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Lecture 3-3 { Fri , Oct 4 }
Poynting’s Theorem

Jackson Sections 6.7, 6.8, (6.9)

∇• B
→
= 0 and ∇× E

→
+∂B

→

∂t = 0

∇• D
→
= ρ and ∇× H

→
– ∂D

→

∂t = J
→

D
→
= ϵ0 E

→
+ P

→
and B

→
= μ0 ( H

→
+M

→
)

Here  ρ  and  J
→

  are the macroscopic 
(i.e., free) charge and current densities.

Theorem 1

E
→

 • J
→

 is the work per unit time per unit vol-
ume, done on the macroscopic charge 
by the electric field.

That is, E
→

 • J
→

  is the rate of energy con-
version from the fields to the free 
charges, per unit volume.
Proof.
Consider a single charge.

F
→
= q E

→
+ q v

→
× B

→

δW = ∫ F
→
• ds

→
= F

→
• v
→
δt

δW = q E
→
• v
→
δt

for a single charge
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Now, for all the charge in a volume δV,

δW
δt = Σ

i
q E

→
(x
→
i) • vi

→

= ∫ d3x E
→
( x
→
) • q vi

→
δ3( x

→
– x

→
i)

= δV E
→
(x) • J

→
(x)

check the units

δW /δt
δV

= E
→
• J
→
, as claimed.
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Conservation of Energy for an”ideal” 
linear material

Let u(x
→

,t) be the energy density,

and let S
→

(x
→

,t) be the energy flux.
Units: [u] = E /L 3 and [S] = E /L 2/T.

Energy is conserved.
(That statement is really the definition of 
energy.)
In a field theory, energy is locally 
conserved.
Therefore,

∂u
∂t

= – E
→
• J
→
– ∇• S

→
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∂u
∂t

= – E
→
• J
→
– ∇• S

→

Derivation and comments
▮ This equation resembles the
continuity equation for charge,
∂ρ
∂t  = – ∇• J

→
 .

     However, charge cannot change, 
whereas energy does change when 
work is done.
▮ Consider a small volume δV, and a 
small time interval δt. Let U be the
electrodynamic energy in δV. Then
during time δt,

δU = ( ∂u
∂t ) δt δV

– E
→
• J
→
δt δV – ∮ S

→
• n2 da δt

i.e., δU = the increase of electromag-
netic energy, minus the work done on 
the free charge, minus the amount of 
energy that flowed out of the surface; 
the third term is
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i.e., δU = the increase of electromag-
netic energy, minus the work done on 
the free charge, minus the amount of 
energy that flowed out of the surface; 
the third term is

– ∮ S
→
• n2 da = – ∫ d3x ∇ • S

→

by Gauss's theorem

= – ∇ • S
→

δV
Thus,

∂u
∂t = – E

→
• J
→
– ∇• S

→

⇔ local conservation of energy
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Poynting’s Theorem
Here we’ll consider a macroscopic 

medium with D
→

(x
→

,t) = ϵ E
→

(x
→

,t) and 

B
→

(x
→

,t) = μ H
→

(x
→

,t) , where ϵ and μ are 
real and constant. (This is not always 
true!)

Poynting's theorem

u = 12 E
→
• D
→

+ 1
2 B

→
• H
→

S
→
= E

→
× H

→

Proof

Start with u = 1
2  E

→
• D

→
 + 1

2  B
→
• H

→
 and calcu-

late ∂u/∂t.
(proof a posteriori)
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∂u
∂t =

1
2 (

∂E
→

∂t • D
→
+ E

→
• ∂D

→

∂t )

+ 12 (
∂B
→

∂t • H
→
+ B

→
• ∂H

→

∂t )

= E
→
• ∂D

→

∂t + H
→
• ∂B

→

∂t

for linear materials

∂u
∂t = E

→
• ( ∇× H

→
– J ) + H

→
→

• (– ∇× E
→
)

= – E
→
• J
→
+ E

→
•( ∇× H

→
) – H

→
• (∇× E

→
)

= –E
→
• J
→
– ∇• ( E

→
× H

→
)

vector calculus identity
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So this is just a property of Maxwell’s 
equations, for linear materials,

∂u
∂t = – E

→
• J
→
– ∇ • S

→

where u = 12 E
→
• D
→

+ 1
2 B

→
• H
→

and S
→
= E

→
× H

→
.
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Momentum density
Derivation for systems in “empty space”

dP
→
mech
dt = ∫V d

3x ( ρ E
→
+ J

→
× B

→
)

substitutions fromMaxwell's equations⇒

dP
→
mech
dt + dP

→
field
dt = ∮ S T

⟷
• n2 da [1]

P
→
field = μ0 ϵ0 ∫ V E

→
× H

→
d3x [2]

T
⟷

= = ϵo { E
→
E
→
+ c2 B

→
B
→
–12 (E

2 + c2 B2) 1
⟷

} [3]

[1] The equation for conservation of 
momentum

[2] Momentum density = g
→

 = 1
c2 E

→
× H

→

g
→
=
1
c2
S
→

[3] T
⟷

 = the Maxwell stress tensor
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Section 6.8
Poynting’s theorem in Linear Dispersive 
Media with Losses

▸ Ideal materials may have D
→
= ϵ E

→
 

and

B
→

 = μ H
→

, where ϵ and μ are real 
constants.
Real materials are not so simple.
▸ First, we must separate frequencies;
Fourier analysis 

E
→
( x
→
,t) = ∫–∞

∞ dω E
→
( x
→
,ω) e–iωt

D
→
( x
→
,t) = ∫–∞

∞ dω D
→
( x
→
,ω) e–iωt

and assume linearity

D
→
( x
→
,ω) = ϵ(ω) E

→
( x
→
,ω)

sim. B
→
( x
→
,ω)= μ(ω) H

→
( x
→
,ω}
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▸ Reality constraints

E
→
( x
→
,–ω) = E

→
✶( x

→
,ω)

D
→
( x
→
,–ω) = D

→
✶( x

→
,ω)

ϵ(–ω)= ϵ✶(ω)

▸ Now E
→
•(∂ D

→
/∂t) ≠ 1

2∂( E
→
• D

→
)/∂t.

Calculate E
→
• dD

→

∂t

= ∫ dω ∫ dω' E
→

✶(ω') [–iωϵ(ω)]• E
→
(ω) e–i (ω–ω') t

▸ Now make an assumption—that the 
important range of frequencies is 
peaked at ω = ω0 ...
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▸ After a bit of analysis, we get a new 
Poynting’s theorem,

∂ueff
∂t

+ ∇• S
→
+ J

→
• E
→

= - ω0 Im[ϵ(ω0)] (ERMS)2

- ω0 Im[μ(ω0)] (HRMS)2
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“Energy” is not conserved if ϵ(ω) or 
μ(ω) has a nonzero imaginary part.
▸ “absorption of energy” or “absorptive 
dissipation”
▸ We’ll see how atoms of molecules 
absorb energy in a later lecture.
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