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How Light Interacts with Matter
Victor F. Weisskopf

Scientific American Article, 1968
“The  everyday  objects  around  us  are  white,
colored  or  black,  opaque  or  transparent,
depending  on  how  the  electrons  in  their
atoms  or  molecules  respond  to  the  driving
force of electromagnetic radiation.”
Here are some questions to answer:
▫ Why is the sky blue?
▫ Why is paper white?
▫ Why is water transparent?
▫ What causes an object to appear colored?
▫ Why are metals shiny?
In this familiar quantum picture, the atom 
only interacts with light by resonance fluores-
cence, requiring ℏω = En – E0 .
`

4-5 THE SEMICLASSICAL MODEL
Jackson Section 7.5
“Frequency dispersion characteristics of 
dielectrics, conductors, and plasmas”
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The equation (✶) will be our theoretical 
model for the dielectric constant in a
macroscopic medium as a function of
frequency ω.
Jackson Figure 7.8, assuming there are two 
significant resonances, at ω1 and ω2.
Plot ϵ(ω) / ϵ0 . 
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Normal dispersion, anomalous dispersion 
and resonant absorption.
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The wave vector
Recall the “harmonic” spacetime depen-
dence.

E
→

 or H
→

 ∝ exp{ i ( k
→
• x
→

 – ω t ) }
Maxwell's equations give this
"dispersion relation"

ω = vphase k
where vphase = 1

μϵ
= 1

μ0 ϵ(ω)

In the Lorentz model of dispersion, the
interesting thing is that ϵ(ω) is complex.
Then k is complex.

Write k
→

 = kz ez    and     kz = β + i α2  .

Then ei k
→
• x
→

 = e i β z e– αz/2

Parameter β = wave vector = 2π/λ .
Parameter α = absorption coefficient.
The intensity is proportional to E 2 ∝ e–α z 
so we have a damped wave.
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k = β + i α2  = ω
vphase

 = ω μ0 ϵ

k = β + i α
2 = ω

vphase
= ω μ0 ϵ (ω)

k2 = β2 - α2

4 + 2 i αβ = ω2μ0 ( Re ϵ + i Im ϵ }

β2 - α2

4 =ω2

c2 Re ϵ
ϵ0

and βα = ω2

c2 Im ϵ
ϵ0

Example: For weak absorption, i.e., α ≪ β 

α ≈
Im ϵ
Re ϵ

β where β = Re (ϵ / ϵ0)
ω
c

`

Exercise. For weak absorption the intensity 
decreases for each wavelength (δz = λ) by the
factor X = Im(ϵ)/Re(ϵ).
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7.5.C.
Low-frequency behavior and electric conductivity
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●  Dielectrics: all the electrons are bound 
charges.

Consider the contribution of one resonant 
frequency, ωb .
For ω ≪ ωb ,

ϵ (ω)
ϵ0

≈ 1 +
N e2

ϵ0 m
fb

ωb
2

We have seen this before:
A model for molecular polarizability in 
electrostatics.

γmol =
e2

ϵ0 mωb
2

= molecular polarizability (4.73)
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●  Conductors: Suppose some fraction f0 of 
the electrons in each molecule are “free”; 
i.e., they can move arbitrary distances; for 
example the conduction electrons in a 
metal. In the Lorentz model they have restor-

ing force = –mω0
2 x
→

 = 0; 
for these electrons ω0 = 0 and their contribu-
tion to permittivity is

ϵfree (ω)
ϵ0

= N e2

ϵ0 m
f0

-iωγ0-ω2

ϵfree(ω) = i N e2 f0
mω (γ0 - iω)

In general we can write

ϵ(ω) = ϵb(ω) + i
N e2 f0

mω (γ0 - iω)
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The Ampère-Maxwell equation

∇ × H
→
= J

→
+ ∂D

→

∂t

& postulate conductivity J
→
= σ E

→

∇× H
→

= σ E
→
- i ω ϵb(ω) E

→
(ω)

= -iω ( ϵb + i σω ) E
→

Compare to the complex ϵ(ω) ⟹

σ =
f0 N e2

m (γ0 - iω)
(Drude model)
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Implications:
▮ for low frequencies (ω ≲ 1011 s-1 ; 
microwaves) the conductivity is real and
independent of frequency; ~ 6 ×10–7 (Ωm)-1 
▮ for frequencies infrared and higher, σ is 
complex and ∝ 1/ω
▮ We are missing something important: 
Pauli exclusion principle and band structure 
— truly quantum mechanical.
▮ For nonzero ω, the distinction between 
dielectrics and conductors is “artificial”.
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7.5.D.
High frequency limit and plasma frequency
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For high frequencies,
i.e., ω ≫ resonance frequencies,
we may approximate

ϵ (ω)
ϵ0

≈ 1 -
ωp

2

ω2
where ωp

2 =
NZe2

ϵ0 m

ωp is called the plasma frequency of the 
medium,

ωp= NZ ( 56.3 m3/2 s-1 )
NZ = electron density
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The dispersion relation for high frequencies 

k = ω
1 μ0 ϵ

= ω
c

ϵ
ϵ0

=ω
c 1 -ωp

2 ω2

ck = ω2 - ωp
2

Or, ω = ωp
2 + c2 k2 ,

For ω < ωp, there is no wave propagation
because then k is purely imaginary.
For ω > ωp,

Phase velocity = ω
k = c2 + ωp k2 > c

Group velocity = dω
dk = c2

c2 + ωpk2

< c

vphase⨯ vgroup = c2
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E.M. waves in plasmas
In a dilute plasma, the electrons are free and 
the damping is negligible. Then 

ϵ(ω) = ϵb(ω) + i N e2 f0
mω (γ0 - iω)

≈ ϵ0 ( 1 -
ωp

2

ω2 ) where ωp
2 =NZe2

ϵ0 m

If ω < ωp then k is purely imaginary;
▪ the electromagnetic wave cannot
propagate in the plasma;
▪ incident waves with ω < ωp can only reflect 
from the surface of the plasma;
▪ Oliver Heaviside and the Ionosphere ("the 
Heaviside Layer")
▪ AM and FM radio transmissions
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Why are metals shiny?
(And, the ultraviolet transparency of metals.)

ϵ(ω) ≈ ϵbound(ω) – ϵ0
ωp

2

ω2

where ωp
2 = n e2

ϵ0 meff
,

n = density of conduction electrons

Electromagnetic waves cannot propagate in 
the metal, so an incident wave must reflect 
from the surface. Typically ωp is in the
ultraviolet range of frequencies; so optical 
and infrared waves are reflected. However, 
far ultraviolet waves are transmitted.
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