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Lecture 2-2 (Mon Sept 16)
Magnetization M

→
 and the Magnetic Field H

→

Jackson: Sections 5.6 5.7 5.8

Section 5.6
Magnetic moment of a localized current 
distribution

Given J
→

(x
→

), 

A
→
(x
→
) =

μ0
4π

∫
J
→
x
→
'

x
→
- x

→
'
d3x' ;

expand in powers of 1 / r  ( r = | x
→

 | )

=
μ0
4π

{
1
r
∫ J

→
( x
→
') d3x' +

1

r3
∫ J

→
( x
→
') x

→
•x
→
' d3x' + ...

Theorem 1:

∫ J
→
( x
→
') d3x' = 0 .

Theorem 2: The next term O (r-2) can be sim-
plified, in terms of the magnetic dipole 

moment m
→

.

A
→(2)

(x
→
) = μ0

4π
m
→
× x

→

r3

m
→
= 12 ∫ x

→
' × J

→
( x
→
') d3x' magnetic dipole moment
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Section 5.7
Force Torque and Energy

I assume you studied this in PHY 841.

N
→
=m

→
× B

→

U = -m
→
• B
→

Exercise: When is this true (eq 5.57)?

|m
→
| = I × area
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Section 5.8
The Macroscopic Equations

Note the similarity to dielectrics.

▪ For electrostatics we defined P
→

(x
→

) and  

D
→

  = ϵ0 E
→

 + P
→

;

that was because ρbound = –∇• P
→

  ;

then ∇• D
→

 = ρfree.

▪ Now for magnetostatics we'll define M
→

(x
→

) 

and H
→

 = 1
μ0

 B
→

  –  M
→

;

that’s because J
→

bound = ∇ ⨯ M
→

 ; 

then ∇ × H
→

 = J
→

free.

(and of course ∇ • B
→

 = 0)
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Derivations
The electric currents inside molecules will 
be smoothed out by averaging over many 
molecules in small volumes ΔV.
Recall the vector potential of a magnetic 

dipole located at x
→

’   ...

A
→
(x
→
) =

μ0
4π

m
→
× r

→

r3
where r

→
= x

→
– x

→
'

Apply this to the net magnetic moment of a 
volume ΔV.

I.e., replace  m
→

    by N (x
→

') 〈 m
→

molecule 〉 d 3x' .

M
→
x
→

' ≡ N (x
→

' ) 〈 m
→

molecule 〉x
→

' 

= the magnetization at x
→

'
= the magnetic dipole moment density
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Free current and bound current
The vector potential due to bound molecular 

currents in a small volume ΔV located at x
→

’ is

A
→
(x
→
) =

μ0
4π

m
→
×  x

→
- x

→
'

x
→
- x

→
' 3

Thus the vector potential at x
→

 due to all the 
currents in the system is

A
→
(x
→
) =

μ0
4π

∫ d3x'
J
→
free x

→
'

x
→
- x

→
'

+
μ0
4π

∫ d3x'
M
→
 x
→
'× x

→
- x

→
'

x
→
- x

→
' 3

where M
→

( x
→

’) = N( x
→

’)  m
→


x
→

'
 .

Now rewrite the second term

=
μ0
4π

∫ d3x' M
→
( x
→
')× ∇'

1

x
→
- x

→
'

=
μ0
4π

∫ ∇' × M
→
( x
→
')

d3 x'

x
→
- x

→
'

+ possible surface term?
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∴ A
→
(x
→
) =

μ0
4π

∫
J
→
free  x

→
' + ∇ '× M

→
 x
→
' 

x
→
- x

→
'

d3x'

I.e., a magnetization M
→

 that varies with with 
position makes an effective current density

J
→

M  = ∇×M
→

 .

Bound surface current density
This is important, but it is a little hidden in 
Jackson.  See Equation (5.103).
Start with (5.77), integrate by parts, and keep 
the surface integral ; the result is ...

On any boundary surface S,

K
→
M =M

→
× n1

Example: A uniformly magnetized bar of 
iron is equivalent to a solenoid. (Homework)
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The magnetic field H
→

Calculate B
→

 = curl A
→

  ; and then curl B
→

  ...
So, the result is

curl B
→
= μ0 J

→
free + μ0 curl M

→
;

and of course we still have ∇ • B
→

 = 0.

The “magnetic field”   is defined by

H
→
=
1
μ0
B
→
-M

→
.

⟹ From the previous eq,

curl H
→

 = ( 1 / μ0 ) ( μ0 J
→

free + μ0 curl M
→

) – curl M
→

 = J
→

free .

H
→

 is the magnetic field. B
→

 is often also called the 
“magnetic field”, which could be a source of confu-

sion. More properly, B
→

 is the “magnetic induction” 
(Jackson) or the “magnetic flux density” (Faraday).
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So, finally, the macroscopic equations for 
magnetostatics are

div B
→
= 0 and curl H

→
= J

→
free

where div J
→
free = 0

and B
→
= μ0 ( H

→
+M )

→

Constitutive equations

diamagnetic medium B
→
= μ H

→
μ < μ0

paramagnetic med. B
→
= μ H

→
μ > μ0

ferromagnetic med. B
→
= F

→
(H
→
) nonlinear
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Boundary Conditions
 Jackson Section 5.8

Magnetic induction ;  B
→

(x
→

)
On any surface in a magnetic system, the nor-

mal component of B
→

 is continuous across 

the surface. The reason is because div B
→

 = 0.

n1 • B
→
(2) = n1 • B

→
(1)

where n8  = the unit normal vector pointing 
from region 1 into region 2. 
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Magnetic field ;  H
→

(x
→

)
On any surface in a magnetic system, the tan-

gential component of H
→

 is continuous across 
the surface if there is no free surface current 

on the surface. The reason is because curl H
→

 
= 0.

n1 × H
→
(2) = n1 × H

→
(1)

However, if there is a free surface current K
→

 
on the surface, then 

n1 × [ H
→
(2) – H

→
(1) ] = K

→

(check the units)
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