

We seek to solve Maxwell's equations for fields with these forms

$$
\begin{aligned}
& \vec{E}(\vec{x}, t)=\left\{\vec{E}_{T}(x, y)+\hat{e}_{z} \psi_{E}(x, y)\right\} e^{i(k z-\omega t)} \\
& \vec{B}(\vec{x}, t)=\left\{\vec{B}_{T}(x, y)+\hat{e}_{z} \psi_{B}(x, y)\right\} e^{i(k z-\omega t)}
\end{aligned}
$$

where $\psi_{E}=0$ (TE mode) or $\psi_{B}=0$ (TM mode).
$\vec{E}_{T}=\hat{e}_{x} E_{X}+\hat{e}_{y} E_{y}$, etc.

Comments:

- Wave propagation in the z direction
- $E_{z}=0$ (TE polarization) or $B_{z}=0(\mathrm{TM}$ polarization)
- $B_{z}=\psi(\mathrm{x}, \mathrm{y})$ or $E_{z}=\psi(\mathrm{x}, \mathrm{y})$
- In Maxwell's equations,

$$
\frac{\partial}{\partial z} \rightarrow \mathrm{ik} \text { and } \frac{\partial}{\partial t}=-\mathrm{i} \omega
$$

- Define $\nabla_{T}=\hat{e}_{x} \frac{\partial}{\partial x}+\hat{e}_{y} \frac{\partial}{\partial y}$;
and transverse vectors like $\vec{E}_{T}=\hat{e}_{x} E_{X}+\hat{e}_{y} E_{y}$

Maxwell's Equations

	TE polarization $\left(\mathrm{E}_{\mathrm{z}}=0, \mathrm{~B}_{\mathrm{z}}=\psi\right)$
$\nabla \cdot \epsilon \overrightarrow{\mathrm{E}}=0$	$\nabla_{\mathrm{T}} \cdot \overrightarrow{\mathrm{E}}_{\mathrm{T}}=0$
$\nabla \cdot \mu \overrightarrow{\mathrm{H}}=0$	$\nabla_{\mathrm{T}} \cdot \overrightarrow{\mathrm{H}}_{\mathrm{T}}+\mathrm{ik} \psi=0$
$-\frac{\partial(\mu \overrightarrow{\mathrm{H}})}{\partial \mathrm{t}}=\nabla \times \overrightarrow{\mathrm{E}}$	$\mathrm{i} \omega \mu \psi=\hat{\mathrm{e}}_{\mathrm{z}} \bullet\left(\nabla_{\mathrm{T}} \times \overrightarrow{\mathrm{E}}_{\mathrm{T}}\right)$
,$~$	$\mathrm{i} \omega \mu \overrightarrow{\mathrm{H}}_{\mathrm{T}}=\mathrm{ik} \hat{\mathrm{e}}_{\mathrm{z}} \times \overrightarrow{\mathrm{E}}_{\mathrm{T}}$
$\frac{\partial(\epsilon \overrightarrow{\mathrm{E}})}{\partial \mathrm{t}}=\nabla \times \overrightarrow{\mathrm{H}}$	$0=\hat{\mathrm{e}}_{\mathrm{z}} \bullet\left(\nabla_{\mathrm{T}} \times \overrightarrow{\mathrm{H}}_{\mathrm{T}}\right)$
	$-\mathrm{i} \omega \epsilon \overrightarrow{\mathrm{E}}_{\mathrm{T}}=-\hat{\mathrm{e}}_{\mathrm{z}} \times \nabla_{\mathrm{T}} \psi+\mathrm{ik} \hat{\mathrm{e}}_{\mathrm{z}} \times \overrightarrow{\mathrm{H}}_{\mathrm{T}}$

	TM polarization $\left(\mathrm{B}_{\mathrm{z}}=0, \mathrm{E}_{\mathrm{z}}=\psi\right)$
$\nabla \cdot \epsilon \overrightarrow{\mathrm{E}}=0$	$\nabla_{\mathrm{T}} \cdot \overrightarrow{\mathrm{E}}_{\mathrm{T}}+\mathrm{ik} \psi=0$
$\nabla \cdot \mu \overrightarrow{\mathrm{H}}=0$	$\nabla_{\mathrm{T}} \cdot \overrightarrow{\mathrm{H}}_{\mathrm{T}}=0$
$-\frac{\partial(\mu \overrightarrow{\mathrm{H}})}{\partial \mathrm{t}}=\nabla \times \overrightarrow{\mathrm{E}}$	$0=\hat{\mathrm{e}}_{\mathrm{z}} \cdot\left(\nabla_{\mathrm{T}} \times \overrightarrow{\mathrm{E}}_{\mathrm{T}}\right)$
\cdot	$\mathrm{i} \omega \mu \overrightarrow{\mathrm{H}}_{\mathrm{T}}=?$
$\frac{\partial(\epsilon \overrightarrow{\mathrm{E}})}{\partial \mathrm{t}}=\nabla \times \overrightarrow{\mathrm{H}}$	$-\mathrm{i} \omega \epsilon \psi=\hat{\mathrm{e}}_{\mathrm{z}} \cdot\left(\nabla_{\mathrm{T}} \times \overrightarrow{\mathrm{H}}_{\mathrm{T}}\right)$
	$-\mathrm{i} \omega \epsilon \overrightarrow{\mathrm{E}}_{\mathrm{T}}=?$

Energy flux

$$
\begin{gathered}
\overrightarrow{\mathrm{S}}=\frac{1}{2} \overrightarrow{\mathrm{E}} \times(\overrightarrow{\mathrm{H}})^{*} \\
\operatorname{Re}\left\{\hat{\mathrm{e}}_{\mathrm{Z}} \cdot \overrightarrow{\mathrm{~S}}\right\}=\left\langle\frac{\mathrm{dP}}{\mathrm{da}}\right\rangle \\
\overrightarrow{\mathrm{S}}=1 / 2\left(\overrightarrow{\mathrm{E}}_{\mathrm{T}}\right) \times\left(\overrightarrow{\mathrm{H}}_{\mathrm{T}}+\hat{\mathrm{e}}_{\mathrm{Z}} \mathrm{H}_{\mathrm{Z}}\right) \text { for a TE mode }
\end{gathered}
$$

See Equation (8.48).

Note that \vec{S}_{T} is imaginary and simplify \Rightarrow the integrated energy flux is

$$
P=\int_{A} \overrightarrow{\mathrm{~S}} \cdot \hat{\mathrm{e}}_{\mathrm{Z}} \mathrm{da}=\frac{\omega \mathrm{k}}{2 \gamma^{4}} \int_{\mathrm{A}}\left|\nabla_{T} \psi\right|^{2} \mathrm{da} * \Phi
$$

where $\Phi=\epsilon$ (TM case) or μ (TE case).

We can simplify the integral still further,

$$
\begin{gathered}
=\oint_{C} \psi^{*} \frac{\partial \psi}{\partial \mathrm{n}} \mathrm{ds}-\int_{\mathrm{A}} \psi^{*} \nabla^{2} \psi \mathrm{da} \\
\text { by Gauss's theorem }
\end{gathered}
$$

The surface term is zero for either Dirichlet or Neumann boundary conditions, and $\nabla^{2} \psi=-\gamma^{2} \psi$;
$\mathrm{P}=\frac{1}{2}\left(\frac{\omega}{\omega_{\lambda}}\right)^{2} \sqrt{1-\omega_{\lambda}^{2} / \omega^{2}} \int_{\mathrm{A}} \psi * \psi \mathrm{da} * \frac{\Phi}{\sqrt{\mu \epsilon}}$

Exercise: The field energy per unit length along the z axis is guide is

$$
U=\frac{1}{2}\left(\frac{\omega}{\omega_{\lambda}}\right)^{2} \int_{A} \psi^{*} \psi \mathrm{da} * \Phi
$$

Group velocity and energy flow and group velocity,

$$
\begin{gathered}
\frac{\mathrm{p}}{\mathrm{u}}=\frac{\mathrm{k}}{\mu \epsilon \omega}=\frac{1}{\sqrt{\mu \epsilon}} \sqrt{1-\frac{\omega_{\lambda}^{2}}{\omega^{2}}}=\mathrm{v}_{\text {group }} \\
\mathrm{v}_{\text {group }}=\frac{\mathrm{d} \omega}{\mathrm{dk}} ; \\
\text { also } \mathrm{v}_{\mathrm{g}} \mathrm{~V}_{\text {phase }}=\frac{1}{\mu \epsilon} \approx \mathrm{c}^{2}
\end{gathered}
$$

$10 \mid$

Attenuation of energy flux

The above results are for perfectly conducting walls.
Now suppose the conductivity σ is finite. There will be ohmic losses \Rightarrow the energy flux will be attenuated.
Treat the problem by "successive approximations". (Recall Section 8.1.) In the first approximation, $k_{\lambda} \approx k_{\lambda}^{(0)}$ which is real for $\omega>\omega_{\lambda}$ or pure imaginary for $\omega<\omega_{\lambda}$.
Now make the correction for finite σ,

$$
k_{\lambda}=k_{\lambda}^{(0)}+\alpha_{\lambda}+i \beta_{\lambda}
$$

$\ln [v]=\operatorname{sc} 2$
And $-\frac{d P}{d z}=\frac{1}{2 \sigma \delta} \oint_{c}|\hat{n} \times \vec{H}|^{2} d s$
Where $\delta=\sqrt{\frac{2}{\mu_{0} \omega \sigma}} \propto \frac{1}{\sqrt{\omega}}$
out $\mid=$ Write $\frac{1}{\delta}=\frac{1}{\delta_{\lambda}} \frac{\delta_{\lambda}}{\delta}=\frac{1}{\delta_{\lambda}} \sqrt{\frac{\omega}{\omega_{\lambda}}} \quad \delta_{\lambda}=\sqrt{\frac{2}{\omega_{b} \omega_{\lambda} \sigma}}$

$\ln [-]=\operatorname{sc} 3$

Out $[-l=$

- Wall at $x=0: \hat{n} \times \vec{H}=-\hat{e}_{x} \times\left[\hat{e}_{2} \psi+\frac{i k}{\gamma^{2}} Z \psi\right]_{x=0}$

$$
\Rightarrow \int|\hat{r} \times T|^{2} d s=H_{0}^{2} b
$$

$$
=\hat{e}_{y} H_{0}
$$

- Wall at $y=0: \hat{x} \times \widetilde{H}=-\hat{e}_{\psi} \times\left[\hat{e}_{z} \psi+\frac{i k}{\gamma^{2}} \hat{e}_{x} \frac{\partial \psi}{\partial \times}\right]_{y=0}$

$$
\begin{aligned}
& =-\hat{e}_{x} H_{0} \cos \frac{m \pi x}{a}+\hat{e}_{2} \frac{i k}{\gamma^{2}}\left(\frac{-\frac{m \pi}{a}}{a}\right) h_{n}^{2} \frac{m \pi x}{2} H_{0} \\
& =-H_{0}\left[\hat{e}_{x} \cos \frac{m \pi x}{a}+\frac{i k}{r^{2}} \frac{m \pi}{a} \cos ^{2} \frac{m \pi x}{a}\right] \\
\Rightarrow \int\left(\hat{x} \times I F^{2} d s=H_{0}^{2}\left[\frac{a}{2}\right.\right. & \left.+\frac{k^{2}}{\gamma^{4}}\left(\frac{m \pi r}{a}\right)^{2} \frac{a}{2}\right] \\
\gamma^{2} & =\mu \in \omega_{\lambda}^{2} \text { and } h^{2}=\mu \in\left(\omega^{2}-\omega_{\lambda}^{2}\right) \\
& =\left(\frac{n \pi}{a}\right)^{2}
\end{aligned}
$$

