start

Lecture 1-5 \{Wed, Sept. 11\}
Electrostatic Energy in Dielectric Media
Jackson Section 4.7

ENERGY IN ELECTROSTATICS

Microscopic electrostatics
Consider a system with N charges (draw a picture!).

What is the energy?
Start with 2 charges.
The work required to assemble 2 charges =

$$
\begin{aligned}
W^{(2)} & =\frac{q_{1} q_{2}}{4 \pi \epsilon_{0}\left|\vec{x}_{1}-\vec{x}_{2}\right|} ; \\
\operatorname{sim} . W^{(N)} & =\sum_{i=1}^{N} \sum_{j=1}^{N} \frac{q_{i} q_{j}}{4 \pi \epsilon_{0}\left|\vec{x}_{i}-\vec{x}_{j}\right|} \text { with } i>j ; \\
\text { or, } W^{(N)} & =\frac{1}{2} \sum_{i} \sum_{j} \frac{q_{i} q_{j}}{4 \pi \epsilon_{0}\left|\vec{x}_{i}-\vec{x}_{j}\right|} \text { with } i \neq j ; \\
& =\frac{1}{2} \sum_{i} q_{i} \Phi^{(N-1)}\left(\vec{x}_{i}\right)
\end{aligned}
$$

In terms of charge density,

$$
\rho(\vec{x})=\sum_{i=1}^{N} q_{i} \delta^{3}\left(\vec{x}-\vec{x}_{i}\right) \rightarrow \sum_{i=1}^{N} q_{i} f\left(\vec{x}-\vec{x}_{i}\right)
$$

better replace point charges
by distributed charges
Now consider
$U=\frac{1}{2} \int d^{3} x \rho(\vec{x}) \Phi(\vec{x})$ where $\Phi(\vec{x})=\int \frac{\rho\left(x^{\prime}\right) d^{3} x^{\prime}}{4 \pi \epsilon_{0}\left|\vec{x}-\overrightarrow{x^{\prime}}\right|}$
= self energies + interaction energies
self energy $i=\frac{q_{i}^{2}}{2} \int \frac{f(\vec{x}) f\left(\vec{x}^{\prime}\right) d^{3} x d^{3} x^{\prime}}{4 \pi \epsilon_{0}\left|\vec{x}-\vec{x}^{\prime}\right|}$
(infinite for a point charge!)
So, for microscopic electrostatics,

$$
\begin{equation*}
U=\frac{1}{2} \int d^{3} x \rho(\vec{x}) \Phi(\vec{x}) \tag{1}
\end{equation*}
$$

Is this equation valid for macroscopic electrostatics? Not obvious because then ρ and Φ
mean something different from $\rho_{\text {micro }}$ and $\Phi_{\text {micro. }}$ We'll find that equation (1) is only true for linear materials.

Energy in a macroscopic dielectric material $\vec{D}=\epsilon_{0} \vec{E}+\vec{P}$; but do not assume linear . Let $\mathrm{W}=$ the energy required to assemble a free charge density $\rho(\vec{x})$, AND to produce the final polarization $\vec{P}(\vec{x})$.

Differential changes: Suppose we already have free charge ρ and potential Φ. Now we add free charge $\delta \rho$

$$
\Longrightarrow \delta \mathrm{W}=\int \delta \rho(\overrightarrow{\mathrm{x}}) \Phi(\overrightarrow{\mathrm{x}}) \mathrm{d}^{3} \mathrm{x}
$$

Calculations ...

$$
\Longrightarrow
$$

$$
\begin{align*}
& \nabla \cdot \overrightarrow{\mathrm{D}}=\rho \Longrightarrow \delta \rho=\nabla \cdot \delta \overrightarrow{\mathrm{D}} \\
& \quad \therefore \delta \mathrm{~W}=\int(\nabla \cdot \delta \overrightarrow{\mathrm{D}}) \Phi \mathrm{d}^{3} \mathrm{x} \\
& =\int(-) \delta \overrightarrow{\mathrm{D}} \cdot \nabla \Phi \mathrm{~d}^{3} \mathrm{x}=\int \delta \overrightarrow{\mathrm{D}} \cdot \overrightarrow{\mathrm{E}} \mathrm{~d}^{3} \mathrm{x} \\
& \quad \text { using integration by parts } \\
& \mathrm{W}=\int \mathrm{d}^{3} x \int_{0}^{\mathrm{D}} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{D}} \tag{2}
\end{align*}
$$

W is the energy of the dielectric system.

Special case: a linear medium
OK, now assume $\vec{D}=\epsilon \vec{E}$.
Then $\delta(\vec{E} \cdot \vec{D})=\delta \vec{E} \cdot \vec{D}+\vec{E} \cdot \delta \vec{D}$

$$
=2 \epsilon \delta \vec{E} \cdot \vec{E}=2 \vec{E} \cdot \delta \vec{D}
$$

and so

$$
\begin{align*}
& W=\int d^{3} x \int_{0}^{D} \frac{1}{2} d(\vec{E} \cdot \vec{D}) \\
& =\frac{1}{2} \int \vec{E} \cdot \vec{D} d^{3} x \tag{3}
\end{align*}
$$

for a linear medium.
We could rewrite (3) as

$$
\begin{equation*}
W=\frac{1}{2} \int \rho(\vec{x}) \Phi(\vec{x}) d^{3} x \tag{4}
\end{equation*}
$$

because $\vec{E}=-\operatorname{grad} \Phi$ and $\operatorname{div} \vec{D}=\rho$.
However, (4) and (1) are not identical because in (1) $\rho=\rho_{\text {micro }}$ and in (4) $\rho=\rho_{\text {free }}$!

Example.

Assume:
(i) all free charges are fixed;
(2) the initial medium is free space;
(3) the medium changes by adding a linear dielectric.
Calculate W.

$$
\begin{aligned}
& W_{0}=\frac{1}{2} \int \vec{E}_{0} \cdot \vec{D}_{0} d^{3} x \text { where } \vec{D}_{0}=\epsilon_{0} \vec{E}_{0} \\
& W=\frac{1}{2} \int \vec{E} \cdot \vec{D} d^{3} x \text { where } \vec{D}=\epsilon \vec{E} \\
& \Delta W=\frac{1}{2} \int\left(\vec{E} \cdot \vec{D}-\vec{E}_{0} \cdot \vec{D}_{0}\right) d^{3} x
\end{aligned}
$$

Think of it as two steps:
(i) first disconnect the batteries and change the dielectric; $\delta \rho_{\text {free }}=0$ so

$$
\delta \mathrm{W}_{1}=\frac{1}{2} \int \rho \delta \Phi_{1} \mathrm{~d}^{3} \mathrm{x}
$$

(ii) then reconnect the batteries;

Charge $\delta \rho_{2}(\vec{x})$ flows to or from the batteries, to restore the original potentials; so ...

$$
\begin{gathered}
\delta \Phi_{2}=-\delta \Phi_{1} \\
\therefore \delta \mathrm{~W}_{2}=\frac{1}{2} \int\left(\rho \delta \Phi_{2}+\Phi \delta \rho_{2}\right) \mathrm{d}^{3} \mathrm{x}=-2 \delta \mathrm{~W}_{1}
\end{gathered}
$$

(Note: $\int \rho \delta \Phi_{2}=\int \Phi \delta \rho_{2} ;$ and $\delta \Phi_{2}=-\delta \Phi_{1}$)
The combined change of energy is

$$
\begin{aligned}
& \delta \mathrm{W}=\delta \mathrm{W}_{1}+\delta \mathrm{W}_{2}=-\delta \mathrm{W}_{1}=-\frac{1}{2} \int \rho \delta \Phi_{1} \mathrm{~d}^{3} \mathrm{x} \\
& (\delta \mathrm{~W})_{\mathrm{V}}=-(\delta \mathrm{W})_{\mathrm{Q}} \\
& \therefore \overrightarrow{\mathrm{~F}}=+(\nabla \mathrm{W})_{\mathrm{V}} \quad \text { (a surprising sign!) }
\end{aligned}
$$

The most familiar example is a capacitor with a moveable dielectric slab.

