Lecture 1-4

Models of the Molecular Polarizability, $\gamma_{\text {mol }}$
Jackson Section 4.6
Review the Clausius-Mossotti relation
Let $\gamma_{\text {mol }}=$ polarizability of a single molecule;

$$
\vec{p}_{\text {mol. }}=\gamma_{\text {mol }} \epsilon_{0} \vec{E}_{\text {micro }}
$$

The units of $\gamma=\frac{C m}{C m^{-2}}=m^{3}$.
\Rightarrow Macroscopic parameters $\chi_{e}=$ electric susceptibility $\epsilon=$ permittivity $\mathrm{N}=$ number density of the molecules

$$
\begin{gathered}
\epsilon=\epsilon_{0}\left(1+\chi_{\mathrm{e}}\right) \\
\chi_{\mathrm{e}}=\frac{\mathrm{N} \gamma_{\mathrm{mol}}}{1-(1 / 3) N \gamma_{\mathrm{mol}}} \\
\gamma_{\text {mol }}=\frac{3}{N}\left(\frac{\epsilon-\epsilon_{0}}{\epsilon+2 \epsilon_{0}}\right)
\end{gathered}
$$

The results relate a molecular quantity (γ_{mol}) to macroscopic quantities (ϵ or χ, and N). The relation is fairly accurate for gases (\leftrightarrow small N) but only approximate for condensed matter.
The result is interesting because it gives a way to measure (or, at least, estimate)
$\gamma_{\text {mol }}$ from laboratory measurements of ϵ and N.

Now, can we calculate $\gamma_{\text {mol }}$ using theory?

Theoretical models for γ mol
The best theory would involve quantum mechanics. Here we will only consider classical models.
There are two kinds of molecular polarization:
CASE 1 : If the molecule has an induced dipole moment because of the presence of an electric field, which distorts the atomic structure; an example is O_{2}.
CASE 2 : If the molecule has a permanent dipole moment because of its atomic structure; an example is $\mathrm{H}_{2} \mathrm{O}$.

CASE 1: Induced polarization

Here is a reasonable model:

- Treat the negative charge in the molecule as if it is a particle with mass m and charge -e. (These model parameters are not exactly the values for an electron, but should have the same order of magnitude.)
- Describe a restoring force on the negative charge by $\vec{F}=-\mathrm{k} \vec{x}$, where $\vec{x}=$ the displacement from equilibrium.
- Define $\mathrm{k}=\mathrm{m} \omega_{0}^{2}$ where $\omega_{0}=$ an angular frequency characteristic of the molecule.

Calculation of $\gamma_{\text {mol }}$ for induced polarization In the presence of an electric field,

$$
m \frac{d^{2} \vec{x}}{d t^{2}}=-k \vec{x}-e \vec{E}(\vec{x})
$$

So, for a static system, $m \omega_{0}^{2} \vec{x}=-\mathrm{e} \vec{E}(\vec{x})$. Then the dipole moment of the molecule is

$$
\overrightarrow{\mathrm{p}}_{\mathrm{mol}}=-\mathrm{e} \overrightarrow{\mathrm{x}}=\frac{\mathrm{e}^{2}}{\mathrm{~m} \omega_{0}^{2}} \overrightarrow{\mathrm{E}}=\gamma_{\mathrm{mol}} \epsilon_{0} \overrightarrow{\mathrm{E}}
$$

Jackson extends this to allow multiple frequencies,

$$
\gamma_{\mathrm{mol}}=\frac{1}{\epsilon_{0}} \sum_{\mathrm{j}} \frac{\mathrm{e}^{2}}{\mathrm{~m}_{\mathrm{j}} \omega_{\mathrm{j}}^{2}}
$$

Later, we will use this model for time-dependent electric fields; then there will be a frequency-dependent permittivity.

Numerical examples

$$
\gamma=\frac{4 \pi}{4 \pi \epsilon_{0}} \frac{\mathrm{e}^{2}}{\mathrm{~m} \omega_{0}^{2}}
$$

Estimate the order of magnitude.
Assume $\mathrm{e}=$ electron charge and $\mathrm{m}=$ electron mass, which should be the right order of magnitude.
Recall the "classical radius of the electron",

$$
\mathrm{r}_{\mathrm{e}}=\frac{1}{4 \pi \epsilon_{0}} \frac{\mathrm{e}^{2}}{\mathrm{mc}^{2}}=2.82 \times 10^{-15} \mathrm{~m}
$$

Then

$$
\gamma=\frac{4 \pi \mathrm{r}_{\mathrm{e}} \mathrm{c}^{2}}{\omega_{0}^{2}}
$$

From atomic/molecular physics,
estimate $\hbar \omega_{0} \sim 10 \mathrm{eV}$;
also, $\hbar \mathrm{c}=197.3 \times 10^{-9} \mathrm{eV} \cdot \mathrm{m}$;
$\therefore \frac{c}{\omega_{0}} \sim 2 \times 10^{-8} \mathrm{~m}$.

$$
\begin{aligned}
\gamma \sim & 4 \pi \cdot 3 \times 10^{-15} \cdot 4 \times 10^{-16} \mathrm{~m}^{3} \\
& =150 \times 10^{-31} \mathrm{~m}^{3}
\end{aligned}
$$

which makes sense, \sim (radius) ${ }^{3}$.
But what does it imply about the susceptibility, χ_{e} ?

Consider an ideal gas at STP
One mole of an ideal gas will occupy a volume of 22.4 liters at STP $\left(0^{\circ} \mathrm{C}\right.$ and one atmosphere pressure); that is,

$$
\begin{aligned}
\mathrm{N}= & \frac{6.02 \times 10^{23}}{22.4 \times 10^{-3} \mathrm{~m}^{3}}=2.7 \times 10^{25} \mathrm{~m}^{-3} \\
& \gamma \mathrm{~N}=4.05 \times 10^{-4} \\
& \chi=\frac{N \gamma}{1-N \gamma / 3}=4.05 \times 10^{-4} \\
& \epsilon / \epsilon_{0}=1+\chi_{\mathrm{e}}=1+405 \times 10^{-6} \\
& \left\{\epsilon / \epsilon_{0}-1\right) \times 10^{6}=405
\end{aligned}
$$

Examples: $\left(\epsilon / \epsilon_{0}-1\right) \times 10^{6}$
Ar : 555
CO_{2} : 990
O_{2} : 588
N_{2} : 531

Question:

Dielectric constant $=$ relative permittivity $\kappa=\epsilon / \epsilon_{0}$; for example, $\kappa=1.0005$ for air. How are dielectric constants measured?
Recall, capacitance $=\frac{\epsilon \mathrm{A}}{d}$.

Case 2: Molecule with a permanent dipole moment

Dense materials have $\kappa>1$ or maybe $\gg 1$.
Glasses : κ from 4 to 14
Water : $\kappa=$ from 35 to 78
BaTiO_{3} : κ from 100 to 1250
dependent on temperature
"Orientation polarization"
Suppose the permanent dipole moment of the molecule is \vec{p}_{0}. Place a sample in an elec-
tric field \vec{E}. The potential energy of the
dipole is

$$
\mathrm{U}=-\vec{p}_{0} \cdot \vec{E}=-p_{0} \mathrm{E} \cos \theta
$$

The distribution of angles is $C e^{-U / k T}$
(Boltzmann) \Rightarrow the mean dipole moment is

$$
\begin{aligned}
& \left\langle\mathrm{p}_{0}(\hat{e x} \sin \theta \cos \phi+\hat{\text { eny }} \sin \theta \sin \phi+\hat{\mathrm{ez}} \cos \theta)\right\rangle \\
& \quad=\mathrm{p}_{0} \hat{\mathrm{e}}_{Z}\langle\cos \theta\rangle \\
& \langle\cos \theta\rangle=\frac{\int \cos \theta \exp [-U / k T] \sin \theta \mathrm{d} \theta \mathrm{~d} \phi}{\int \exp [-U / k T] \sin \theta d \theta d \phi} \\
& =\frac{d}{d \beta} \log \int \exp [\beta \cos \theta] \sin \theta \mathrm{d} \theta \\
& \text { where } \beta=\frac{\mathrm{p}_{0} \mathrm{E}}{\mathrm{kT}} \\
& =\frac{d}{\mathrm{~d} \beta} \log \left[\frac{2}{\beta} \sinh \beta\right] \\
& =-\frac{1}{\beta}+\operatorname{coth} \beta \approx \frac{\beta}{3} \text { for small } \beta \\
& \langle\overrightarrow{\mathrm{P}}\rangle=\mathrm{p}_{0} \frac{\mathrm{p}_{0} \mathrm{E}}{3 k T} \hat{\mathrm{e}}_{z}=\gamma \epsilon_{0} \overrightarrow{\mathrm{E}} \\
& \gamma=\frac{\mathrm{p}_{0}^{2}}{3 \epsilon_{0} k T} \\
& \Rightarrow \chi_{\mathrm{e}}=\frac{N \gamma}{1-N \gamma / 3}
\end{aligned}
$$

Exercise: From $\kappa=78$ at room temperature, calculate p_{0}.

