enter
How do Matter and Light Interact?

- In classical electrodynamics

Propagation

- In vacuum the speed of light is

$$
\mathrm{c}=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}} \quad(\text { independent of } \omega \text {). }
$$

- In simple materials,

$$
\mathrm{V}_{\text {phase }}=\frac{1}{\sqrt{\mu \epsilon}}=\frac{\mathrm{c}}{\mathrm{n}} ;
$$

$$
\mathrm{n}=\sqrt{\mu \epsilon}=\text { index of refraction. }
$$

Reflection and Refraction

- At an interface,
$\theta_{\mathrm{R}}=\theta_{\mathrm{I}} \quad$ and $\quad \mathrm{n}_{\mathrm{I}} \sin \left(\theta_{\mathrm{I}}\right)=\mathrm{n}_{\mathrm{T}} \sin \left(\theta_{\mathrm{T}}\right)$

21

FRESNEL'S EQUATIONS

(Augustin-Jean Fresnel, 1821)

Jackson Section 7.3

Light, or some other electromagnetic wave, propagating in one medium strikes a planar interface that bounds a second medium. Taking the media to be linear, isotropic and lossless, they have parameters $\{\epsilon, \mu\}$ and $\left\{\epsilon^{\prime}, \mu^{\prime}\right\}$. There will be reflection and refraction at the interface.

Figure 7.5 defines the geometry of the problem.

-The interface is the xy-plane; i.e., $\mathrm{z}=0$.

- The normal to the interface is $\hat{n}=\hat{e}_{z}$.
- The plane of incidence is the xz -plane $=$ the plane spanned by the normal to the interface ($\hat{n}=\hat{e}_{z}$) and the incident wave vector $\overrightarrow{\boldsymbol{k}}$ $=k_{X} \hat{e}_{X}+k_{z} \hat{e}_{X}$.

We already know the solutions of the field equations, from the last lecture.

INCIDENT WAVE; $x<0$
$\vec{E}(\vec{x}, t)=\vec{E}_{0} e^{i(\vec{k} \cdot \vec{x}-\omega t)}$
$\overrightarrow{\mathrm{B}}(\overrightarrow{\mathrm{x}}, \mathrm{t})=\sqrt{\mu \epsilon} \hat{\mathrm{k}} \times \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{x}}, \mathrm{t})$
..... the real part is the physical field

The law of reflection (\equiv the law of equal angles) and the law of refraction (三Snell's law)
The boundary conditions must hold for all t;
\therefore the frequencies must be equal
The boundary conditions must hold for all values of x on the interface (i.e., with $z=0$)

$$
\begin{aligned}
& \therefore k_{x}=k_{x}^{\prime}=k_{x}^{\prime \prime} \\
& k \sin \left(\theta_{i}\right)=k^{\prime} \sin \left(\theta_{t}\right)=k^{\prime \prime} \sin \left(\theta_{r}\right) \\
& k^{\prime \prime}=k=\frac{\omega}{c} n \text { and } k^{\prime}=\frac{\omega}{c} n^{\prime} \\
& \theta_{\text {refl }}=\theta_{\text {inc }} \text { and } n \sin \left(\theta_{\text {inc }}\right)=n^{\prime} \sin \left(\theta_{\text {trans }}\right)
\end{aligned}
$$

Boundary Conditions :: Solve for \vec{E}_{0}^{\prime} and $\vec{E}_{0}^{\prime \prime}$

- $E_{\text {tangential }}$ and $B_{\text {normal }}$ are continuous at $\mathrm{z}=0$;
- there are no free charges or currents, so
$D_{\text {normal }}$ and $H_{\text {tangential }}$ are continuous at $\mathrm{z}=0$.
\Longrightarrow four boundary conditions

$$
\begin{array}{|l|l|}
\hline D_{n} & \epsilon\left(\overrightarrow{\mathrm{E}}_{0}+\overrightarrow{\mathrm{E}}_{0}^{\prime \prime}\right) \cdot \hat{\mathrm{e}}_{\mathrm{z}}=\epsilon^{\prime} \overrightarrow{\mathrm{E}}_{0} \prime^{\prime} \cdot \hat{\mathrm{e}}_{\mathrm{z}} \\
\hline \mathrm{E}_{\mathrm{t}} & \left(\overrightarrow{\mathrm{E}}_{0}+\overrightarrow{\mathrm{E}}_{0}^{\prime \prime}\right) \times \hat{\mathrm{e}}_{\mathrm{z}}=\overrightarrow{\mathrm{E}}_{0^{\prime}} \times \hat{\mathrm{e}}_{\mathrm{z}} \\
\hline \mathrm{~B}_{\mathrm{n}} & \left(\overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{E}}_{0}+\overrightarrow{\mathrm{k}}^{\prime \prime} \times \overrightarrow{\mathrm{E}}_{0}^{\prime \prime}\right) \cdot \hat{\mathrm{e}}_{\mathrm{z}}=\left(\overrightarrow{\mathrm{k}}^{\prime} \times \overrightarrow{\mathrm{E}}_{0}^{\prime}\right) \cdot \hat{\mathrm{e}}_{\mathrm{z}} \\
\hline H_{\mathrm{t}} & \frac{1}{\mu}\left(\overrightarrow{\mathrm{k}} \times \overrightarrow{\mathrm{E}}_{0}+\overrightarrow{\mathrm{k}}^{\prime \prime} \times \overrightarrow{\mathrm{E}}_{0}^{\prime \prime}\right) \times \hat{\mathrm{e}}_{\mathrm{z}}=\frac{1}{\mu^{\prime}}\left(\overrightarrow{\mathrm{k}}^{\prime} \times \overrightarrow{\mathrm{E}}_{0}^{\prime}\right) \times \hat{\mathrm{e}}_{\mathrm{z}} \\
\hline
\end{array}
$$

Now given \vec{E}_{0}, solve for \vec{E}_{0}^{\prime} and $\vec{E}_{0}^{\prime \prime}$.
This should be easy because it is only linear algebra. But it is not so easy because it is vectors!
We must separate the problem into two parts, called "Transverse Electric polarization" and "Transverse Magnetic polarization", which refer to two different polarizations of the incident waves.

TE pol	\vec{E} is perpendicular to the plane of incidence
	$\vec{E}=E_{y} \hat{e}_{y}$
	$\vec{B}=B_{x} \hat{e}_{x}+B_{z} \hat{e}_{z}$

But the interesting question is, what are the intensities of the waves?
$\langle\vec{S}\rangle=\frac{1}{2} \vec{E} \times \vec{H} *$
$\langle\vec{S}\rangle=\frac{1}{2} \vec{E} \times \frac{1}{\mu \omega}(\vec{k} \times \vec{E} *)=\frac{\vec{k}}{2 \mu \omega} E_{0}^{2}$
$\mathrm{S}_{\text {in }}=\frac{\mathrm{n}}{2 \mu \mathrm{c}} \mathrm{E}_{0}^{2} ; \mathrm{S}_{\text {refl }}=\frac{\mathrm{n}}{2 \mu \mathrm{c}}\left(\mathrm{E}_{0}^{\prime \prime}\right)^{2} ; \mathrm{S}_{\text {transm }}=\frac{\mathrm{n}^{\prime}}{2 \mu^{\prime} \mathrm{c}}\left(\mathrm{E}_{0}^{\prime}\right)^{2}$
 l2R $=\left\{\right.$ Orange, $\left.\operatorname{Text}\left["\left(E_{0}^{\prime \prime} / E_{0}\right)^{2 "},\{0.5,0.2\},\{-1,0\}\right]\right\} ;$ sh2 $=$ Show

Plot [\{
$\left.n p * \operatorname{Etransm}[\theta]^{\wedge} 2, \operatorname{Erefl}[\theta]^{\wedge} 2\right\},\{\theta, 0, \operatorname{Pi} / 2\}$,
PlotRange $\rightarrow\{\{0,1.6\},\{0,1.1\}\}$, Frame \rightarrow True, ImageSize $\rightarrow 450$,
FrameLabel \rightarrow \{" θ [rad]", ""\}, PlotLabel \rightarrow "TE polarization",
PlotStyle \rightarrow Thickness[0.01], AspectRatio \rightarrow 1,
BaseStyle \rightarrow \{FontFamily \rightarrow "Source Serif Pro", 24\}], Graphics[\{l1R, l2R\}]];

