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The Kramers-Kronig Relations

Section 7.10

“Causality and the KK relations”
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Wednesday we showed that the Kramers-
Kronig relations are obeyed specifically for the 
Lorentz model of dispersion.
Today we will show that the KK relations are 
general; i.e., they must be true for any theory of 
ϵ(ω).  And the reason is causality.

Causality in the connection between D
→

 and E
→

Nonlocality in Time

Think about it physically.

We have a time-dependent field E
→

(x
→

,t).
Then the medium will have a time-dependent 
polarization P

→
(x
→

,t).
We define D

→
(x
→

,t) = ϵ0 E
→

(x
→

,t) + P
→

(x
→

,t).

Now, surely P
→

(x
→

,t) = η E
→

(x
→

,t) cannot be true 
with η being a constant.  That would violate 
causality.
It must take some time for the polarization to 
develop as the electric field changes.  But the 
relation P

→
(x
→

,t) = η E
→

(x
→

,t) would imply that a 
change of E

→
(x
→

,t) produces an instantaneous 
response in P

→
(x
→

,t).
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By causality the linear relationship must look 
something like this, 

P
→
(x
→
,t) = 

–∞

t
η(t – t') E

→
(x
→
,t') dt'

for some function η(τ).
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For a harmonic field, we write

E
→
(x
→
,t) = E

→
(x
→
,ω) exp( – i ω t)

P
→
(x
→
,t) = P

→
(x
→
,ω) exp( – i ω t)

D
→
(x
→
,t) = D

→
(x
→
,ω) exp( – i ω t)

Assume there is a linear relationship;
⟹ frequency-dependent permittivity,

D
→
(x
→
,ω) = ϵ(ω) E

→
(x
→
,ω)

We are introducing complex functions, because

exp(-i ω t) = cos(ωt) – i sin(ωt).

And so, ϵ(ω) will be complex.
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The physical field is the real part of E
→

(x
→

,t).
We introduce complex functions to make the 
algebra simpler; but just remember we eventu-
ally must take the real part for any physical 
predictions.
Why not just use real functions, like cos(ωt) 
and sin(ωt)? In fact, we could do that; and it 
might make the physical consequences more 
manifest. But the algebra would be 
inconvenient.
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Fourier' s Theorem
For any function we can expand in harmonic 
functions.
So, for example, we can write

D
→

(x
→

, t) = 1
2 π

 ∫–∞
∞  D

→
(x
→

,ω) exp(–iωt) dω

and (it follows)

D
→

(x
→

, ω) = 1
2 π

 ∫–∞
∞  D

→
(x
→

, t’) exp( iωt’) dt’ .

And ∃ similar Fourier integrals for E
→

(x
→

, t) and
E
→

(x
→

, ω) ; or any function +(t) and +(ω).
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So, for a linear material,

D
→
(x
→
,t) =

1

2π

–∞

∞
ϵ(ω) E

→
(x
→
,ω) exp(–iωt) dω

and
D
→
(x
→
,t) =

1
2π


–∞

∞
dω ϵ(ω) exp(–iωt) dω


–∞

, ∞
exp(+iωt') E

→
(x
→
,t') dt'

Susceptibility
Define ϵ(ω) = ϵ0 + ϵ0 χe(ω)
(electric susceptibility)
Then

D
→
(x
→
,t) = ϵ0 E

→
(x
→
,t)

+ ϵ0 
–∞

∞
dt' E

→
(x
→
,t')▫

▫
–∞

∞ dω
2π

χe(ω) exp(–iω(t-t'))
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Summary

D
→
(x
→
,t) = ϵ0 E

→
(x
→
,t) +

+ ϵ0 
–∞

∞
G(τ) E

→
(x
→
,t–τ) dτ

where

G(τ) = 
–∞

∞ dω
2π

χe(ω) exp(–iω τ)

I.e., G(τ) is the inverse Fourier transform of 
χe(ω). { χe(ω) is the Fourier transform of 
G(τ).}
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The nonlocal relation between E
→

 and D
→

D
→
(x
→
,t) = ϵ0 { E

→
(x
→
,t) +

–∞

∞
G(τ) E

→
(x
→
,t–τ) dτ }

i.e., nonlocal in time.

In this equation, the displacement field D
→

(x
→

, t) 
is related to the electric field E

→
(x
→

, t') for all 
times t'.
The integral over τ is called a convolution 
integral.

Example 1: Assume χe(τ) = κ δ(τ).

Then D
→

(x
→

,t) = ϵ0 ( E
→

(x
→

,t) + κ E
→

(x
→

,t) )
∝ E

→
(x
→

,t)
and χe(ω) = ∫–∞

∞  G(τ) eiωτ dτ = κ

If there is no frequency dependence then there 
is an the instantaneous connection between D

→
 

and E
→

.
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Example 2: Assume  the Lorentz model...

χe(ω) =
ωp

2

ω0
2 - ω2 – i γω

Then

G(τ) =
ωp

2

2π

–∞

∞ e–iωτ dω
ω0

2 - ω2 – i γω
Evaluate by contour integration.
The integrand has 2 poles,

at ω = – iγ
2 ± ω0

2 –(γ / 2)2  ....

For τ < 0, G(τ) = ∮ UHP (...) = 0 ;

for τ > 0, G(τ) = ∮ LHP (...)

=
ωp

2

2π (–2πi) ( 2 residues)

= ωp
2 e–γτ/2 sin (ν0 τ)

⋁0
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Result for the Lorentz model

G(τ) = ωp
2 e–γτ/2

sin (ν0 τ)
⋁0

Θ(τ)

with these properties
▪ oscillates with the natural frequency;
▪ damped exponentially with γ
▪ vanishes for τ < 0; that’s causality .
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Causality and Analyticity

D
→
(x
→
,t) = ϵ0 { E

→
(x
→
,t) +

0

∞
G(τ) E

→
(x
→
,t – τ) dτ }

Causality:
▫ G(τ) = 0 for τ < 0 
▫ Θ(τ)
▫ Note the lower endpoint of the integral.
▫ P(x,t) ( and ∴ D(x,t) ) can only depend on 
E(x,t') for t' < t ; i.e.,  t'= t –τ with τ > 0.
▫ “This is the most general spatially local, lin-
ear, and causal relation that can be written 
between D and E in a uniform isotropic 
medium. Its validity transcends and specific 
model of ϵ(ω).”
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Analyticity of ϵ(ω):
The inverse Fourier transform,

ϵ(ω)/ϵ0 = 1 + 
0

∞
G(τ) exp(iωτ) dτ

(note the lower endpoint)
Theorem. If G(τ) is finite for all τ, then ϵ(ω) / ϵ0 
is an analytic function of ω in the upper-half ω 
plane.
Proof: from the theory of Fourier integrals.
In the upper half ω plane, the factor exp(iωτ) is 
∝ exp( – ωI τ) which is small for τ > 0; so the 
integral converges.
Reality: G must be a real function, so that 
Re{D} is related to Re{E}.
Therefore

ϵ*(ω*) = ϵ(–ω)
⇒ Re ϵ(-z) = Re ϵ(z)
and Im ϵ(-z) = – Im ϵ(z)
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The Kramers Kronig relations
When we proved the KK relations for the 
Lorentz model (Wednesday) the proof relied 
only on the analyticity and reality properties of 
ϵ(ω).

Since they are the same for any theory with com-
plex ϵ(ω), the KK relations are general—not lim-
ited to the Lorentz model. 
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