Topic \#4

Plane Electromagnetic Waves and Wave Propagation

Chapter 7

The subject has two parts

- propagation

How EM waves move through a medium; wave motion without sources.

- radiation

How EM waves are created; what are the sources?

Lecture 4-1 \quad Mon, Oct 7 \}

Plane Waves in a Nonconducting Medium

Section 7.1

Maxwell's equations for E.M. fields in an infinite medium, and no sources, are

$$
\begin{array}{|l|l|}
\hline \nabla \cdot \vec{B}=0 & \nabla \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0 \\
\hline \nabla \cdot \vec{D}=0 & \nabla \times \vec{H}-\frac{\partial \vec{D}}{\partial t}=0 \\
\hline \vec{D}=\epsilon \vec{E} & \vec{B}=\mu \vec{H} \\
\hline
\end{array}
$$

Solutions with a definite frequency Write

$\vec{E}(\vec{x}, t)=\vec{E}(\vec{x}) e^{-i \omega t}$	$\vec{B}(\vec{x}, t)=\vec{B}(\vec{x}) e^{-i \omega t}$
$\nabla \cdot \vec{B}=0$	$\nabla \times \vec{E}-i \omega \vec{B}=0$
$\nabla \cdot \vec{D}=0$	$\nabla \times \vec{H}+i \omega \vec{D}=0$

At first we'll assume that ϵ and μ are real and positive $\Longleftrightarrow \exists$ no absorption!

Comment on the use of complex functions $\vec{E}(\vec{x}) e^{-\mathrm{i} \omega \mathrm{t}}$ is a complex mathematical function, but of course the electric field must be real (\# volts per meter). So when we write

$$
\vec{E}(\vec{x}, \mathrm{t})=\vec{E}(\vec{x}) e^{-\mathrm{i} \omega \mathrm{t}}
$$

what we really mean is

$$
\vec{E}(\vec{x}, \mathrm{t})=\operatorname{Re} \vec{E}(\vec{x}) e^{-\mathrm{i} \omega \mathrm{t}} ;
$$

the real part (Re) is understood.

What about the imaginary part? That's just another solution.

Plane waves

A plane wave is a mathematical idealization. For a plane wave,

$$
\begin{aligned}
& \vec{E}(\vec{x}, t)=\vec{E}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)} \\
& \vec{B}(\vec{x}, t)=\vec{B}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)}
\end{aligned}
$$

In words, the wave fronts are infinite planes.
Of course this is not physically possible, but the plane wave is important for two reasons:

- it can approximate a wave with large (but finite) coherence length;
- the plane waves are complete; you know what is meant by "completeness" from quantum mechanics.

Solving Maxwell's equations for plane waves

$\vec{E}(\vec{x}, t)=\vec{E}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)}$	$\vec{B}(\vec{x}, t)=\vec{B}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)}$
1) $i \vec{k} \cdot \vec{B}_{0}=0$	2) $i \vec{k} \times \vec{E}_{0}-i \omega \vec{B}_{0}=0$
3) $i \vec{k} \cdot\left(\epsilon \vec{E}_{0}\right)=0$	4) $i \vec{k} \times\left(\vec{B}_{0} / \mu\right)+i \omega\left(\epsilon \vec{E}_{0}\right)=0$

We have 4 linear equations to solve.

- Equations (1) through (3) imply
$\left\{\vec{k}, \vec{E}_{0}, \vec{B}_{0}\right\}$ form a right-handed orthogonal triad of vectors.

Prove it.

- Now Equation (2) implies

$$
\begin{aligned}
& \mathrm{k}\left|\vec{E}_{0}\right|=\omega\left|\vec{B}_{0}\right| \\
& \text { or, } \quad B_{0}=\frac{1}{V_{\text {phase }}} E_{0}
\end{aligned}
$$

where $v_{\text {phase }}=\omega / \mathrm{k}=$ the phase velocity.

Understand phase velocity

$$
\text { fields } \propto \exp \{i(\vec{k} \cdot \vec{x}-\omega \mathrm{t})\}
$$

\therefore constant phase means

$$
\mathrm{k} \delta \mathrm{x}-\omega \delta \mathrm{t}=0
$$

$$
\frac{\delta \mathrm{x}}{\delta \mathrm{t}}=\frac{\omega}{k}=v_{\text {phase }}
$$

Equation (4)

$m(t)=\operatorname{Grid}[\{$
$\left\{\right.$ Style $\left.\left[" \vec{k} \times \vec{B}_{\theta}=-\mu \epsilon \omega \vec{E}_{\theta} ", f f\right]\right\}$,
$\left\{\right.$ Style $\left.\left[" k B_{0}=\mu \epsilon \omega E_{0} ", f f\right]\right\}$,
$\left\{\right.$ Style["k $\left.\left.B_{\theta}=\mu \in \omega E_{\theta} ", f f\right]\right\}$,
$\left\{\right.$ Style $\left.\left[" k E_{0} / v_{\text {phase }}=\mu \epsilon k v_{\text {phase }} E_{0} ", f f\right]\right\}$,
$\left\{\right.$ Style $\left[\right.$ " $\mathrm{v}_{\text {phase }}=\frac{1}{\sqrt{\mu \epsilon}} ", \mathrm{ff}$, Red $\left.\left.]\right\}\right\}$, Alignment \rightarrow Left, Spacings $\left.\rightarrow\{0,0.75\}\right]$

$$
\begin{aligned}
& \overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{B}}_{0}=-\mu \epsilon \omega \overrightarrow{\mathrm{E}}_{0} \\
& \mathrm{k} \mathrm{~B}_{0}=\mu \epsilon \omega \mathrm{E}_{0} \\
& \mathrm{k} \mathrm{E}_{0} / \mathrm{v}_{\text {phase }}=\mu \epsilon \mathrm{k} \mathrm{v}_{\text {phase }} \mathrm{E}_{0} \\
& \mathrm{v}_{\text {phase }}=\frac{1}{\sqrt{\mu \epsilon}}
\end{aligned}
$$

In vacuum all plane EM waves have the same phase velocity,

$$
\mathrm{c}=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

That is how Maxwell discovered that light is an electromagnetic wave.

In an ideal medium,

$$
V_{\text {phase }}=\frac{1}{\sqrt{\mu \epsilon}}=\frac{c}{n}
$$

where the index of refraction is

$$
\mathrm{n}=\sqrt{\mu \epsilon} / \sqrt{\mu_{0} \epsilon_{0}}
$$

Because $\mu \approx \mu_{0}$ and $\epsilon>\epsilon_{0}$ any medium will have $\mathrm{n}>1$; i.e., $v_{\text {phase }}<\mathrm{c}$.

Pictures of an E.M. plane wave
The usual picture of an electromagnetic plane wave, which you'll see in many books and web sites, looks like this
|"en"

But that is quite misleading, because it only shows one ray. A better picture would somehow illustrate that the plane wave fills an infinite volume.

12
$\ln (t)=$ GraphicsGrid[$\{$
\{sh1, sh2\}, \{sh3, sh4\}\}]

Animation

Of course the field vectors are varying in time, so the static pictures are only a snapshot of the wave. To understand propagation of an EM wave we need an animation.

