Some ancient history

Who discovered magnetism?
\square The discovery of magnetism is attributed to Thales of Miletus.
■ Thales ($624-546$ BC) was the first pre-Socratic philosopher of Ancient Greece.
■ Thales was the first scientist in the his-

Lecture 2-3 \{Wed, Sept 18\}

 Methods of solving boundary-value problems in magnetostaticsJackson Section 5.9

The field equations are
$\nabla \cdot \vec{B}=0 \quad$ and $\quad \nabla \times \vec{H}=\vec{J}$
where \vec{J} means $\vec{J}_{\text {free }} \cdot \vec{B}$ and \vec{H} are related by some constitutive relation. But that's only part of the problem. The other part consists of the boundary conditions.

Jackson gives three methods.

A. The vector potential

We always have $\nabla \cdot \vec{B}=0$; then we can write

$$
\vec{B}=\nabla \times \vec{A}
$$

and now solve for $\vec{A}(\vec{x})$.

If there is a linear constitutive equation, $\vec{B}=\mu \vec{H}$, then

$$
\nabla \times(\nabla \times \overrightarrow{\mathrm{A}})=\mu \overrightarrow{\mathrm{J}}
$$

which is analogous to Poisson's equation.
B. The scalar potential (requires $\vec{J}_{\text {free }}=0$) This method can be used in any region of space where $\vec{J}=0$. Then $\nabla \times \vec{H}=0$ so we can write

$$
\overrightarrow{\mathrm{H}}=-\nabla \Phi_{\mathrm{M}}
$$

For a linear constitutive equation, $\vec{B}=\mu \vec{H}$, the other field equation gives

$$
\nabla \cdot\left(\mu \nabla \Phi_{\mathrm{M}}\right)=0
$$

which is analogous to Laplace's equation.
C. "Hard Ferromagnets": \vec{M} is given and $\vec{J}_{\text {free }}=0$.

Although $\vec{J}_{\text {free }}=0$, there are bound molecular currents in (or on the surface) of the matter (iron or ...) producing a magnetic field.

C (a) Using a scalar potential ...
Since $\vec{J}=0$, write $\vec{H}=-\operatorname{grad} \Phi_{M}$.
Now $\operatorname{div} \vec{B}=\mathbf{0}=\mu_{0} \operatorname{div}\left(-\operatorname{grad} \Phi_{M}+\vec{M}\right)$;
$\therefore \nabla^{2} \Phi_{M}=-\rho_{M}$ where $\rho_{M}=-\operatorname{div} \vec{M}$.
The problem reduces to Poisson's equation.

C (b) Using a vector potential ...
We can always write $\vec{B}=\operatorname{curl} \vec{A}$.
Then curl $\vec{H}=\vec{J}=0$ implies

$$
\operatorname{curl}\left[\vec{B} / \mu_{0}-\vec{M}\right]=0
$$

Or, $\nabla^{2} \vec{A}=-\mu_{0} \vec{J}_{M}$ where $J_{M}=\nabla \times \vec{M}$. Again, this is Poisson's equation.

Example - a Uniformly Magnetized Sphere

Jackson Section 5.10

$\vec{M}=M_{0} \hat{e}_{z}$ inside, i.e. for $\mathrm{r}<\mathrm{a}$.
What are \vec{B} and \vec{H} both inside and outside?

Solution by method C (a).
Write $\vec{H}=-\nabla \Phi_{M}$ because $\vec{J}_{\text {free }}=0$.
For $\mathrm{r}<\mathrm{a}, \quad \Phi_{M}(\mathrm{r}, \theta)=-c_{1} \mathrm{r} \cos \theta=-c_{1} \mathrm{z} ;$
For $\mathrm{r}>\mathrm{a}, \quad \Phi_{M}(\mathrm{r}, \theta)=c_{2} \frac{\cos \theta}{\mathrm{r}^{2}}$;
... solutions of Laplace's equation.

Boundary conditions at $\mathrm{r}=\mathrm{a} . .$.
B_{r} is continuous at $r=a$
$\mathrm{B}_{\mathrm{r}}=\mu_{0}\left\{\mathrm{H}_{\mathrm{r}}+\mathrm{M}_{0} \cos \theta\right\}=\mu_{0} \mathrm{H}_{\mathrm{r}}$

$$
c_{1}+M_{0}=2 c_{2} / a^{3}
$$

H_{t} is continuous at $r=a$

$$
\begin{gathered}
\mathrm{H}_{\theta}(\mathrm{r}=\mathrm{a}-)=\mathrm{H}_{\theta}(\mathrm{r}=\mathrm{a}+) \\
-\mathrm{c}_{1}=\mathrm{c}_{2} / \mathrm{a}^{3}
\end{gathered}
$$

Solution: $c_{1}=-\frac{M_{0}}{3}$ and $c_{2}=\frac{M_{0} a^{3}}{3}$

$$
\begin{aligned}
& \vec{H}(r, \theta)= \\
& \begin{cases}c_{1} \hat{e}_{z}=-\frac{M_{0}}{3} \hat{e}_{z} & \text { for } r<a \\
c_{2}\left[\hat{r} \frac{2 \cos \theta}{r^{3}}+\hat{\theta} \frac{\sin \theta}{r^{3}}\right] & \text { for } r>a\end{cases} \\
& \vec{B}(\mathrm{r}, \theta)= \begin{cases}\mu_{0} \frac{2 M_{0}}{3} & \text { for } r<a \\
\mu_{0} \vec{H}(r, \theta) & \text { for } r>a\end{cases}
\end{aligned}
$$

12

Solution by method C (b).

Write $\vec{B}=\operatorname{curl} \vec{A}$.
There is a bound surface current

$$
\vec{K}_{M}\left(\vec{x}^{\prime}\right)=M_{0} \hat{e}_{z} \times \hat{r}^{\prime}=M_{0} \sin \theta^{\prime} \hat{e}_{\phi}^{\prime}
$$

The vector potential $\vec{A}(\vec{x})=A_{\phi} \hat{e}_{\phi}$ can be calculated from the Green's function integral \Longrightarrow

$$
\mathrm{A}_{\phi}(\overrightarrow{\mathrm{x}})=\frac{\mu_{0}}{3} \mathrm{M}_{0} \mathrm{a}^{2} \frac{\mathrm{r}_{<}}{\mathrm{r}_{>}^{2}} \sin \theta
$$

where $r_{<}=\min \{r, a\}$ and $r_{>}=\max \{r, a\}$.
This gives the same constant \vec{B} inside the sphere, and the same dipole field B outside the sphere.

Figure 5.11 shows the field lines inside and outside the magnetized sphere.

