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Lecture 1—3 (Fri, Sept 6)

Molecular Polarizability (γmol) and Electric 
Susceptibility (χe) and Permittivity ( ϵ ).

Jackson Section 4.5

Review χe and ϵ

D
→
= ϵ0 E

→
+ P

→
and P

→
= χe ϵ0 E

→

D
→
= ϵ E

→
and ϵ = ( 1 + χe ) ϵ0

Now derive the Clausius-Mossotti formula

χe =
N γmol

1 - 1
3 N γmol

[CM.1]

or,

γmol =
3
N
(
ϵ / ϵ0 - 1
ϵ / ϵ0 + 2

) [CM.2]

It relates a molecular quantity γmol , to 
a macroscopic quantity ϵ.
I’ll show you the simplest derivation of 
these results, but not the best justified. 
Jackson has a more complete deriva-
tion, but it gives the same results.

2



Derivation
We have defined χe by these equations

P
→
(x
→
) = N

→
(x
→
) 〈p

→
mol〉x

→

P
→
(x
→
) = χe ϵ0 E

→
(x
→
)

Here E
→

(x
→

) is the macroscopic field, i.e., 
averaged over ΔV ≫ molecule.

A first guess is p
→

mol,x  = χe ϵ0 E
→

(x
→

)  , but that is 
not quite good enough,

We need a better calculation of  

p
→

molecule.
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▮ The macroscopic field may be called 
an “external” field, because it comes 
from external sources—charge outside 
the region of the single molecule that 
we are considering.

E
→

(x
→

) is the average due to a large num-
ber ( ~ 1023 ) of molecules in some 

macroscopic (but small) ΔV around x
→

 .
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▮ But there is also an “internal” field, 
coming from nearby sources. For 
nearby molecules we should not just 
average over large numbers. Their field 

will also affect p
→

mol.
So, we should write

p
⟶

mol = γmol ϵ0 E
→

mol

where E
→

mol = E
→

ext + E
→

int

The parameter γmol ≡ molecular polariz-
ability—a property of a single molecule.
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Estimating the local field E
→

mol     
Ideally we would use a full quantum the-
ory for the molecules.  Clausius (1850) 
and Mossotti (1979) used a classical 
theory.
▮ Imagine a microscopic sphere of 
radius R enclosing the molecule, and 
estimate the field at the center of the 
sphere.
▮ Treat the sphere as a cavity in the 
dielectric ⟹ Example 3 from last time.
(See Jackson page 161: “it is a good work-

ing assumption that E
→

near ≈ 0 for most 
materials.)
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E
→

mol

Recall from Example 3, we had 

E
→

in =
3 ϵ

2 ϵ + ϵ0
E0 e0z

and E
→

out = E0 e0z -∇ (
p
→
• x
→

4π ϵ0 r3
)

where the distant field is E0 e+z .
▮ Approximate

E
→

macro ≈ E0 e0z and E
→

mol ≈ E
→

in

▮ Now we have the following calcula-
tion ...
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P
→
= ϵ0 χ E

→
macro (def.)

P
→
= N p

→
mol = N γ ϵ0 E

→
mol

E
→

mol= 3 ϵ
2 ϵ + ϵ0

E
→

0 =
3 ϵ0 (1+χ)

2 ϵ0 (1+χ)+ϵ0
E
→

0

= 3+3 χ
3+2 χ E

→
0 = ( 1 + χ

3+2 χ ) E
→

0

≈ ( 1 + χ
3 ) E

→
macro

∴ ϵ0 χ Emacro = N γ ϵ0 (1 + χ
3 ) Emacro

χ =
Nγ

1 - 1
3 Nγ

(CM-1)

Or, rewriting the formula in terms of
ϵ ≡ ϵ0 (1+χ), 

γmol =
3
N
(
ϵ / ϵ0 - 1
ϵ / ϵ0 + 2

) (CM-2)

So this relates a microscopic parameter 
γmol to a macroscopic parameter ϵ / ϵ0 ≡ 
κ = the dielectric constant.
Clausius and Mossotti: for any dielec-
tric material, the quantity (κ–1)/(κ+2) is 
proportional to the density. 
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So this relates a microscopic parameter 
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proportional to the density. 
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Example: Jackson Problem 4.11  ;  Pentane 
@ 303 K

In[6]:= tb = {{"density", "κ=ϵ/ϵ0"}, {0.613, 1.82}, {0.701, 1.96},
{0.796, 2.12}, {0.865, 2.24}, {0.907, 2.33}};

tb // TableForm

density κ=ϵ/ϵ0
0.613 1.82
0.701 1.96
0.796 2.12
0.865 2.24
0.907 2.33

In[6]:= t2 = Table[
{tb[[i, 1]], (tb[[i, 2]] - 1)/(tb[[i, 2]] + 2)}, {i, 2, 6}];

ListPlot[t2, PlotStyle → {Red, PointSize[0.025]},
BaseStyle → ff,
Frame → True, FrameLabel → {"ρ", "(κ-1)/(κ+2)"},
ImageSize → 520]
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