

- The interface is the xy -plane; i.e., $\mathrm{z}=0$.
- The plane of incidence is the xz -plane $=$ the plane spanned by the normal to the interface ($\hat{n}=\hat{e}_{z}$) and the incident wave vector $\overrightarrow{\boldsymbol{k}}$.

We already know the solutions of the field equations, from the last lecture.

INCIDENT WAVE; $x<0$

$$
\begin{aligned}
& \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{x}}, \mathrm{t})=\overrightarrow{\mathrm{E}}_{0} \mathrm{e}^{i(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{x}}-\omega \mathrm{t})} \\
& \mathrm{C} \overrightarrow{\mathrm{~B}}(\overrightarrow{\mathrm{x}}, \mathrm{t})=\sqrt{\mu \epsilon} \hat{\mathrm{k}} \times \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{x}}, \mathrm{t}) \\
& \ldots . . \text { the real part is the physical field }
\end{aligned}
$$

$$
\text { REFRACTED WAVE; } x>0
$$

$$
\vec{E}^{\prime}(\vec{x}, t)=\vec{E}_{0} e^{i\left(\overrightarrow{k^{\prime}} \cdot \vec{x}-\omega t\right)}
$$

$$
c \overrightarrow{B^{\prime}}(\vec{x}, \mathrm{t})=\sqrt{\mu^{\prime} \epsilon^{\prime}} \hat{k}^{\prime} \times \vec{E}^{\prime}(\overrightarrow{\mathrm{x}}, \mathrm{t})
$$

REFLECTED WAVE; $x<0$

$$
\begin{aligned}
& \vec{E}^{\prime \prime}(\vec{x}, t)=\vec{E}_{0}{ }^{\prime \prime} e^{i(\vec{k} \cdot \cdot \vec{x}-\omega t)} \\
& \vec{B}^{\prime}{ }^{\prime \prime}(\vec{x}, t)=\sqrt{\mu \epsilon} \hat{k}^{\prime \prime} \times \vec{E}^{\prime \prime}(\vec{x}, t)
\end{aligned}
$$

Note: the frequencies of all three waves are the same. The reason is because there are boundary conditions at $x=0$, which must be satisfied for all $\mathrm{t} ; \therefore$ the frequencies of oscillation must be the same.
Also : the wave vector magnitudes are

$$
\mathrm{ck}=\mathrm{ck}^{\prime \prime}=\omega \sqrt{\mu \epsilon} \quad \text { and } \quad \mathrm{ck}^{\prime}=\omega \sqrt{\mu^{\prime} \epsilon^{\prime}}
$$

The law of reflection (\equiv the law of equal angles) and the law of refraction (三Snell's law)
The boundary conditions must hold for all t;

$$
e^{-i \omega t}=e^{-i \omega^{\prime} t}=e^{-i \omega^{\prime \prime} t}
$$

\therefore the frequencies must be equal
The boundary conditions must hold for all points on the interface (x and y with $\mathrm{z}=0$)
$e^{i \vec{k} \cdot \vec{x}}=e^{i \overrightarrow{k^{\prime}} \cdot \vec{x}}=e^{i \vec{k} \cdot \vec{x}}$ with $z=0$

- the three waves vector must lie in a plane
$=$ the plane of incidence $(y=0)$
- $\mathrm{k}_{\mathrm{x}}=\mathrm{k}_{\mathrm{x}}{ }^{\prime}=\mathrm{k}_{\mathrm{x}}{ }^{\prime \prime}$

■ $\mathrm{k} \sin \left(\theta_{\mathrm{i}}\right)=\mathrm{k}^{\prime} \sin \left(\theta_{\mathrm{t}}\right)=\mathrm{k}^{\prime} \sin \left(\theta_{\mathrm{r}}\right)$
Note: $\mathrm{k} "=\mathrm{k}$ and $\mathrm{k}^{\prime} / \mathrm{k}=\sqrt{\mu^{\prime} \epsilon^{\prime} / \mu \epsilon}$.

Results

$$
\begin{aligned}
& \theta_{\mathrm{r}}=\theta_{\mathrm{i}} \quad\{\text { law of equal angles }\} \\
& \mathrm{n} \sin \left(\theta_{\mathrm{i}}\right)=\mathrm{n}^{\prime} \sin \left(\theta_{\mathrm{t}}\right) \quad\{\text { Snell's law }\}
\end{aligned}
$$

The index of refraction (n and n^{\prime}) for a transparent medium is defined by

$$
\begin{aligned}
& \mathrm{n}=\sqrt{\mu \epsilon}=\frac{\mathrm{c}}{v_{\text {phase }}} \\
& \mathrm{n}^{\prime}=\sqrt{\mu^{\prime} \epsilon^{\prime}}=\frac{c}{v_{\text {phase }}}
\end{aligned}
$$

The equations so far determine the directions of the reflected and refracted waves. Next, what are their intensities? I.e., what is the energy flux for each of the three waves?

Recall:
$\vec{S}=\vec{E} \times \vec{H} \quad$ (using real fields)
$\langle\vec{S}\rangle=\frac{1}{2} \vec{E}(\omega) \times \vec{H}(\omega)^{*} \quad$ (for harmonic fields)

enter
Normal Incidence

$$
\begin{aligned}
& \theta_{1 r c}=\theta_{\text {refl }}=\theta_{\text {trans }}=0 \\
& \omega \vec{B}=\vec{k} \times \vec{E} \\
& \vec{E}=E \hat{e}_{y} \text { and } \vec{B}=-\hat{e}_{x} \frac{E_{y}}{v_{\text {phase }}} \\
& \quad v_{\text {phase }}=\sqrt{\mu \epsilon}=\frac{c}{n}
\end{aligned}
$$

Reflection and refraction at normal incidence: $\theta_{\text {Inc }}=\theta_{\text {Trans }}=\theta_{\text {Refl }}=0$. $\{\operatorname{set} c=1\}$

Incident:

$\vec{\kappa}=k_{2} \hat{e}_{2} ; k_{2}=\frac{\omega}{\sqrt{\mu \epsilon}}$
$\vec{E}=E_{0} e^{i\left(k_{z} z-\omega t\right)} \hat{e}_{y}$ (TE)
$\omega \vec{B}=\vec{\kappa} \times \vec{E}$
$\vec{B}=\frac{-E_{0}}{\sqrt{\mu \epsilon}} e^{j\left(k_{z} z-\omega t\right)} \hat{e}_{X}$ (TM)

Transmitted:

$\vec{\kappa}^{\prime}=k_{2}^{\prime} \hat{e}_{2} ; \quad k_{2}{ }^{\prime}=\frac{\omega}{\sqrt{\mu^{\prime} \epsilon^{\prime}}}$
$\vec{E}^{\prime}=E_{0}^{\prime} e^{i\left(k_{2}^{\prime} z-\omega t\right)} \hat{e}_{y}$ (TE)
$\omega \vec{B}^{\prime}=\vec{\kappa}^{\prime} \times \vec{E}^{\prime}$
$\vec{B}^{\prime}=\frac{-E_{0}^{\prime}}{\sqrt{\mu^{\prime} \epsilon^{\prime}}} e^{i\left(k_{2}^{\prime} z-\omega t\right)} \hat{e}_{X}$ (TM)

$\theta_{\text {inc }}=\theta_{\text {reft }}=\theta_{\text {trans }}=0$
$\omega \vec{B}=\vec{k} \times \vec{E}$

Reflected:

$$
\begin{aligned}
& \vec{K}^{\prime \prime}=k_{2}^{\prime \prime} \hat{e}_{z} ; \quad k_{2}^{\prime \prime}=\frac{-\omega}{\sqrt{\mu \epsilon}} \\
& \vec{E}^{\prime \prime}=E_{0}^{\prime \prime} e^{i\left(k_{2}^{\prime \prime} z-\omega t\right)} \hat{e}_{y}(T E) \\
& \vec{B}^{\prime \prime}=\vec{\kappa}^{\prime \prime} \times \vec{E}^{\prime \prime} \\
& \vec{B}^{\prime \prime}=\frac{+E_{0}^{\prime \prime}}{\sqrt{\mu \epsilon}} e^{i\left(k_{2}^{\prime \prime} z-\omega t\right)} \hat{e}_{x} \text { (TM) }
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{1 n c}=\theta_{\text {refl }}=\theta_{\text {trans }}=0 \\
& \omega \vec{B}=\tilde{k}_{x} \vec{E} \\
& \vec{E}=E_{y} \hat{e}_{y} \text { and } \vec{B}=-\hat{e}_{x} \frac{E_{y}}{V_{\text {phase }}} \\
& v_{\text {phase }}=\sqrt{\mu \epsilon}=\frac{c}{n}
\end{aligned}
$$

Boundary Conditions

$$
\begin{aligned}
& \square E_{\text {tang. }}(z=0)=E_{y}(z=0) \\
& =E_{0}+E_{0}^{\prime \prime}=E_{0}^{\prime} \\
& \square \\
& H_{\text {tang. }}(z=0)=H_{x}(z=0) \\
& =\frac{-E_{0}+E_{0}^{\prime \prime}}{\mu n}=\frac{-E_{0}^{\prime}}{\mu^{\prime} n^{\prime}} \\
& \Longrightarrow \\
& E_{0}^{\prime}=\frac{2 n^{\prime} \mu^{\prime}}{n \mu+n^{\prime} \mu^{\prime}} E_{0} \text { and } E_{0}^{\prime \prime}=\frac{-n \mu+n^{\prime} \mu^{\prime}}{n \mu+n^{\prime} \mu^{\prime}} E_{0}
\end{aligned}
$$

Example: air and glass
$\mu=\mu^{\prime}=\mu_{0}$; all factors of μ_{0} cancel;
$n=1.0$ and $n^{\prime}=1.5$
$E_{0}^{\prime}=1.2 E_{0}$ and $E_{0}^{\prime \prime}=0.2 E_{0}$
Intensities: $\vec{S}=\vec{E} \times \vec{H} \quad\left\{\operatorname{set} \mu_{0}=1\right\}$
$S_{\text {inc }}=E_{0} \frac{E_{0}}{\mu n}=E_{0}^{2}$
$S_{\text {trans }}=E_{0}^{\prime} \frac{E_{o}^{\prime}}{\mu^{\prime} n^{\prime}}=0.96 E_{0}^{2}$
$S_{\text {refl }}=E_{0}^{\prime \prime} \frac{E_{0}^{\prime \prime}}{\mu n}=0.04 E_{0}^{2}$

