How does light interact with matter?

V. F. Weisskopf, Sci Am 1968

Among other interesting questions: Why is water transparent?

WATER

Jackson Section 7.5.E.

Water has three phases:

■ Gas, or vapor

Isolated molecules can absorb photons in three ways

- electronic transitions at ultraviolet energies;
- vibrational transitions at infrared energies;
- rotational transitions mix with the vibrational spectrum

Water vapor in the atmosphere is a good greenhouse gas.

∎ Liquid

We'll focus on this phase. Again, there are ultraviolet and infrared resonances. The lowest energy exciations are rotational energy levels, which absorb *microwaves*. (microwave ovens)

∎ Solid

Or, rather, solids. There are > 15 crystalline structures of ice, plus amorphous ice.

Optical properties

As far as visible light is concerned, water is nearly transparent.

Outside the range of visible light, the physics is more interesting.

<u>Review : Electromagnetic waves in an absorb-</u> <u>ing medium</u>

In[=]:= **\$1**

$$\begin{array}{rcl} Periew & \vec{E}(\vec{x},t) = \vec{E}_{0} e^{i(\vec{L}\cdot\vec{x}-\omega t)} \\ & \vec{D}(\vec{x},\omega) = \vec{e}(\omega)\vec{E}_{0} e^{i\vec{L}\cdot\vec{x}} \\ & \vec{\nabla}\times\vec{H} = \frac{\partial\vec{D}}{\partial t} = -i\omega\vec{D} \\ & \vec{T}e & \vec{b}e_{0}tz - Drude model for dispersion \\ & \vec{T}e & \vec{b}e_{0}tz - Drude model for dispersion \\ & \vec{T}e & \vec{b}e_{0}tz - Drude model for dispersion \\ & \vec{T}e & \vec{x} + \chi\vec{x} + m\omega_{0}^{2}\vec{x} \end{bmatrix} = -e\vec{E} \\ & \Rightarrow & \vec{E}(\omega) = 1 + \frac{Ne^{2}}{E_{0}m} \sum_{sht} \frac{f_{c}}{\omega_{1}^{2} - \omega^{2} - i\omega\chi_{1}} \end{array}$$

For a conductor, add anti-uniting with $\omega = 0$ $\frac{-Ne^{2}}{\varepsilon_{0}m} \frac{f_{0}}{\omega^{2} + i\omega\chi_{0}^{2}} = \frac{2Ne^{2}f_{0}}{\varepsilon_{0}m\omega} (\chi_{0} - i\omega)$ Apply to dielectrics, metals, plasmaa $\frac{Plop equilism}{Plop equilism} = \frac{\omega}{V_{phose}} = \omega\sqrt{M_{0}E(\omega)} = \beta + \frac{i\omega}{2}$ $\alpha = \frac{\omega^{2}}{p^{2}c^{2}} I_{m}(\frac{\varepsilon}{\varepsilon_{0}}) \quad \text{and} \quad \beta \approx \frac{\omega}{c} \sqrt{Re(\frac{\varepsilon}{\varepsilon_{0}})}$ e 1 w_{0}

6

^{In[+]≔} s2

Jackson's Figure 7.9

The index of refraction (n) and absorption coefficient (α) of liquid water, as functions of frequency;

7

In[*]:= a79

• For electrostatics, i.e., $\omega \rightarrow 0$, n = 9 implies $\epsilon/\epsilon_0 = 81$. The H2O molecule has a permanent electric dipole moment, which aligns with the electric field at low frequencies.

IR resonances come from 3 modes of vibration

■ For visible light, n ≈ 1.33 with a slight normal dispersion (dn/dω > 0) ⇒ the colors of the rainbow

12

11

Water is transparent but it can separate the colors of white light by refraction.

 $^{\rm o}$ For ultraviolet light, there is a broad electronic resonance at $10^{16}~{\rm Hz}$.

Absorption of light by liquid water Absorption coefficient = $\alpha(\omega)$ = 2 Im $\sqrt{\mu_0 \epsilon(\omega)} \omega$ • α is small at low frequencies (but see seawater) • microwave absorption for $\lambda \sim 1$ cm ; f $\sim 2 \times 10^{10}$ Hz ; $E_{\gamma} \sim 10^{-4}$ eV; $\alpha \sim 100$ cm⁻¹; attenuation length ~ 0.1 mm; the microwave oven • infrared absorption bands

14

13

• the absorption window in the visible range; *water is transparent*.

"The reader may meditate on the fundamental question of biological evolution on this water-soaked planet, of why animat eyes see the spectrum from red to violet and of why the grass is green Mother Nature has certainly exploited her window!"

X-rays, and high energy processes

Optical properties of water for visible light

Here is a better graph of the absorption coefficient [unit : cm^{-1}] for UV \rightarrow visible \rightarrow IR light.

In the visible range, α is small; \implies the extreme transparency of liquid water. But α is not 0. Over sufficienly long distances there is observable absortion. Dispersion of the absorption may give water an intrinsic color (as perceived by the human eye and brain).

15