enter

The Kramers-Kronig Relations Section 7.10 "Causality and the KK relations" $\operatorname{Re} \frac{\epsilon (\omega)}{\epsilon_{0}} = 1 + \frac{2}{\pi\epsilon_{0}} \mathcal{P} \int_{0}^{\infty} \frac{\omega' \operatorname{Im} \epsilon (\omega')}{(\omega')^{2} - \omega^{2}} d\omega'$

τ m <mark>ε (ω)</mark>	<u>2</u> ω 2ω	∞ ∫	Re ϵ (ω ') - ϵ_0	dω'
ε ₀	- πε ₀	Jo	$(\omega')^2 - \omega^2$	

Wednesday we showed that the Kramers-Kronig relations are obeyed specifically for the Lorentz model of dispersion.

Today we will show that the KK relations are general; i.e., they must be true for any theory of $\epsilon(\omega)$. And the reason is *causality*.

Causality in the connection between \vec{D} and \vec{E}

Nonlocality in Time

2

Think about it physically.

We have a time-dependent field $\vec{E}(\vec{x},t)$. Then the medium will have a time-dependent polarization $\vec{P}(\vec{x},t)$.

We define $\vec{D}(\vec{x},t) = \epsilon_0 \vec{E}(\vec{x},t) + \vec{P}(\vec{x},t)$.

Now, surely $\vec{P}(\vec{x},t) = \eta \vec{E}(\vec{x},t)$ cannot be true with η being a constant. That would violate *causality*.

It must take some time for the polarization to develop as the electric field changes. But the relation $\vec{P}(\vec{x},t) = \eta \vec{E}(\vec{x},t)$ would imply that a change of $\vec{E}(\vec{x},t)$ produces an instantaneous response in $\vec{P}(\vec{x},t)$.

By causality the linear relationship must look something like this,

3

 $\vec{P}(\vec{x},t) = \int_{-\infty}^{+} \eta(t-t') \vec{E}(\vec{x},t') dt'$

for some function $\eta(\tau)$.

For a harmonic field, we write

 $\vec{E}(\vec{x},t) = \vec{E}(\vec{x},\omega) \exp(-i\omega t)$ $\vec{P}(\vec{x},t) = \vec{P}(\vec{x},\omega) \exp(-i\omega t)$ $\vec{D}(\vec{x},t) = \vec{D}(\vec{x},\omega) \exp(-i\omega t)$

Assume there is a linear relationship; \implies frequency-dependent permittivity,

 $\vec{D}(\vec{x},\omega) = \epsilon(\omega) \vec{E}(\vec{x},\omega)$

We are introducing complex functions, because

 $exp(-i \ \omega \ t) = cos(\omega t) - i sin(\omega t).$

And so, $\epsilon(\omega)$ will be complex.

The physical field is the real part of $\vec{E}(\vec{x},t)$. We introduce complex functions to make the algebra simpler; but just remember we eventually must take the real part for any physical predictions.

Why not just use real functions, like $cos(\omega t)$ and $sin(\omega t)$? In fact, we could do that; and it might make the physical consequences more manifest. But the algebra would be inconvenient.

Fourier's Theorem

For any function we can expand in harmonic functions.

So, for example, we can write

$$\vec{D}(\vec{x}, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \vec{D}(\vec{x}, \omega) \exp(-i\omega t) d\omega$$

and (it follows)

$$\vec{D}(\vec{x},\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \vec{D}(\vec{x},t') \exp(i\omega t') dt'$$
.

And \exists similar Fourier integrals for $\vec{E}(\vec{x}, t)$ and $\vec{E}(\vec{x}, \omega)$; or any function $\mathcal{F}(t)$ and $\mathcal{F}(\omega)$.

So, for a linear material,

$$\vec{D}(\vec{x},t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \epsilon(\omega) \vec{E}(\vec{x},\omega) \exp(-i\omega t) d\omega$$

and

$$\vec{D}(\vec{x},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \ \epsilon(\omega) \exp(-i\omega t) d\omega$$
$$\int_{-\infty}^{\infty} \exp(+i\omega t') \vec{E}(\vec{x},t') dt'$$

Susceptibility

Define
$$\epsilon(\omega) = \epsilon_0 + \epsilon_0 \chi_e(\omega)$$

(electric susceptibility) Then

$$\vec{D}(\vec{x},t) = \epsilon_0 \vec{E}(\vec{x},t) + \epsilon_0 \int_{-\infty}^{\infty} dt' \vec{E}(\vec{x},t') = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \chi_e(\omega) \exp(-i\omega(t-t'))$$

Summary

8

7

$$\vec{D}(\vec{x},t) = \epsilon_0 \vec{E}(\vec{x},t) + \epsilon_0 \int_{-\infty}^{\infty} G(\tau) \vec{E}(\vec{x},t-\tau) d\tau$$

where

$$G(\tau) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \chi_e(\omega) \exp(-i\omega \tau)$$

I.e., $G(\tau)$ is the inverse Fourier transform of $\chi_e(\omega)$. { $\chi_e(\omega)$ is the Fourier transform of $G(\tau)$.}

The nonlocal relation between \vec{E} and \vec{D}

$$\vec{\mathsf{D}}(\vec{\mathsf{x}},\mathsf{t}) = \epsilon_0 \{ \vec{\mathsf{E}}(\vec{\mathsf{x}},\mathsf{t}) + \int_{-\infty}^{\infty} G(\tau) \vec{\mathsf{E}}(\vec{\mathsf{x}},\mathsf{t}-\tau) \, \mathrm{d}\tau \}$$

i.e., nonlocal in time.

In this equation, the displacement field $\vec{D}(\vec{x}, t)$ is related to the electric field $\vec{E}(\vec{x}, t')$ for all times t'.

The integral over τ is called a *convolution integral*.

Example 1: Assume $\chi_e(\tau) = \kappa \, \delta(\tau)$.

Then
$$\vec{D}(\vec{x},t) = \epsilon_0 (\vec{E}(\vec{x},t) + \kappa \vec{E}(\vec{x},t))$$

 $\propto \vec{E}(\vec{x},t)$
and $\chi_e(\omega) = \int_{-\infty}^{\infty} G(\tau) e^{i\omega\tau} d\tau = \kappa$

If there is no frequency dependence then there is an the instantaneous connection between \vec{D} and \vec{E} . Example 2: Assume the Lorentz model...

$$\chi_e(\omega) = \frac{\omega_p^2}{\omega_0^2 - \omega^2 - i\gamma\omega}$$

Then

10

$$G(\tau) = \frac{\omega_{\rm p}^2}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-i\omega\tau} d\omega}{\omega_{\rm 0}^2 - \omega^2 - i \gamma \omega}$$

Evaluate by contour integration. The integrand has 2 poles,

at
$$\omega = -\frac{i\gamma}{2} \pm \sqrt{\omega_0^2 - (\gamma/2)^2} \dots$$

For
$$\tau < 0$$
, $G(\tau) = \oint_{\text{UHP}} (...) = 0$;

for
$$\tau > 0$$
, $G(\tau) = \oint_{LHP} (...)$
= $\frac{\omega_p^2}{2\pi}$ (-2 π i) (2 residues)
= $\omega_p^2 e^{-\gamma \tau/2} \frac{\sin(v_0 \tau)}{v_0}$

Result for the Lorentz model

$$G(\tau) = \omega_{\rm p}^2 e^{-\gamma\tau/2} \quad \frac{\sin(v_0 \tau)}{v_0} \quad \Theta(\tau)$$

with these properties

- oscillates with the natural frequency;
- damped exponentially with γ
- vanishes for $\tau < 0$; that's *causality*.

Causality and Analyticity

$$\vec{\mathsf{D}}(\vec{\mathsf{x}},\mathsf{t}) = \epsilon_0 \{ \vec{\mathsf{E}}(\vec{\mathsf{x}},\mathsf{t}) + \int_0^\infty G(\tau) \vec{\mathsf{E}}(\vec{\mathsf{x}},\mathsf{t} - \tau) \, \mathrm{d}\tau \}$$

Causality: • $G(\tau) = 0$ for $\tau < 0$

 $\circ \Theta(\tau)$

11

12

• Note the lower endpoint of the integral.

• $\mathbf{P}(\mathbf{x},t)$ (and $\therefore \mathbf{D}(\mathbf{x},t)$) can only depend on $\mathbf{E}(\mathbf{x},t')$ for t' < t; i.e., t'= t - τ with $\tau > 0$.

• "This is the most general spatially local, linear, and causal relation that can be written between D and E in a uniform isotropic medium. Its validity transcends and specific model of $\epsilon(\omega)$."

Analyticity of $\epsilon(\omega)$:

The inverse Fourier transform,

$$\epsilon(\omega)/\epsilon_0 = 1 + \int_0^\infty G(\tau) \exp(i\omega\tau) d\tau$$

(note the lower endpoint)

Theorem. If $G(\tau)$ is finite for all τ , then $\epsilon(\omega)/\epsilon_0$ is an analytic function of ω in the upper-half ω plane.

Proof: from the theory of Fourier integrals.

In the upper half ω plane, the factor $\exp(i\omega\tau)$ is $\propto \exp(-\omega_I \tau)$ which is small for $\tau > 0$; so the integral converges.

Reality: G must be a real function, so that $Re{D}$ is related to $Re{E}$.

Therefore

 $\epsilon^*(\omega^*) = \epsilon(-\omega)$

$$\Rightarrow \operatorname{Re} \epsilon(-z) = \operatorname{Re} \epsilon(z)$$

and $\operatorname{Im} \epsilon(-z) = - \operatorname{Im} \epsilon(z)$

The Kramers Kronig relations

13

14

When we proved the KK relations for the Lorentz model (Wednesday) *the proof relied only on the analyticity and reality properties of* $\epsilon(\omega)$.

Since they are the same for any theory with complex $\epsilon(\omega)$, the KK relations are general—not limited to the Lorentz model.