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Lecture 2-2 (Mon Sept 16)
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Magnetization M and the Magnetic Field H
Jackson: Sections 5.6 5.7 5.8
Section 5.6

Magnetic moment of a localized current
distribution

Given J ()_f) ,

expand in powers of 1/r (r=|x|)
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- Ho —fJ(x’)d3x'+ fJ(x')xx‘d3x’+
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Theorem 1:

[I) dx =0.

Proof: For a localized current,
fV‘(XfJ) d3x =§ ne(x;J)da=0;

=f(]f+XiV'] )d3x=f],- d3*x= 0.
The monopole term is zero.

Theorem 2: The next term O(r~?) can be sim-
plified, in terms of the magnetic dipole

5
moment m.

Proof: What is disf(;-;’)]i(;’) d*x'?

For a localized current,

fV'-(x‘,-x',- j)d3x’ :9§ ﬁ-(x',-x'j])da’:o;
=[(xysi+xi])dx =0

Now calculate [ x x ( X’ x ;)]d3x’
=[1%(x]) - (x+x') ] 1d*
=24
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xfx’xjd3x’=—x><m.
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m=> I X" x J(x")dx magnetic dipole moment




Section 5.7
Force Torque and Energy

I assume you studied this in PHY 841.

> L, >
N=mxB
5 o
U=-m-B
Exercise: When is this true (eq 5.57)?

N
|m | =1X area

Section 5.8
The Macroscopic Equations

Note the similarity to dielectrics.

= For electrostatics we defined P()})) and
D =¢ E + P;

that was because pyoung =-V* P ;

then Ve D = pgree.

= Now for magnetostatics we'll define A_;[ (;)
and H = #LO B-M ;

that’s because jbound =V x J\jf ;

then V x ;I = jfree.

(and of course V« B =0)




Derivations

The electric currents inside molecules will
be smoothed out by averaging over many
molecules in small volumes AV.

Recall the vector potential of a magnetic
dipole located at X
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Apply this to the net magnetic moment of a
volume AV.

I.e., replace m by N (x") { Mpotecute ) d3%" .

M(X') = N(x') ( Mmolecule >§.

= the magnetization at X'
= the magnetic dipole moment density

Free current and bound current
The vector potential due to bound molecular

currents in a small volume AV located at )?’ is

o (R

4 |;_;.|3

Thus the vector potential at x due to all the
currents in the system is

Aoy = o [y e i) o [y M (%) (x-%)
47 | X—x"

where M( %) = N( %) (m). .

Now rewrite the second term

477 |;()_;()l|
o > 4 d3x
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v mex) =

+ possible surface term?




I.e., a magnetization M that varies with with
position makes an effective current density

]M =VxM .
Bound surface current density

This is important, but it is a little hidden in
Jackson. See Equation (5.103).

Start with (5.77), integrate by parts, and keep
the surface integral ; the result is ...

On any boundary surface S,
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Example: A uniformly magnetized bar of
iron is equivalent to a solenoid. (Homework)
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The magnetic field H
Calculate B=curl A ; andthen curl B ...
So, the result is
curl B = gy Jfree + o curl M

and of course we still have V « B =0.

The “magnetic field” is defined by
1
Ho

- > o
H=—B-M.

H is the magnetic field. B is often also called the
“magnetic field”, which could be a source of confu-

sion. More properly, B is the “magnetic induction”
(Jackson) or the “magnetic flux density” (Faraday).




So, finally, the macroscopic equations for
magnetostatics are

- g g
divB=0 and curlH=Jfee
where div Jfee =0

- - -
and B=py(H+M)

Constitutive equations
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ferromagnetic med. | B=F(H) | nonlinear

B

/7 Figure 5.8 Hysteresis loop giving B in a
L/ 7 ferromagnetic material as a function of H.
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Boundary Conditions

Jackson Section 5.8

Magnetic induction ; B()_())
On any surface in a magnetic system, the nor-

ﬁ
mal component of B is continuous across

the surface. The reason is because div B = 0.

neB(2)=n<B(1)
where 71 = the unit normal vector pointing
from region 1 into region 2.




Magnetic field ; H ()_())
On any surface in a magnetic system, the tan-

5
gential component of H is continuous across
the surface if there is no free surface current

N
on the surface. The reason is because curl H
=0.

AxH(Q2)=AxH(1)

5
However, if there is a free surface current K
on the surface, then
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Ax[H(2)-H(1)]=K
(check the units)




