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Resonant Cavities
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but we never worried about z = 0 and z = d.
It should be OK if d ≫ λ,
For f = 30 GHz microwaves,  

λ = c
f  = 3 × 108 m/s

3× 1010 s
 = 0.01 m = 1 cm
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Or, it should be OK if the end is attached to 
something else
w2
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Resonators
An enclosed volume
Put conducting caps on the ends of a
waveguide 
w3
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The field equations in the volume are the 
same as for the waveguide; but now there 
are two more boundary conditions,
at z = 0 and z = d.

For perfectly conducting caps,

■ E
→

tangential = 0 at z = 0 and z = d;

i.e., E
→

T  = 0 at ends.
◼ Bnormal = 0 at z = 0 and z = d;
i.e., Bz = 0 at ends.
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Write

F
→
(x
→

,t) = F
→
(x,y,z) e-iωt

▮ For traveling waves, as in a waveguide, 

F
→

(x,y,z) = F
→

(x,y) ⨯ { eikz or e–ikz }
and linear combinations.

▮ For standing waves, as in a cavity
resonator,

F
→

(x,y,z) = F
→

(x,y) ⨯ { cos(kz) or sin(kz) }
and linear combinations;

but here the boundary conditions at z = 0 
and d must be satisfied:
▪▪ Dirichlet boundary conditions

( F
→

 = 0 at z = 0 and d)

⟹ sin(kz) and k = 
pπ
d

where p is an integer ;
▪▪ Neumann boundary conditions

( ∂F
→

/∂z = 0 at z = 0 and d)
⟹ cos(kz) and k = pπ

d  .
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▪▪ Neumann boundary conditions

( ∂F
→

/∂z = 0 at z = 0 and d)
⟹ cos(kz) and k = pπ

d  .
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TM fields and TE fields

TM fields (Bz = 0) TE fields (Ez = 0)
Ez = ψ(x,y) cos(pπz/d) Bz = ψ(x,y) sin(pπz/d)

E
→
T =

-pπ/d
γ2

sin( pπzd ) ∇Tψ E
→
T =

-iωμ
γ2
sin( pπzd ) e.z × ∇Tψ

H
→
T = iωϵ

γ2
cos( pπzd ) e.z×∇Tψ H

→
T =
pπ/d
γ2

cos( pπzd ) ∇Tψ

where k = pπ/d  and  γ2 = μϵω2 – (pπ /d )2 .
The boundary conditions at z = 0 and d are 
obeyed. Also

(∇T
2  + γ2 ) ψ = 0

and ψ S  = 0 (TM) or n7 • ∇T ψ S  = 0 (TE)
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Mode numbers
(analogous to quantum numbers)
Given p ∈ {0,1,2,3,...}  there will be two 
mode numbers λ = { m , n } and an eigenfre-
quency γλ(p) and eigenfunction ψλ(p; x,y).
The frequency of the mode — ωλ(p) — is 
given by

γ2 = μϵω2 – k2 = μϵω2 – (pπ/d)2

ωλ(p)2 = 1μϵ [ γλ(p)2 + ( pπd )2 ]

Resonant frequencies of the cavity

{ ωλ(p) for λ ∈ Λ and p ∈ {1,2,3,...}
a discrete set of eigenfrequencies, i.e., 
such that all the fields ∝ e–iωt . Choose the 
size and shape of the boundary such that 
the frequency of operation is near one of 
the eigenfrequencies and well away from 
the others.
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The right circular cylinder
There are two parameters:
inner radius R and length d.

First consider the TM modes:
▮ TM modes;
 so Ez = ψ(ρ,ϕ) where ρ and ϕ are plane 
polar coordinates.
▮ p ∈ { 0, 1, 2, 3, ...}

The field equation is

( ∇T2 + γ2 ) ψ = 0

1
ρ

∂
∂ρ (ρ ∂ψ

∂ρ ) +
1
ρ2

∂2ψ
∂ϕ2

+ γ2 ψ = 0

and the boundary condition is
ψ S = ψ(R,ϕ) = 0
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The solution is

ψ(ρ,ϕ) = E0 Jm(γmnρ) e±imϕ

where
γmnR = xmn and Jm(xmn) = 0

xmn = the nth zero of Jm(ξ)
Plot[{BesselJ[0, z], BesselJ[1, z], BesselJ[2, z]}, {z, 0, 20},

PlotStyle → {Black, Red, Blue}, ImageSize → 480, AspectRatio → 1]

5 10 15 20

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

10     



Zeros of the Bessel functions
r0 = {{"m=0", "m=1", "m=2", "m=3"}};

values = Table[ SetPrecision[BesselJZero[m, n], 3],

{n, 1, 4}, {m, 0, 3}];

tbl = Style[Join[r0, values] // TableForm, ff]

m=0 m=1 m=2 m=3
2.41 3.83 5.14 6.38
5.52 7.01 8.42 9.76
8.65 10.2 11.6 13.0
11.8 13.3 14.8 16.2

The resonant frequencies are

ωmn(p) = 1
μϵ

 [ xmn
2

R 2  + p2 π2

d 2  ]1/2

The lowest TM mode has
{p,m,n} = {0, 0, 1};

ω01(0) = 1
μϵ

 2.41
R

For μ = μ0 and ϵ = ϵ0 and R = 3 cm,
ω01(0) = 2π⨯(3.84 GHz) and λ = 7.82 cm

ω01(0) does not depend on d,
so tuning is not possible.
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The fields inside the cavity for mode 
TM(0,1,0)

Ez = E0 J0(x01 ρ/R) e–iωt

Hϕ = –i ϵ / μ E0 J1(x01 ρ/R) e–iωt
Plot[ { BesselJ[0, 2.41 * x], BesselJ[1, 2.41 * x]},

{x, 0, 1},

PlotStyle → {{Thickness[0.01], Red}, {Thickness[0.01], Blue}},

BaseStyle → 24, AxesLabel → {"ρ/R", "Ez (red) and Hϕ (blue)"},

ImageSize → 480, AspectRatio → 1]
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