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Lecture 3-2 { Wed , Oct 2 }
Derivation of the equations of macroscopic 
electromagnetism

Jackson Section 6.6

∇• B
→
= 0 and ∇× E

→
+∂B

→

∂t = 0

∇• D
→
= ρ and ∇× H

→
– ∂D

→

∂t = J
→

D
→
= ϵ0 E

→
+ P

→
and B

→
= μ0 ( H

→
+M

→
)

Remember, ρ and J
→

 here are the
macroscopic (i.e., free) charge and cur-
rent densities.
Where did these equations come from?

From the mind of Maxwell (~1865)
What did he use?
▮ Gauss & Ampere
▮ Faraday’s “lines of force” became 
Maxwell’s idea of the fields.
▮ Atoms and molecules carry internal 
charges.
▮ The aether ; he thought that the fields 
are stresses and strains in the aether.
But some things Maxwell did not 
know—
▮ the electron (Thomson, 1897)
▮ atomic structure with nuclei 
(Rutherford, 1909) 
▮ There is no aether (Einstein, 1905)
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In Section 6.6, Jackson provides a more 
rigorous derivation of the macroscopic 
equations — more  rigorous than the
previous derivations.
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The microscopic world
(1) Write the field equations for micro-

scopic fields e
→

 and b
→

, and microscopic 

sources η and j
→

 ...

∇• b
→
= 0 and ∇× e

→
+ ∂b

→

∂t = 0

∇• e
→
= η / ϵ0 and ∇× b

→
– 1
c2

∂e
→

∂t = μ0 j
→

(2) And now average over small but 
macroscopic regions of space.
How large is "large"?
Jackson’s Estimate

L0 = 10-8m = 102 A
o

= lower limit of a macroscopic length;
time averaging is not necessary.
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How to do the averaging

Given a function F(x
→

, t) with
singularities due to atomic dimensions, 
define the spatial average of F with 

respect to a test function f(x
→

) by

〈F(x
→
,t)〉 = ∫ d3x' f(x

→
') F( x

→
– x

→
')

∫ d3x' f(x
→
') = 1

We want f(x
→

) to smooth out all the 

short-range fluctuations of F(x
→

,t).  
“Short range” means distances < L0.

So f(x
→

) should focus on a length scale
L > L0 .
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Schematic diagram of a test

function f(x
→
) used for the spatial

averaging; L≫ a and ΔL≫ a.

0 x

f(x)
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Examples of f(x
→

) could be:
☹ Example 1 - average over a sphere of 
radius R

f(x
→
) = 3

4π R3
Θ(R-r)

Θ(ζ ) = Heaviside Theta Function
However, the sharp cut-off at r = R 
might produce short-range “jitter”.
☺ Example 2 - Gaussian averaging

f(x
→
) = (π R2 )–3/2 e– r

2R2

is better—a smooth test function. 

In both of these examples R is small but 
macroscopic, so the region of the inte-
gral contains many molecules.
Because molecule are tiny, the precise 
form of the test function does not 
matter.
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Apply the averaging procedure to 
Maxwell’s equations

First, note this identity,

∂
∂xi

〈 F(x
→
,t)〉 = ∫ d3x' f(x

→
')

∂F
∂xi

( x
→
- x

→
',t)

= 〈
∂F
∂xi

〉

The macroscopic fields are defined by

E
→
(x
→
,t) = 〈 e

→
(x
→
,t) 〉

B
→
(x
→
,t) = 〈 b

→
(x
→
,t) 〉

The homogeneous Maxwell equations 
are easy,

〈∇• b
→
〉 = 0⟹ ∇• B

→
= 0

〈∇× e
→
+
∂ b

→

∂t
〉 = 0 ⟹∇× E

→
+
∂ B

→

∂t
= 0
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The inhomogeneous Maxwell equations

ϵ0 ∇• E
→
= 〈 η( x

→
,t) 〉

1
μ0

∇× B
→
– ϵ0

∂ E
→

∂t
= 〈 j

→
( x
→
,t) 〉

So now we need to calculate

〈η〉 and 〈 j
→
〉.

The medium may have free charge (not 
belonging to the molecules that make 
up the medium) and bound charge ≡ the 
charge that belongs to the molecules.
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▮ Charge density
By definition

η(x
→
,t) = Σ

i
qi δ3( x

→
– x

→
i)

ηfree(x
→
,t) = Σ

j (free)
qj δ3( x

→
– x

→
j)

ηbound(x
→
,t) = Σ

n (mol)
ηn( x

→
,t)

where n is the label for the nth 
molecule; and

ηn(x
→
,t) = Σ

i∈n
qi δ3( x

→
– x

→
i)

Now, apply test-function averaging to a 
single molecule,
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〈 η(x
→
, t) 〉 = ∫ d3x' f(x

→
') ηn( x

→
- x

→
', t)

= Σ
i∈n
qi ∫ d3x' f(x'

→
) δ3( x

→
- x

→
' -x

→
n -x

→
ni)

= Σ
i∈n
qi f( x

→
- x

→
n - x

→
ni)

⇒multipole expansion

= Σ
i∈n
qi f(x

→
-xn) - p

→
n•∇ f(x

→
-x
→
n)

+ 16 Σ
αβ

(Qn@ )αβ
∂2f  x

→
-x
→
n

∂xα ∂xβ
+ ...

ie, monopole + dipole + quadrupole + ...
So the averaged charge density is 
expressed as a sum of multipoles for 
macroscopic phenomena.
So far, this is for one molecule. Now 
sum the molecules in the material ⟹ 
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Results
The averaged microscopic charge den-
sity is

〈 η(x
→
,t) 〉 = ρ(x

→
,t) – ∇• P

→
(x
→
,t) + ∇∇•• Q


'(x
→
,t) + ...

ρ(x
→
,t) = 〈 Σ

j (free)
qj δ3( x

→
- x

→
j) + Σ

n (mol)
qn δ3( x

→
- x

→
n) 〉

P
→
(x
→
,t) = 〈 Σ

n (mol)
p
→
n δ3( x

→
- x

→
n) 〉

Q

'(x
→
,t) = 16 〈 Σ

n (mol)
Q

n

@
δ3(x

→
- x

→
n) 〉

Displacement Field

ϵ0 ∇• E
→
= 〈 η( x

→
,t) 〉

We want to define the displacement 

field such that ∇ • D
→

 = ρ. Therefore,

D
→
= ϵ0 E

→
+ P

→
- Σ

β

∂Qαβ
'

∂xβ
eDβ +...

Normally, D
→
≈ ϵ0 E

→
+ P

→
is good enough.
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〈 j
→

( x
→

,t) 〉
By similar calculations,
“leaving the gory details to a problem 
for readers who enjoy such challenges” 
analyze the microscopic current 
density,

j
→
(x
→
,t) = Σ

i
qi v

→
i δ3( x

→
- xj(t) )

v
→
i = dx

→
i/dt

The final result of the derivation is

1
μ0
B
→
– H

→
=M

→
+ (D

→
– ϵ0 E

→
) × v

→

where v
→

 is the velocity of a medium in motion. Normally,

1
μ0
B
→
– H

→
=M

→
.
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Jackson finishes Section 6.6  (pages 
257-258) with some additional com-
ments, mainly for the experts.

Homework assignment 5 is due Friday.
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