enter

Lecture 2-2 (Mon Sept 16) Magnetization \vec{M} and the Magnetic Field \vec{H}

Jackson: Sections 5.6 5.7 5.8

Section 5.6

Magnetic moment of a localized current distribution

Given $\vec{J}(\vec{x})$,

$$\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{x}')}{|\vec{x} - \vec{x}'|} d^3x';$$

expand in powers of 1/r (r = $|\vec{x}|$)

$$= \frac{\mu_0}{4\pi} \{ \frac{1}{r} \int \vec{J}(\vec{x}') d^3x' + \frac{1}{r^3} \int \vec{J}(\vec{x}') \vec{x} \cdot \vec{x}' d^3x' + \dots \}$$

Theorem 1:

$$\int \vec{J}(\vec{x}') d^3x' = 0.$$

Proof: For a localized current, $\int \nabla \cdot (x_i \mathbf{J}) d^3 \mathbf{x} = \oint \hat{n} \cdot (x_i \vec{J}) d\mathbf{a} = 0;$ $= \int (J_i + x_i \nabla \cdot \vec{J}) d^3 \mathbf{x} = \int J_i d^3 \mathbf{x} = 0.$ The monopole term is zero.

2

Theorem 2: The next term $O(r^{-2})$ can be simplified, in terms of the magnetic dipole moment \vec{m} .

Proof: What is $d_i \equiv \int (\vec{x} \cdot \vec{x}') J_i(\vec{x}') d^3 x'$? For a localized current, $\int \nabla \cdot (x'_i x'_j \vec{J}) d^3 x' = \oint \hat{n} \cdot (x'_i x'_j \vec{J}) da' = 0;$ $= \int (x'_j J_i + x'_i J_j) d^3 x' = 0$ Now calculate $[\vec{x} \times (\vec{x}' \times \vec{J})] d^3 x'$ $= \int [\vec{x}' (\vec{x} \cdot \vec{J}) - (\vec{x} \cdot \vec{x}') \vec{J}] d^3 x'$ $= -2 \vec{d}$ so $\vec{d} = -\frac{1}{2} \vec{x} \times \int \vec{x}' \times \vec{J} d^3 x' = -\vec{x} \times \vec{m}$.

$$\vec{A}^{(2)}(\vec{x}) = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{x}}{r^3}$$
$$\vec{m} = \frac{1}{2} \int \vec{x}' \times \vec{J}(\vec{x}') d^3x' \qquad \text{magnetic dipole moment}$$

Section 5.7 Force Torque and Energy

I assume you studied this in PHY 841.

 $\vec{N} = \vec{m} \times \vec{B}$ $U = -\vec{m} \cdot \vec{B}$

Exercise: When is this true (eq 5.57)?

 $|\stackrel{\rightarrow}{m}| = I \times area$

Section 5.8 The Macroscopic Equations

3

Note the similarity to dielectrics.

• For electrostatics we defined $\vec{P}(\vec{x})$ and $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$; that was because $\rho_{\text{bound}} = -\nabla \cdot \vec{P}$; then $\nabla \cdot \vec{D} = \rho_{\text{free}}$. • Now for magnetostatics we'll define $\vec{M}(\vec{x})$ and $\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$; that's because $\vec{J}_{\text{bound}} = \nabla \times \vec{M}$; then $\nabla \times \vec{H} = \vec{J}_{\text{free}}$. (and of course $\nabla \cdot \vec{B} = 0$)

Derivations

The electric currents inside molecules will be smoothed out by averaging over many molecules in small volumes ΔV . 5

Recall the vector potential of a magnetic dipole located at $\vec{x'}$...

 $\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{r^3}$ where $\vec{r} = \vec{x} - \vec{x}'$

Apply this to the net magnetic moment of a volume ΔV .

I.e., replace
$$\vec{m}$$
 by $N(\vec{x'}) \langle \vec{m}_{\text{molecule}} \rangle d^3 x'$.
$$\vec{M}(\vec{x'}) \equiv N(\vec{x'}) \langle \vec{m}_{\text{molecule}} \rangle_{\vec{x'}}$$
$$= \text{the magnetization at } \vec{x'}$$
$$= \text{the magnetic dipole moment density}$$

Free current and bound current

The vector potential due to bound molecular currents in a small volume ΔV located at \vec{x} ' is

$$\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \frac{\left(\vec{m}\right) \times \left(\vec{x} - \vec{x}'\right)}{\left|\vec{x} - \vec{x}'\right|^3}$$

Thus the vector potential at \vec{x} due to all the currents in the system is

$$\vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int d^3 x' \frac{\vec{J}_{\text{free}}(\vec{x}\,')}{|\vec{x} - \vec{x}\,'|} + \frac{\mu_0}{4\pi} \int d^3 x' \frac{\vec{M}(\vec{x}\,') \times (\vec{x} - \vec{x}\,')}{|\vec{x} - \vec{x}\,'|^3}$$

where $\vec{M}(\vec{x}\,') = N(\vec{x}\,') \langle \vec{m} \rangle_{\vec{x}'}$.
Now rewrite the second term
$$= \frac{\mu_0}{4\pi} \int d^3 x' \vec{M}(\vec{x}\,') \times \nabla' \frac{1}{4\pi}$$

$$= \frac{4\pi}{4\pi} \int d^{3}x' M(x') \times v' \frac{1}{|\vec{x} - \vec{x}'|}$$
$$= \frac{\mu_{0}}{4\pi} \int \nabla' \times \vec{M}(\vec{x}') \frac{d^{3}x'}{|\vec{x} - \vec{x}'|}$$

+ possible surface term?

$$\therefore \vec{A}(\vec{x}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}_{\text{free}}(\vec{x}') + \nabla' \times \vec{M}(\vec{x}')}{|\vec{x} - \vec{x}'|} d^3x'$$

I.e., a magnetization M that varies with with position makes an effective current density $\vec{J}_M = \nabla \times \vec{M}$.

Bound surface current density

This is important, but it is a little hidden in Jackson. See Equation (5.103). Start with (5.77), integrate by parts, *and keep the surface integral*; the result is ...

> On any boundary surface S, $\vec{K}_{M} = \vec{M} \times \hat{n}$

Example: A uniformly magnetized bar of iron is equivalent to a solenoid. (Homework)

The magnetic field \vec{H}

Calculate $\vec{B} = \operatorname{curl} \vec{A}$; and then $\operatorname{curl} \vec{B}$... So, the result is

curl $\vec{B} = \mu_0 \vec{J}_{free} + \mu_0 \operatorname{curl} \vec{M}$;

and of course we still have $\nabla \cdot \vec{B} = 0$.

The "magnetic field" is defined by

 $\vec{H} = \frac{1}{\mu_0} \vec{B} - \vec{M}$.

 $\implies \text{From the previous eq,} \\ \text{curl } \vec{H} = (1/\mu_0) (\mu_0 \vec{J}_{\text{free}} + \mu_0 \text{ curl } \vec{M}) - \text{curl } \vec{M} = \vec{J}_{\text{free}}.$

 \hat{H} is the magnetic field. \hat{B} is often also called the "magnetic field", which could be a source of confusion. More properly, \hat{B} is the "magnetic induction" (Jackson) or the "magnetic flux density" (Faraday). So, finally, the macroscopic equations for magnetostatics are

div
$$\vec{B} = 0$$
 and curl $\vec{H} = \vec{J}_{free}$
where div $\vec{J}_{free} = 0$
and $\vec{B} = \mu_0 (\vec{H} + \vec{M})$

Constitutive equations

diamagnetic medium	$\vec{B} = \mu \vec{H}$	$\mu < \mu_0$
paramagnetic med.	$\vec{B} = \mu \vec{H}$	$\mu > \mu_0$
ferromagnetic med.	$\vec{B} = \vec{F}(\vec{H})$	nonlinear

10

9

Boundary Conditions

Jackson Section 5.8 <u>Magnetic induction</u>; $\vec{B}(\vec{x})$ On any surface in a magnetic system, the normal component of \vec{B} is continuous across the surface. The reason is because div $\vec{B} = 0$.

$\hat{\mathbf{n}} \cdot \vec{\mathbf{B}}(2) = \hat{\mathbf{n}} \cdot \vec{\mathbf{B}}(1)$

where \hat{n} = the unit normal vector pointing from region 1 into region 2. <u>Magnetic field</u>; $\vec{H}(\vec{x})$

On any surface in a magnetic system, the tangential component of \vec{H} is continuous across the surface if there is no free surface current on the surface. The reason is because curl \vec{H} = 0.

11

$\hat{n} \times \vec{H} (2) = \hat{n} \times \vec{H} (1)$

However, if there is a free surface current *K* on the surface, then

$\hat{n} \times [\stackrel{\rightarrow}{H}(2) - \stackrel{\rightarrow}{H}(1)] = \stackrel{\rightarrow}{K}$

(check the units)