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The Kramers-Kronig Relations
Section 7.10

“Causality and the KK relations”
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Today we’ll show that the Kramers-Kronig
relations are true specifically for the 
Lorentz model of dispersion.
Next time we will show that the KK
relations are completely general, i.e., they 
must be true for any theory of ϵ(ω). 

Review the the Lorentz dispersion model;
define K(ω) ≡ ϵ(ω) / ϵ0  = 

K(ω) = 1 +
ωp
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Real and imaginary parts of K(ω)
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Im K(ω) =
ωp

2 γ ω

ω0
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K(ω) is holomorphic in the upper half ω 
plane. There are two poles in the lower half 
ω plane.
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poles = Solve[ω0^2 - ω^2 - I*ω*γ ⩵ 0, ω];

poles[[1]] // Expand

poles[[2]] // Expand

ω → - ⅈ γ
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ω → - ⅈ γ
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2
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Therefore, by Cauchy’s integral theorem,

K(ω) – 1 =
1

2π i


UHP

K (z) – 1
z –ω – iϵ

dz

in the limit ϵ ⟶ 0.

This ϵ is not permittivity!
This ϵ is a positive infinitesimal.

Now, the integral over the semicircle at
infinity is 0. (K(z)–1 ~ R-2 ) 
So the integration region is the real axis.
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The Plemelj Formulae

1
x ± iϵ = . 1

x ∓ i π δ(x)
. = Cauchy Principal Value

(If you are not familiar with the Plemelj
formulae, Google it.)
Applying the Plemelj formula

K(ω)–1 = 1
2π i .∫–∞

∞ K (z)-1
z –ω dz

+ 1
2π i (iπ) (K(ω)–1)

K(ω)–1 = 1
π i .∫–∞

∞ K (z)–1
z –ω dz
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Separate the real and imaginary parts ...

Re K(ω) – 1 = 1
π .∫–∞

∞ Im K (z)
z –ω dz

Im K(ω) = – 1
π .∫–∞

∞ Re K (z) – 1
z –ω dz

These are one one form of the 
Kramers-Kronig relations.
They relate absorption (the imaginary part) 
to dispersion (the real part).
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Real part,  Imaginary part, index of refraction 
and attenuation coefficient

• ϵ(ω) is complex.
• From Maxwell’s equations, the plane 
wave solution ∝ exp( i kz – i ωt ) where k is
complex;
• ωk  = “ vphase ” = 1

μ0 ϵ(ω)
 = c ϵ0

ϵ(ω)    

• k = β + iα/2  ⟹  eikz = eiβz e–zα/2

• attenuation coefficient = α
• index of refraction = n = c

ω/β  = cβ
ω

• k2 = ω2

c2  ϵ(ω)ϵ0
 = β2 – α2

4  + i α β 
= ω2

c2  (Re K + i Im K )
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Another integral relation
Recall, for the Lorentz model of dispersion,

Im K(z) =
γ zωp

2

ω0
2 – z2 2 + γ2 z2

Note that Im K(–z) = – Im K(z).
Therefore we can write the integral relations
in another way ...

∫ –∞
∞ A (z)

z –ω dz = ∫ 0
∞ A (z)

z –ω dz + ∫ –∞
0 A (z)

z –ω dz

= ∫ 0
∞ { A (z)

z–ω + A (-z)
–z–ω } dz

= ∫ 0
∞ { 2 z A (z)

z2 –ω2 } dz

Use this in the integral for Re K(ω) ...
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Re K(ω) = 1 +
2
π

P
0

∞ z Im K (z)

z2 –ω2
dz ▫ (7.120)

So far, we have shown that the
Kramers-Kronig relations are true for the 
Lorentz model of dispersion. 

But the Lorentz model is only based on a 
crude phenomenological model, 

m ( x
••
+ γ x

•
+ ω0

2 x = - e E )
and Px = N (–e x)
a two-parameter model (γ and ω0 ). 

In fact, an atomic theory of polarization 
must require quantum mechanics. 
Friday: The Kramers-Kronig relations 
must be true for any theory of complex 
permittivity.
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Applications of the Kramers-Kronig
relations   ⇒  optical materials research

There exist experimental methods to
measure the absorption coefficient,

α =
ω2

β c2
Im K

and the index of refraction

n =
cβ
ω

=
c2

ω2

α2

4
+
ω2

c2
ReK

Because Im K and Re K are related by the 
KK relations, the measurements can be 
verified.
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“The  refractive  index  and  extinction  coeffi-
cient,  n  and κ,  cannot  be measured directly.
They  must  be  determined  indirectly  from
measurable  quantities  that  depend  on  them,
such  as  reflectance,  R,  or  transmittance,  T.
The determination of n and κ from such mea-
sured  quantities  will  involve  developing  a
theoretical  expression  for  R  or  T,  in  terms
of a valid physical model for n and κ.  By fit-
ting the theoretical model to the measured R
or  T,  using regression analysis,  n  and κ  can
be deduced.”
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Sum Rules
Here is an example.
For any material we may define the plasma 
frequency ωp by

ωp = lim
ω⟶∞

{ ω2[ 1-ϵ(ω)/ϵ0 ] }

Then it can be shown that 

ωp
2 =

2
π


0

∞
ω Im ϵ(ω) /e0 dω

which relates absorption to the plasma 
frequency.
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