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Resonant Cavities
Section 8.7

Two microwave cavities (left) from 1955, each &1

attached by waveguide to a reflex klystron (right) a
vacuum tube used to generate microwaves. The
cavities serve as resonators (tank circuits) to determine
the frequency of the oscillators
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Waveguides

wl

4
but we never worried aboutz=0 and z =d.
It should be OK if d > A,

For f = 30 GHz microwaves,

_ ¢ — 3x10°m/s _ _
A= Z 3 100 /s 0.0lm=1cm
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Or, it should be OK if the end is attached to
something else

w2

Resonators
An enclosed volume

Put conducting caps on the ends of a
waveguide

w3

 — A—
The field equations in the volume are the
same as for the waveguide; but now there

are two more boundary conditions,
atz=0and z=d.
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For perfectly conducting caps,

-

i.e., E7 =0 at ends.
® Biormai=0atz=0and z=d;
i.e., B, =0 at ends.




Write

- - .
F(x,t) = F(x,y,z) et

1 For traveling waves, as in a waveguide,

N

F(x,y,2) = F(x,y) x { €** or e}
and linear combinations.

B For standing waves, as in a cavity
resonator,

-

;"(X,y,z) = F(x,y) x { cos(kz) or sin(kz) }
and linear combinations;
but here the boundary conditions atz=0
and d must be satisfied:

== Dirichlet boundary conditions
(F=0atz=0and d)
— sin(kz) and k = %T
where p is an integer ;
== Neumann boundary conditions

(0F/0z=0atz=0andd)

— cos(kz) and k =

pr

d
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TM fields and TE fields Mode numbers

TM fields (B, = 0) TE fields (E, = ) (analogous to quantum numbers)

E, = w(x,y) cos(prz/d) |B, = (x y) sin(prtz/d) Given p € {0,1,2,3,...} there will be two
in(22) &, x Vyy mode numbers A ={m, n } and an eigenfre-
quency v, (p) and eigenfunction ¥, (p; X,y).
The frequency of the mode — w,(p) — is
given by

2 pn/d =
Er= 7 sin(22%) Vry | Er =

N

N prt/d prz
Hr = 2 COS(THZ) e,xVyy HT = ? COS(T) Vi

where k = prr/d and y? = pew’ - (pr/ d)>.
The boundary conditions at z=0 and d are v* = pew’ -k = pew? - (pri/d)?
obeyed. Also wA(P)* === [ vaP)? + (5)°]
(Ve +y*)¢¥=0 " ,
and ¢ |5 =0 (TM) or 1+ V7 |s = 0 (TE) Resonant frequencies of the cavity
{wy(p)forAeNandpe{1,2,3,...}
a discrete set of eigenfrequencies, i.e.,
such that all the fields « et . Choose the
size and shape of the boundary such that
the frequency of operation is near one of
the eigenfrequencies and well away from

the others.




The right circular cylinder

There are two parameters:
inner radius R and length d.

First consider the TM modes:
1 TM modes;

so E, =y (p,p) where p and ¢ are plane
polar coordinates.

1pec{0,1,2,3,..}

The field equation is
(V% +y?)w=0

2 (052) + L2, 2y=0

o ap P> 0¢?

and the boundary condition is

Y|s=wR @)=

The solution is

W(p,®) = Eo Jm(Ymnp) €M7
where

YmnR =Xmn and Jpy(Xmn) =0

Xmn = the Nt zero of J,(€)

essell[0, z], BesselJ[1, z], Bessell[2, 2]}, {z, 0, 20},
PlotStyle » {Black, Red, Blue}, ImageSize -» 480, AspectRatio » 1]




Zeros of the Bessel functions

ro = {{"m=@", "m=1", "m=2", "m=3"}};

values = Table[ SetPrecision[BesselJZero[m, n], 3],
{n, 1, 4}, {m, 0, 3}]3

tbl = Style[Join[r0, values] // TableForm, ff]

m=0 m=1 m=2 m=3
2.41 3.83 5.14 6.38
5.52 7.01 8.42 9.76
8.65 10.2 11.6 13.0
11.8 13.3 14.8 16.2

The resonant frequencies are
)@ + I)Zﬂ-2 ]1/2

wmn(p) = ﬁ [ R2 42
The lowest TM mode has
{p,m,n}=1{0, 0, 1};
wo1(0) = \/L_e 2%
For u = ypand e = ¢gand R =3 cm,
wo1(0) =27%(3.84 GHz) and A =7.82 cm

wp1(0) does not depend on d,
so tuning is not possible.
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The fields inside the cavity for mode
TM(0,1,0)

E, = Eo Jo(xo1 /R) &7

Hy =—i Vel u Eg J1(xo1 o/IR) €7t

Plot[ { BesselJl[0, 2.41%x], BesselJ[1, 2.41%Xx]},
{x, 0,1},
PlotStyle » {{Thickness[0.01], Red}, {Thickness[0.01], Blue}},
BaseStyle » 24, AxesLabel » {"p/R", "E, (red) and H, (blue)"},
ImageSize » 480, AspectRatio -» 1]
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TE  modes Hz = %@ygsm(gf) (=125...)
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