How does light interact with matter?

V. F. Weisskopf, Sci Am 1968

Examples:
Why is water transparent?
Why is the sky blue?
Why are clouds white?
We have been using the Lorentz-Drude model to describe the interactions of matter and light.

The Lorentz-Drude model for electromagnetic dispersion
$t=$ s1

History

Rayleigh wrote several papers on the color of the sky: 1871; again in 1881; again in 1899.
At first he assumed that light scatters from "small particles" (ie, what?) in the atmosphere; but eventually he realized that it has nothing to do with particulates nor with diffraction.
It's just from the molecules that compose the atmosphere.

Classical electron theory of light scattering

- As light passes an electron in a molecule, the electron motion may be modeled by a classical equation of motion,

$$
\mathrm{m}\left[\ddot{x}+\gamma \dot{x}+\omega_{0}^{2} \mathrm{x}\right]=-e E_{x} e^{-i \omega t}
$$

Here ω - the frequency of the driving force - is a particular frequency in the sunlight.

- The steady-state solution

$$
\mathrm{x}(\mathrm{t})=\frac{-e E_{x}}{m\left(\omega_{0}^{2}-\omega^{2}-i \gamma \omega\right)} e^{-i \omega t}
$$

- The electron accelerates, so it must radiate; this is a classical picture of the "scattering process"
scan

■ Larmor's formula (1897). The instantaneous power radiated by an accelerating charge (non-relativistic limit) is

$$
\mathrm{P}=\frac{1}{4 \pi \epsilon_{0}} \frac{2 q^{2} a^{2}}{3 c^{3}}
$$

- Taking the real part,

$$
\begin{aligned}
& a_{X}=C_{1} \cos \omega \mathrm{t}+C_{2} \sin \omega \mathrm{t} \\
& C_{1}=\frac{e E_{0} \omega^{2} m\left(\omega_{0}^{2}-\omega^{2}\right)}{m^{2}\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}\right]} \\
& C_{2}=\frac{e E_{0} \omega^{3} \gamma}{m^{2}\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}\right]}
\end{aligned}
$$

■ The average power (averaged over a period of ocsillation) of e.m. waves radiated by the electron is

$$
\begin{aligned}
& P_{\mathrm{avg}}=\frac{e^{2}\left(C_{1}^{2}+C_{2}^{2}\right)}{12 \pi \epsilon_{0} c^{3}} \\
& =\frac{e^{4} E_{0}^{2}}{12 \pi \epsilon_{0} c^{3}} \frac{\omega^{4}}{m^{2}\left[\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}\right]}
\end{aligned}
$$

- The scattering cross section is defined by

$$
\sigma=\frac{P_{\text {avg }}}{S_{\text {inc }}} \text { where } S_{\mathrm{inc}}=\mathrm{c} \epsilon_{0} E_{0}^{2} / 2
$$

■ RESULT

The cross section for light scattering by a bound electron, in this classical model, is

$$
\sigma=\frac{8 \pi r_{e}^{2}}{3} \frac{\omega^{4}}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+(\gamma \omega)^{2}}
$$

where r_{e} is called the "classical radius of the electron" is

$$
r_{e}=\frac{1}{4 \pi \epsilon_{0}} \quad \frac{e^{2}}{\mathrm{mc}^{2}}=2.8 \times 10^{-15} \mathrm{~m}
$$

Comments

-.... You will not find this calculation in Jackson.
However, see Section 10.2: "Perturbation Theory of Scattering, Rayleigh's Explanation of the Blue Sky, Etc."
Jackson shows $\mathrm{P} \propto \omega^{4}$ by Rayleigh's method, which was published before Larmor's Formula.
..... In reality, Rayleigh scattering must be an example in quantum electrodynamics: a single photon is absorbed, and a new photon is emitted, by a single electron in a molecule.
(Draw the Feynman diagram!)
The result of the QED calculation, for low energies, ...
is identical to the classical formula!

