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How Light Interacts with Matter
Victor F. Weisskopf

Scientific American Article, 1968
“The  everyday  objects  around  us  are  white,
colored  or  black,  opaque  or  transparent,
depending  on  how  the  electrons  in  their
atoms  or  molecules  respond  to  the  driving
force of electromagnetic radiation.”
`

◼ Most of what we see is by reflection.
◼ But what are the atomic and molecular
mechanisms that occur when light hits
matter?
◼  It  is  ultimately  a  question  of  quantum
mechanics,  but  we  can  understand  some
things from a semi-classical model.
◼ Absorption and reemission

Here are some questions to answer:
▫ Why is the sky blue?
▫ Why is paper white?
▫ Why is water transparent?
▫ What causes an object to appear colored?
▫ Why are metals shiny?
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The Simplest Unit of Matter 
What happens when an isolated atom is 
exposed to light?

Light is a stream of "energy packets" called 
photons;  Eγ = ℏ ω

The energy of an atom is quantized; 
En with n = 0 1 2 3 4 ....

Normally the atom is in the ground state 
with energy E0. Exposed to light it can 
absorb a single photon and be left in an 
excited state with energy En;
this requires ℏω ≈ En – E0 ;
more precisely, ℏω – (En– E0 ) ~ O (δE)
where δE is the spectral line width.
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Example : H atom

E(2p) – E(1s) = –3.4 – (–13.6) eV = 10.2 eV

λγ = c
ω/(2 π)  = 2 π ℏc

10.2 ev = 121.4 nm (ultraviolet)

δE ▪ δt ≥ ℏ/2   and  δt = τ = 1.6 x 10-9 sec

∴ δE = ℏc
2 c τ = 2 • 10–7 eV (natural line width)

But then (almost immediately!) the atom 
decays back to the ground state and emits a 
photon (in any direction) with energy ℏω ≈
10.2 eV.

In this familiar quantum picture, the atom 
only interacts with light by resonance fluores-
cence, requiring ℏω = En – E0 .
`

But this picture is inadequate to describe the 
interaction of light with a macroscopic sample 
of matter.
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4-5 THE SEMICLASSICAL MODEL
▮ the Lorentz dispersion model (1878)
▮ the Drude dispersion model (1900) for metals

Jackson Section 7.5
“Frequency dispersion characteristics of 
dielectrics, conductors, and plasmas”

We have been considering plane waves in 
simple linear media ( ϵ, μ ). This can 
describe reflection and refraction, but there 
is neither absorption nor dispersion.
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Now we study a simple model for ϵ(ω).
We' ll use complex field functions, such as

E
→
(x
→

,t) = E
→
(x, ω

→
) e– iω t

Remember :  the real part of the function is 
the physical field.
Also we’ll have

D
→
(x
→

,ω) = ϵ (ω) E
→

(x
→

,ω)
and ϵ(ω) will be complex.
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The Model
▪ μ = μ0 ; not interested in magnetic effects
▪ An atom (or molecule) has positive charge 
that does not move. 
▪ and it has an electron with mass m and 
charge –e that does move ( ⇒ polarization).
▪ The electron has:
▪▪ an equilibrium position;

▪▪ and displacement from equilibrium = x
→

(t);

▪▪ and a linear restoring force = – m ω0
2 x
→

;

▪▪ and a damping force = – mγ v
→

 ,  which
decribes the transfer of energy to the 
medium.
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m [ x
••
+ γ x

•
+ ω0

2 x ] = -e E(x,t)

The atom is so small that E
→

 can be
approximated as a constant .
(Which is larger—an atom or a wavelength of
visible light? Is the difference of sizes a large
difference or a small difference?)

m [ x
••
+ γ x

•
+ ω0

2 x ] = -e E e–iωt

You know how to solve the equation of 
motion from mechanics ⟶
EQUATION: linear inhomogeneous equation
SOLUTION: steady-state oscillations with
frequency ω + a damped transient solution 
The transients are not important.
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m [ x
••
+ γ x

•
+ ω0

2 x ] = -e E e–iωt

The steady-state solution is

x
→
(t) = x

→
0 e–iω t (Re is implied)

m [ -ω2 - iωγ +ω0
2 ] x

→
0= –e E

→

x
→
(t) = – e

m [ ω0
2 – ω2 - iωγ ]–1 E

→
e–iωt

The dipole moment 

p
→
= –e x

→
= α E

→

α = e2

m [ ω0
2 – ω2 - iωγ ]–1

That is for one atom with one electron.

Now let N = number of molecules per unit 
volume, and Z = the number of electrons per 
molecule ⟹
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P
→
= ϵ0 χe E

→
where χe = N α

D
→
= ϵ0 E

→
+ P

→
= ϵ E

→

ϵ (ω)
ϵ0

= 1 + χe = 1 + N e2

ϵ0 m Σ
i

fi [ ωi
2 – ω2 – iωγi ]–1 (✶)

Sum rule: Σ
i

fi = Z
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ϵ (ω)
ϵ0

= 1 +
N e2

ϵ0 m
Σ
i

fi [ ωi
2 – ω2 – iωγi ]

–1 (✶)

The equation (✶) will be our theoretical 
model for the dielectric constant in a
macroscopic medium as a function of
frequency ω.
It has these parameters:

strengths fi  , 
frequencies ωi  ,
damping constants γi  ,

i = 1 2 3 ... the number of electron  states.

Ultimately these parameters come from 
quantum theory, or from experimental mea-
surements of atomic physics.
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ANOMALOUS DISPERSION AND RESONANT 
ABSORPTION

Atoms have spectral frequencies
ωi   ≡ (Ei  – E0) /ℏ

from electron transitions, which are
typically in the ultraviolet part of the EM 
spectrum.
Molecules also have vibrational energy
levels, from relative motion of the nuclei,
which are typically in the infrared part of 
the EM spectrum.
(This explains why some materials are
transparent; there is no resonant absorption 
of optical photons.)
For Jackson Figure 7.8, assume there are 
two significant resonances, at ω1 and ω2.
Plot ϵ(ω) / ϵ0 . 
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Figure 7.8
The real and imaginary parts of ϵ(ω) / ϵ0 .

ϵ (ω)
ϵ0

= 1 +
N e2

ϵ0 m
Σ
i

fi [ ωi
2 – ω2 – iωγi ]

–1 (✶)
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