{N} \gamma \epsilon_{0}\left(1+\frac{\chi}{3}\right) \mathrm{E}_{\text {macro }} \\
& \quad \chi=\frac{\mathrm{N} \gamma}{1-\frac{1}{3} N \gamma \quad(C M-1)}
\end{aligned}
$$

Or, rewriting the formula in terms of $\epsilon \equiv \epsilon_{0}(1+\chi)$,

$$
\gamma_{\text {mol }}=\frac{3}{\mathrm{~N}}\left(\frac{\epsilon / \epsilon_{0}-1}{\epsilon / \epsilon_{0}+2}\right) \quad(\mathrm{CM}-2)
$$

So this relates a microscopic parameter ν_{mal} to a macrosconic narameter $\epsilon / \epsilon_{n} \equiv$
$\kappa=$ the dielectric constant.
Clausius and Mossotti: for any dielectric material, the quantity $(\kappa-1) /(\kappa+2)$ is proportional to the density.

10
Example: Jackson Problem 4.11 ; Pentane @ 303 K

$\{0.796,2.12\},\{0.865,2.24\},\{0.907,2.33\}\} ;$
tb // TableForm

density	$K=\epsilon / \epsilon_{0}$
0.613	1.82
0.701	1.96
0.796	2.12
0.865	2.24
0.907	2.33

$n_{n t l}=\mathrm{t} 2=$ Table $[$
\{tb[[i, 1]], (tb[[i, 2]]-1)/(tb[[i, 2]] +2)\}, \{i, 2, 6\}];
ListPlot[t2, PlotStyle \rightarrow \{Red, PointSize[0.025]\}, BaseStyle \rightarrow ff,
Frame \rightarrow True, FrameLabel $\rightarrow\{" \rho ", "(\kappa-1) /(\kappa+2) "\}$,
ImageSize \rightarrow 520]

