start

Lecture 1-4 Models of the Molecular Polarizability, γ_{mol}

Jackson Section 4.6

Review the Clausius-Mossotti relation

Let $\gamma_{mol} = \text{polarizability of a single molecule;}$ $\vec{p}_{mol.} = \gamma_{mol} \epsilon_0 \vec{E}_{micro}$. The units of $\gamma = \frac{Cm}{Cm^{-2}} = m^3$. \Rightarrow Macroscopic parameters $\chi_e = \text{electric susceptibility}$ $\epsilon = \text{permittivity}$ N = number density of the molecules $\epsilon = \epsilon_0 (1 + \chi_e)$ $\chi_e = \frac{N \gamma_{mol}}{1 - (1/3) N \gamma_{mol}}$ $\gamma_{mol} = \frac{3}{N} (\frac{\epsilon - \epsilon_0}{\epsilon + 2 \epsilon_0})$

The results relate a molecular quantity (γ_{mol}) to macroscopic quantities (ϵ or χ , and N). The relation is fairly accurate for gases (\leftarrow 1 small N) but only approximate for condensed matter.

The result is interesting because it gives a way to measure *(or, at least, estimate)* γ_{mol} from laboratory measurements of ϵ and N.

Now, can we calculate γ_{mol} using theory?

Theoretical models for γ_{mol}

The best theory would involve quantum mechanics. Here we will only consider classical models.

There are two kinds of molecular polarization:

CASE 1 : If the molecule has an *induced dipole moment* because of the presence of an electric field, which distorts the atomic structure; an example is O_2 .

CASE 2 : If the molecule has a *permanent* dipole moment because of its atomic structure; an example is H_2O .

CASE 1: Induced polarization

Here is a reasonable model:

■ Treat the negative charge in the molecule as if it is a particle with mass m and charge -e. (*These model parameters are not exactly the values for an electron, but should have the same order of magnitude.*)

• Describe a restoring force on the negative charge by $\vec{F} = -k \vec{x}$, where $\vec{x} =$ the displacement from equilibrium.

• Define $k = m\omega_0^2$ where $\omega_0 = an$ angular frequency characteristic of the molecule.

/ 3

 $\frac{Calculation of \gamma_{mol} \text{ for induced polarization}}{\text{ In the presence of an electric field,}}$

| 5

5

 $m\frac{d^{2}\vec{x}}{dt^{2}} = -k\vec{x} - e\vec{E}(\vec{x})$

So, for a static system, $m\omega_0^2 \vec{x} = -e \vec{E}(\vec{x})$. Then the dipole moment of the molecule is

 $\vec{p}_{mol} = -e \vec{x} = \frac{e^2}{m\omega_0^2} \vec{E} = \gamma_{mol} \epsilon_0 \vec{E}$

Jackson extends this to allow multiple frequencies,

 $\gamma_{\rm mol} = \frac{1}{\epsilon_0} \sum_{j} \frac{e^2}{m_j \omega_j^2}$

Later, we will use this model for time-dependent electric fields; then there will be a frequency-dependent permittivity.

Numerical examples

$$\gamma = \frac{4 \pi}{4 \pi \epsilon_0} \frac{\mathrm{e}^2}{\mathrm{m} \omega_0^2}$$

Estimate the order of magnitude. Assume e = electron charge and m = electron mass, which should be the right order of magnitude.

Recall the "classical radius of the electron",

$$r_e = \frac{1}{4 \pi \epsilon_0} \frac{e^2}{m c^2} = 2.82 \times 10^{-15} m$$

Then

$$\gamma = \frac{4 \pi r_e c^2}{\omega_0^2}$$

From atomic/molecular physics, estimate $\hbar \omega_0 \sim 10 \text{ eV}$; also, $\hbar c = 197.3 \times 10^{-9} \text{ eV} \circ \text{m}$; $\therefore \frac{c}{\omega_0} \sim 2 \times 10^{-8} \text{ m}$.

$\gamma \sim 4\pi \circ 3 \times 10^{-15} \circ 4 \times 10^{-16} \text{ m}^3$ = 150 × 10⁻³¹ m³

/ 7

7

which makes sense, ~ $(radius)^3$. But what does it imply about the susceptibility, χ_e ?

Consider an ideal gas at STP

One mole of an ideal gas will occupy a volume of 22.4 liters at STP (0°C and one atmosphere pressure); that is,

 $N = \frac{6.02 \times 10^{23}}{22.4 \times 10^{-3} m^3} = 2.7 \times 10^{25} m^{-3}$

 $\gamma N = 4.05 \times 10^{-4}$ $\chi = \frac{N\gamma}{1 - N\gamma/3} = 4.05 \times 10^{-4}$ $\epsilon/\epsilon_0 = 1 + \chi_e = 1 + 405 \times 10^{-6}$ $\{\epsilon/\epsilon_0 - 1\} \times 10^6 = 405$ Examples : $(\epsilon/\epsilon_0 - 1) \times 10^6$ Ar : 555 CO₂ : 990 O₂ : 588

 N_2 : 531

Question:

Dielectric constant = relative permittivity $\kappa = \epsilon/\epsilon_0$; for example, $\kappa = 1.0005$ for air. How are dielectric constants measured? Recall, capacitance = $\frac{\epsilon A}{d}$. | 9

10

Case 2: Molecule with a permanent dipole moment

Dense materials have $\kappa > 1$ or maybe $\gg 1$. Glasses : κ from 4 to 14 Water : $\kappa =$ from 35 to 78 BaTiO₃ : κ from 100 to 1250 *dependent on temperature*

"Orientation polarization" Suppose the permanent dipole moment of the molecule is \vec{p}_0 . Place a sample in an electric field \vec{E} . The potential energy of the dipole is

 $U = -\vec{p}_0 \cdot \vec{E} = -p_0 E \cos\theta.$ The distribution of angles is $C e^{-U/kT}$

(Boltzmann) \Rightarrow the mean dipole moment is

$$\langle p_0 (\hat{e}x \sin\theta \cos\phi + \hat{e}y \sin\theta \sin\phi + \hat{e}z \cos\theta) \rangle = p_0 \hat{e}_z \langle \cos\theta \rangle \langle \cos\theta \rangle = \frac{\int \cos\theta \exp[-U/kT] \sin\theta d\theta d\phi}{\int \exp[-U/kT] \sin\theta d\theta d\phi} = \frac{d}{d\beta} \log \int \exp[\beta \cos\theta] \sin\theta d\theta where $\beta = \frac{p_0 E}{kT}$
 = $\frac{d}{d\beta} \log \left[\frac{2}{\beta} \sinh\beta \right]$
 = $-\frac{1}{\beta} + \coth\beta \approx \frac{\beta}{3}$ for small β
 $\langle \vec{p} \rangle = p_0 \frac{p_0 E}{3kT} \hat{e}_z = \gamma \epsilon_0 \vec{E}$
 $\gamma = \frac{p_0^2}{3 \epsilon_0 kT}$
 $\Rightarrow \chi_e = \frac{N\gamma}{1 - N\gamma/3}$$$

Exercise: From $\kappa = 78$ at room temperature, calculate p_0 .

| 11

11