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Lecture 1—3 (Fri, Sept 6)

Molecular Polarizability (ymo1) and Electric
Susceptibility (x.) and Permittivity ( €).

Jackson Section 4.5

Review x. and €

- > o - -
D=¢E+P and P=x.6E
- -

D=€eE and €=(1+Xe)E6

Now derive the Clausius-Mossotti formula
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_3(6/60—1) [CM.2]
Vmol = €ley + 2 '

It relates a molecular quantity v, , to
a macroscopic quantity e.

I'll show you the simplest derivation of
these results, but not the best justified.
Jackson has a more complete deriva-
tion, but it gives the same results.




B The macroscopic field may be called
an “external” field, because it comes
from external sources—charge outside
B&) - ﬁ(}) (Bmoog the region of the single molecule that
we are considering.

Derivation
We have defined y. by these equations

P(X) = Xe € E(X)

N

E(;) is the average due to a large num-

Here E(x) is the macroscopic field, i.e., ber (~10%) of molecules in some

averaged over AV > molecule. . IR
macroscopic (but small) AV around x .

A first guess is Z?mol’x = Ye € E(?c) , but that is
not quite good enough,

We need a better calculation of

%
P molecule-




B But there is also an “internal” field,
coming from nearby sources. For
nearby molecules we should not just
average over large numbers. Their field

will also affect p_,.
So, we should write

— -
P mol = Ymol €0 Emol
- - -
where Epol = Eext + Eint

The parameter ynyo = molecular polariz-
ability—a property of a single molecule.

Estimating the local field Emol

Ideally we would use a full quantum the-
ory for the molecules. Clausius (1850)
and Mossotti (1979) used a classical
theory.

B Imagine a microscopic sphere of
radius R enclosing the molecule, and
estimate the field at the center of the
sphere.

B Treat the sphere as a cavity in the
dielectric = Example 3 from last time.

(See Jackson page 161: “it is a good work-

ing assumption that F ¢, ~ 0 for most
materials.)
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Emol

Recall from Example 3, we had

> -
p*X

_)
and Egui=Epé, -V (

)

471TE r3
where the distant field is E, &, .
B Approximate

-> n - -
Emacro = EO €; and Emol = Ein

B Now we have the following calcula-
tion ...

P =€ X Emacro (def.)

-

- -
P=NpPmot=NY € Emol

E 3¢ £ _ 36(l+x)

mol= s, ~07 26 (1+x)+6
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£ Eo=(1+55-)
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S € XEmaco= Ny & (L+ ;_() Emacro
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X=—"7"—  (CM-1)
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Or, rewriting the formula in terms of
€E=€ (1+X))
3 €elgg-1

=—(——— CM-2
Ymol N(E/€0+2) ( )

So this relates a microscopic parameter
v...1 10 2 macrosconic narameter €/€n =




k = the dielectric constant.

Clausius and Mossotti: for any dielec-
tric material, the quantity (x-1)/(k+2) is
proportional to the density.

Example: Jackson Problem 4.11 ; Pentane
@ 303K

wi- th = {{"density", "x=e/eo"}, {0.613, 1.82}, {0.701, 1.96},

{0.796, 2.12}, {0.865, 2.24}, {0.907, 2.33}};
tb // TableForm

density K=€/€g

0.613 1.82

0.701 1.96

0.796 2.12

0.865 2.24

0.907 2.33
m- t2 = Table[

{tb[[i, 111, (tb[[i, 211-1)/ (tb[[i, 211+2)}, {i, 2, 6}];
ListPlot[t2, PlotStyle -» {Red, PointSize[0.025]},
BaseStyle » ff,
Frame » True, FrameLabel » {"p", " (x-1)/(x+2)"},
ImageSize -» 520]
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