

Maxwell derived the field equations (~ 1865) from what was known about electricity and magnetism before his field theory.
And he realized that the equations are not consistent for general time dependence.

A mathematical identity :
$\nabla \cdot(\nabla \times \vec{H})=0$;
so Ampere's Law implies $\nabla \cdot \vec{J}=0$;
but in general $\nabla \cdot \vec{J}=-\frac{\partial \rho}{\partial t} \neq 0$.

To fix the inconsistency, Maxwell noted that Gauss's law implies

$$
\frac{\partial \rho}{\partial \mathrm{t}}=\nabla \cdot \frac{\partial \vec{D}}{\partial \mathrm{t}} ;
$$

so we can fix the problem by making this change:
$\nabla \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t}$.
Verify...
$\nabla \cdot(\nabla \times \vec{H})=0$
$=\nabla \cdot \vec{J}+\nabla \cdot \frac{\partial \vec{D}}{\partial t}=\nabla \cdot \vec{J}+\frac{\partial \rho}{\partial t}=0$.

Maxwell' s equations

$$
\begin{aligned}
& \nabla \cdot \vec{B}=0 \text { and } \nabla \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0 \\
& \nabla \cdot \vec{D}=\rho \text { where } \vec{D}=\epsilon_{0} \vec{E}+\vec{P}
\end{aligned}
$$

$$
\nabla \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t} \text { where } \vec{B}=\mu_{0}(\vec{H}+\vec{M})
$$

and charge is locally conserved
$\nabla \cdot \vec{\jmath}+\frac{\partial \rho}{\partial t}=0$
\Longleftrightarrow macroscopic classical electrodymamics.
-

Vector and Scalar Potentials

Jackson Section 6.2

We know from electrostatics and magnetostatics, we can simplify calculations by introducing potentials.
For general time dependence it goes like this:

$$
\begin{aligned}
& \nabla \cdot \vec{B}=0 \Rightarrow \text { write } \vec{B}=\nabla \times \vec{A} \\
& \nabla \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0=\nabla \times\left(\vec{E}+\frac{\partial \vec{A}}{\partial t}\right)=0 \\
& \Longrightarrow \text { write } \vec{E}+\frac{\partial \vec{A}}{\partial t}=-\nabla \Phi \\
& \vec{B}=\nabla \times \vec{A} \text { and } \vec{E}=-\nabla \Phi-\frac{\partial \vec{A}}{\partial t}
\end{aligned}
$$

Gauge Transformations

Jackson Section 6.3
$\vec{A}(\vec{x}, \mathrm{t})$ and $\Phi(\vec{x}, \mathrm{t})$ are not unique.
Consider these transformations of \vec{A} and Φ,

$$
\begin{aligned}
& \vec{A} \longrightarrow \overrightarrow{A^{\prime}}=\vec{A}+\nabla \lambda \\
& \Phi \longrightarrow \Phi^{\prime}=\Phi-\frac{\partial \lambda}{\partial t}
\end{aligned}
$$

where $\lambda(\vec{x}, \mathrm{t})$ is any scalar function

Theorem. These new potentials $\overrightarrow{A^{\prime}}$ and Φ^{\prime} describe the same \vec{E} and \vec{B} fields as \vec{A} and Φ.

Proof

$$
\begin{aligned}
& \overrightarrow{B^{\prime}}=\nabla \times \vec{A}^{\prime}=\nabla \times \vec{A}=\vec{B} \\
& \quad \text { because } \nabla \times \nabla \lambda=0 \\
& \vec{E}^{\prime}=-\nabla \Phi^{\prime}-\frac{\partial \overrightarrow{A^{\prime}}}{\partial t}=-\nabla \Phi-\frac{\partial \vec{A}}{\partial t}=\vec{E} \\
& \text { because }-\nabla\left(-\frac{\partial \lambda}{\partial t}\right)-\frac{\partial}{\partial t}(\nabla \lambda)=0
\end{aligned}
$$

Because the potentials are not unique, we can impose another condition on them which is called "a gauge condition".
In other words, if necessary apply a gauge transformation - ie, choose $\lambda(\vec{x}, \mathrm{t})$ - such that the gauge condition is satisfied.

The Lorenz (or, Lorentz) gauge:

$$
\nabla \cdot \vec{A}+\frac{1}{c^{2}} \frac{\partial \Phi}{\partial t}=0
$$

Then Maxwell's equations imply

$$
\begin{aligned}
& \nabla^{2} \Phi-\frac{1}{c^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=-\rho / \epsilon_{0} \\
& \nabla^{2} \overrightarrow{\mathrm{~A}}-\frac{1}{\mathrm{c}^{2}} \frac{\partial^{2} \overrightarrow{\mathrm{~A}}}{\partial \mathrm{t}^{2}}=-\mu_{0} \overrightarrow{\mathrm{~J}}
\end{aligned}
$$

$m(l)=s c a n$

The Coulomb (or, transverse) gauge:

$$
\nabla \cdot \vec{A}=0
$$

Then Maxwell's equations imply

$$
\begin{aligned}
& \nabla^{2} \Phi=-\rho / \epsilon_{0} \\
& \nabla^{2} \vec{A}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{A}}{\partial t^{2}}=-\mu_{0} \vec{J}_{\text {transverse }}
\end{aligned}
$$

The Coulomb gauge is sometimes called the "radiation gauge".

The Lorenz (or, Lorentz) gauge:

$$
\nabla \cdot \vec{A}+\frac{1}{c^{2}} \frac{\partial \Phi}{\partial t}=0
$$

Then Maxwell's equations imply

$$
\begin{aligned}
& \nabla^{2} \Phi-\frac{1}{c^{2}} \frac{\partial^{2} \Phi}{\partial t^{2}}=-\rho / \epsilon_{0} \\
& \nabla^{2} \vec{A}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{A}}{\partial t^{2}}=-\mu_{0} \overrightarrow{\mathrm{~J}}
\end{aligned}
$$

Advantages and disadvantages:
(A) Causality is manifestly true
because all potential components propagate with velocity c;
(A) Lorentz invariance is manifestly true
because $A^{\mu}=\{\Phi, \vec{A}\}$ is a 4 vector.
(D) there are unphysical wave modes (timelike and longitudinal).

12
The Coulomb (or, transverse) gauge:

$$
\nabla \cdot \vec{A}=0
$$

Then Maxwell's equations imply

$$
\begin{aligned}
& \nabla^{2} \Phi=-\rho / \epsilon_{0} \\
& \nabla^{2} \vec{A}-\frac{1}{c^{2}} \frac{\partial^{2} \vec{A}}{\partial t^{2}}=-\mu_{0} \vec{J}_{\text {transverse }}
\end{aligned}
$$

Advantages and disadvantages:
(A) does not introduce unphysical wave modes;
(D) the gauge condition violates Lorentz invariance;
(D) causality is not manifestly true because
$\nabla^{2} \Phi(\vec{x}, \mathrm{t})=-\rho(\vec{x}, \mathrm{t})$ violates causality.

The disadvantages create significant problems in quantum field theories, like Q.E.D. and Q.C.D.

Gauge invariance in high-energy physics
The three fundamental parts of the Standard Model:

- Q.E.D. is a $\mathrm{U}(1)$ gauge theory.
\square The electro-weak unified theory is an $\mathrm{SU}(2) \times \mathrm{U}(1)$ gauge theory, with spontaneous symmetry breaking. - Q.C.D. is an $\mathrm{SU}(3)$ gauge theory with respect to color transformations. No one knows why all the fundamental interactions (except gravity) are gauge theories.

