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Lecture 3-2 {Wed,Oct2}
Derivation of the equations of macroscopic
electromagnetism

Jackson Section 6.6

- N -
VeB=0 and VxE+%=

- > o - > o
D=¢E+P and B=py(H+M)
Remember, p and }) here are the
macroscopic (i.e., free) charge and cur-
rent densities.

Where did these equations come from?

From the mind of Maxwell (~1865)
What did he use?

B Gauss & Ampere

B Faraday’s “lines of force” became
Maxwell’s idea of the fields.

B Atoms and molecules carry internal
charges.

B The aether ; he thought that the fields
are stresses and strains in the aether.
But some things Maxwell did not
know—

i the electron (Thomson, 1897)

B atomic structure with nuclei
(Rutherford, 1909)

B There is no aether (Einstein, 1905)




In Section 6.6, Jackson provides a more
rigorous derivation of the macroscopic
equations — more rigorous than the
previous derivations.

The microscopic world
(1) Write the field equations for micro-

N -
scopic fields e and b, and microscopic

-

sourcesand j ...

V-b 0 and Vxe+ab 0
R
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R
Vee=nl€, and Vxb - %

(2) And now average over small but
macroscopic regions of space.

How large is "large"?
Jackson’s Estimate

0
Ly=10"m=10°A
= lower limit of a macroscopic length;

time averaging is not necessary.




How to do the averaging

Given a function F(;, t) with Schematic diagram of a test

singularities due to atomic dimensions, function f(;) used for the spatial

respect to a test function f(;) by
(Fxy = [ B3 f(x") F(X - X') b
[ &3 f(x)=1

We want f(;) to smooth out all the

short-range fluctuations of F(x,t). x
“Short range” means distances < L.

So f(}_{)) should focus on a length scale
L>L.




Examples of f()?) could be:
Example 1 - average over a sphere of
radius R

f(x) == O(R-1)

O({) = Heaviside Theta Function
However, the sharp cut-off atr =R
might produce short-range “jitter”.

Example 2 - Gaussian averaging

f(;(’) = (T R2 )—3/2 I~ r’/R?

is better—a smooth test function.

In both of these examples R is small but
macroscopic, so the region of the inte-
gral contains many molecules.

Because molecule are tiny, the precise
form of the test function does not
matter.

Apply the averaging procedure to
Maxwell’s equations

First, note this identity,

0 - 3 3 e F —)_—)l
- (FOxt) = [d3 f(x") a_xi(x x',t)
_<6F>
- aXi

The macroscopic fields are defined by

The homogeneous Maxwell equations
are easy,

(Veb)=0= V+B=0
- -
- 0b > 0B
(Vxe+—)=0 = VxE+— =0
ot ot




The inhomogeneous Maxwell equations

€0 V- E=(n(%.1))

1 _ = >

So now we need to calculate

() and { J).

The medium may have free charge (not
belonging to the molecules that make
up the medium) and bound charge = the
charge that belongs to the molecules.

9

B Charge density

By definition
Nx.t) = 2 q; 8°(X-x)

- 3,2 2
Niree(X,t) = 2 ) q; 6°( X=x;)

j (free
- -
Nbound(X:t) = 2 Na(X,t)
n (mol)

where n is the label for the n™
molecule; and

- 3,2

Nn(X,t) = izn qi 6°( X = X;)

Now, apply test-function averaging to a
single molecule,




(0%, 1)) = [ &3 F(X') (X - X', 1)

= Z di J.d3X' f(;') 63( )_()— ;()' _;()n _;()ni)

len
> o -
='Z qif(x_xn_xni)
len
= multipole expansion

= 5 i f(X=Xq) = Py*¥ f(X=Xp)

len

ie, monopole + dipole + quadrupole + ...

So the averaged charge density is
expressed as a sum of multipoles for
macroscopic phenomena.

So far, this is for one molecule. Now
sum the molecules in the material =

Results
The averaged microscopic charge den-

sity is
- - > 5 o
{n(x,t) ) = p(x,t) = Ve P(x,t) + VVee Q'(X,t) + ...
P =( T q(X-X)+ T GnO3(X-Xn))
j (free) n (mol)

PO =( = pp63(X=n))

n (mol)
(-)| - 1 (-)I 32 2
Q'(x,t) =¢¢ n(ngol) Q, &°(X = Xn))
Displacement Field
- -
€ Ve E=(n(x,t))
We want to define the displacement

field such that V¢« D = p. Therefore,

- -5 > aQ'a'BA
D=EoE+P—Z eB+...
B GXB

- > -
Normally, D = € E + P is good enough.




Jackson finishes Section 6.6 (pages
257-258) with some additional com-
ments, mainly for the experts.

N
(J(x,0)
By similar calculations,
“leaving the gory details to a problem
for readers who enjoy such challenges”
analyze the microscopic current
density,

Homework assignment 5 is due Friday.

ﬁ

j(%,t) = 2 qi Vi 63(X = Xi(t) )

vi = dx./dt
The final result of the derivation is

1> > - - - N
—B-H=M+(D-¢E)xvVv
Ho

where v is the velocity of a medium in motion. Normally,
1 - - -
—B-H=M.
Ho




