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I’m not sure why we are studying
waveguides, but it is included in the PHY 
842 course description.

A coaxial cable is a transmission line.

Sometimes a waveguide is better than a 
coaxial cable (why?) (homework question)
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Waveguides
–boundary conditions (Section 8.1)

The calculation of the TEM mode of a
coaxial cable shows the importance of 
boundary conditions. 
We assumed that the conductors are per-
fect conductors, so E = 0 and B = 0 inside 
the conductor.
What about real metals?
Jackson :
“A good conductor behaves effectively like a 
perfect conductor, with the idealized surface 
current  replaced by an equivalent surface cur-
rent , which is actually distributed throughout 
a small thickness at the surface.”
Read Jackson Section 8.1: “Fields at the sur-
face of and inside a conductor”

    3

f81

Perfect conductor

The shaded region is a small area on the 
conductor surface; n!  = unit normal;

K
→

 = surface current density;

E
→

 = 0 and H
→

 = 0 in the perfect conductor,

so E
→

 is normal and H
→

 is tangential at the 
outer surface. 
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For a real metal, the conductivity σ is 
large but finite; so the skin depth
δ = 2 / (μ0 ωσ)  is small .

Figure 8.1
(perfect conductor; σ = ∞, δ = 0)

Figure 8.2
(good conductor; δ is “small” )
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We' ll analyze waveguides in a two-step
calculation called "successive
approximations":
▪ First we solve the problem for the ideal 
conductor; i.e.,  σ → ∞. Here the bound-
ary conditions are

n" • B
→
= 0 and n" × E

→
= 0

n" • D
→
= Σ and n" ×H

→
= K

→

where Σ = ideal surface charge density and 

K
→

 = ideal surface current density.

That idealization means that E
→

 and B
→

 are 0 
inside the conductors — the first 
approximation.
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▪ Then, to calculate energy loss from
electrical resistance, we’ll calculate the 
fields in a thin layer just inside the
conductor — the second approximation.
These are the results from Jackson ...

H
→
c =H

→
( e–ξ/δ e–iξ/δ,

where ξ = distance inside C.
and H( = tangential field at the surface

E
→
c =

μcω
2 σ (1 – i)(n" ×H

→
( ) e–ξ/δ eiξ/δ,

At the outer surface we can
approximate Enormal = Σ/ϵ  and Htang. = Keff ;
and we can neglect Hnormal and Etang. ;
see Figure 8.2 and Equation 8.11:

E
→
( =

μcω
2 σ (1 – i )(n" ×H

→
( )
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◼ Power loss
The guided wave loses energy.
Power loss =  the power flowing through 
the surface of the conductor.

〈 dPlossda 〉 = – 12 Re{ n
" • E

→
× (H

→
)* }

= μcωδ
4 6H

→
(72

where 〈..〉means time averaged
The “loss of energy” is due to resistance of 
the conductor (finite σ) ; ohmic loss;

current density in the conductor, J
→

 = σ E
→

c .
◼ OR, in terms of the “surface current”,

K
→
eff = ∫ 0

∞ J
→
dξ = n" ×H

→
(

〈 dPlossda 〉 = 1
2σδ 6K

→
eff72
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Cylindrical waveguides  (Section 8.2)

Figure 8.3
f83

Field equations for harmonic time depen-

dence, F(x
→

,t) = F (x
→

) e–iωt) ,

curl E
→
= iω B

→
and div B

→
= 0

curl B
→
= –i μϵ ω E

→
and div E

→
= 0

We know that these imply

(∇2 + μϵ ω2) { E
→
and B

→
} = 0
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Using the symmetry — 
translation invariance in z — 
we’ll consider waves propagating down 
the wave guide,

E
→
(x
→
,t) = E

→
(x,y) ei (kz-ωt)

B
→
(x
→
,t) = B

→
(x,y) ei (kz-ωt)

Remember, many kinds of superpositions 
are possible.

Now,

( ∇T
2 – k2 + μϵω2 ) ( E

→
and B

→
) = 0

where ∇T
2 = ∂x

2  + ∂y
2  .

So, we have a 2D partial differential equa-
tion to solve inside the waveguide, along 
with appropriate boundary conditions.
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The boundary value problem for a hollow 
waveguide

There are two types of solution.
TE = transverse electric: Ez(x,y) = 0
TM = transverse magnetic: Bz(x,y) = 0
For a waveguide in the form of a hollow 
cylinder, there are no TEM waves! 
txt358
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TM modes; Bz = 0

B
→
= B

→
T(x,y) eikz e–iωt

E
→
= [E

→
T(x,y) + e"z Ez(x,y)]eikzt e–iωt

Please verify ...

TMmodes Bz = 0

∇• μH
→
= 0 ∇T•H

→
T = 0

∇• ϵE
→
= 0 ∇T•E

→
T + ik Ez = 0

iω μH
→
= ∇×E

→
0 = e"z• (∇T × E

→
T)

` iωμ H
→
T = -e"z⨯∇

→
T Ez – ike"z⨯E

→
T

–iω ϵ E
→
= ∇ ×H

→
-iωϵ Ez = e"z•(∇T ×H

→
T)

` –iωϵ E
→
T = – ik e"z⨯H

→
T

These are PDE’s.  What are the boundary 
conditions?  Etangential is continuous, and it 
is 0 in the conductor;  so Ez S = 0 .
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Since ∇T× E
→

T  = 0 we can write

E
→

T  = ik
γ2  ∇T  ψ .

By the wave equation,
(∇T

2  –k 2 + μϵ ω2) ψ = 0
= (∇ T

2  + γ2 ) ψ
where γ2 ≡ μϵω2–k 2

We also have

  ik Ez = – ∇T  • E
→

T   ⟹  Ez  =  –1
γ2 ∇T

2 ψ  =  ψ;

this implies the boundary condition
ψ S  = 0 . 

Wave equation + boundary condition
⟹  eigenvalues and eigenfunctions.
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TE modes ;  Ez  = 0
Please verify ...
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TEmodes Ez = 0

∇• μH
→
= 0 ∇T•H

→
T + ik Hz = 0

∇• ϵE
→
= 0 ∇T•E

→
T = 0

iω μH
→
= ∇×E

→
iω μHz = e"z• (∇T × E

→
T)

` iω μH
→
T = – ik e"z⨯E

→
T

–iω ϵ E
→
= ∇ ×H

→
0 = e"z•(∇T ×H

→
T)

` –iωϵ E
→
T = e"z⨯∇THz -ike"z⨯H

→
T

Write H
→

T = ik
γ2  ∇T  ψ.  Then show Hz = ψ .

The boundary condition: Bnormal is
continuous at S and =0 in the conductor;
∴  n • HT  = 0  on the surface S;
this implies  n • ∇T  ψ = 0;  or, (∂ψ / ∂n) S  = 
0 .
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Modes of propagation in a rectangular 
waveguide
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