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Theory of Radiation
Chapter 9

We have studied waves and how they
propagate...

– in free space
– in dielectrics
– in metals and plasmas
– in waveguides

Now, how are these waves created?

Chapter 9 is about the theory of radiation.
This theory is the prerequisite for Chapter 
10 — scattering and diffraction.

Fields and radiation of a localized 
oscillating source

Out[!]=

ρ(x
→
,t) = ρ(x

→
) e–iωt

J
→
(x
→
,t) = J

→
(x
→
) e–iωt

with iω ρ = ∇•J
→

The real part is the physical quantity.
These are the sources. 
What are the fields?
Well, first, we’ll calculate the potentials.
In the Lorenz gauge, recall

Out[!]=

B
→
= ∇× A

→
and E

→
= -∇Φ – ∂A

→

∂t

with ∇• A + 1
c2

∂Φ
∂t = 0
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Recall the retarded Green' s function
for the wave equation 

Out[!]= A
→
(x
→
,t) =

μ0
4π

∫ d3x' ∫ dt'
J x'

→
, t '

x
→
- x'

→

δ(t' - t + |x
→
-x '

→
|/c)

For a harmonic source, J
→
x '
→
 e–iωt' ...

Out[!]=

A
→
(x
→
,t) = A

→
(x
→
) e–iωt

A
→
(x
→
) = μ0

4π ∫ d3x'
J
→
x'
→


x
→
-x'
→ e

ik x
→
-x'
→

(★)

where k = ω/c (wave number)
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Out[!]=

H
→
= 1

μ0
∇× A

→

E
→
= iZ0k ∇×H

→
outside the source

Z0 = μ0 / ϵ0 = μ0 c = 377 ohm

In principle this solves the problem:

Given J
→

(x
→

) e–iωt, do the integral (★).
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The approximate solution for a small 
source

Let d = “the source dimension”;
a characteristic size.

Let λ = the wavelength of the
radiated waves;  λ ≡ 2πc/ω.

Assume d ≪ λ.
Think of examples ...

Out[!]=

λ example limit d≪
500 nm yellow light 5000 A
3 GHz MW oven 10 cm
1MHz AM radio 300m
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Zones
Assume d ≪ λ.

Out[!]=

name (alternative) r range
Near zone (static) d≪ r≪λ
Intermediate (induction) d≪ r ~ λ
Far zone (radiation) d≪λ≪r

The most interesting case is the radiation 
fields.

In the far zone,  E
→

(x
→

) and B
→

(x
→

) ~ O(1/r) for 
large r.

That implies S
→

(x
→

) ~ O (1 / r 2).
This is the “inverse square law of energy 
flux” which is required by conservation of 
energy.
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The near zone

The factor eikR  in the integral (★): 

eik x
→
-x '

→

 where k = 2π/λ

and x
→

 – x '
→

| = r 2 + (r ')2 - 2 r r ' cos(γ) .
In the near zone we can approximate

eik x
→
-x '

→

 ≈ 1. Then

Out[!]= A(x,t) ≈
μ0
4π

∫
J (x') d3 x'
x - x'

e–iωt

The fields are “quasi-stationary”;
oscillating in time, but static in space.
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The Far Zone ; r ≫ λ  ;  kr = 2πr/λ ≫ 2π.
Now we use this approximation:

Out[!]=

|x
→
-x '

→
| = r2 + (r')2 - 2 r r' cos (γ)

≈ r - r' cos(γ) +O(r'2/r)

We’ll neglect the last term  O (d 2/r)
compared to d.   Furthermore, we’ll approx-
imate

1

x
→
-x '

→  ≈ 1
r  .

So the result is

Out[!]= A
→
(x
→
,t) =
eikr e–iωt

r
μ0
4π

∫ J
→
(x
→
') e–ik n

^
•x'
→

d3x'
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Comments
▪ 1

r  ei (kr-ωt) is an outgoing spherical wave.
Note the “inverse square law”.
▪ The integral depends only on the
angles of n2 ;

— observation position = x
→

 = r n2  ;
— n2  = e2x  sinθ cosϕ + e2 y  sinθ sinϕ + e2z cosθ ;
(eventually we’ll pick the Cartesian 
directions)

Out[!]= A
→
(x
→
,t) =
eikr e–iwt

r
μ0
4π

∫ J
→
(x
→
') e–ik n

^
•x'
→

d3x'

▪ We don’t need the scalar potential in the 
far zone, because we can use Faraday’s 

law to calculate E
→

.
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Electric Dipole Fields and Radiation 
(Section 9.2)

The potential in the far zone is
In[!]:= Style"A

→
(x
→
,t) =

eikr e–iwt

r

μ0

4 π
∫ J

→
(x
→
') e–ik n

^
•x'
→

d3x' ", ff, 32

Out[!]= A
→
(x
→
,t) =
eikr e–iwt

r
μ0
4π

∫ J
→
(x
→
') e–ik n

^
•x'
→

d3x'

Now k n2 • x
→

’ is O  2 π d
λ , small in far zone.

We can expand exp[–ikn2 •x
→

’]  in powers of 

kn2 •x
→

’.
The result is the multipole expansion for 
radiation.
The dominant term is the electric dipole 
approximation; 

approximate  exp[–ikn2 •x
→

'] ≈ 1.

Out[!]= A
→
(x
→
) =
eikr

r
μ0
4π

∫ J
→
(x
→
') d3x'
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Rewrite the result

Out[!]=

∫ J d3x' = – ∫

x
→
'(∇'•J

→
) d3x'

by Gauss's theorem

= –iω ∫ x
→
' ρ(x

→
') d3x' by the

continuity equation

= –iω p
→

p
→
= electric dipole moment

Here p
→

  is the electric dipole moment of 

the charge density ρ(x
→

).

Out[!]=

A
→
(x
→
) = –i μ0ω4π p

→ eikr
r

p
→
= ∫ x

→
' ρ(x

→
') d3x'
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Calculate E
→

 and B
→

 in the radiation zone,
from the electric dipole potential.

The results are (exercise)

Out[!]=

Electric dipole radiation

H
→
= ck

2

4π (n> × p
→
) e
ikr

r e
–iωt

E
→
= Z0 H

→
× n>

“showing the typical behavior of radiation 
fields.”
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Power radiated per unit solid angle
by an oscillating electric dipole

and  n2  • S
→

 dA = dP;  dA = r 2 dΩ.
The time-averaged differential power is

Out[!]=

dP
dΩ

=
1
2
Re[ r2 n>• E

→
×H*

→
]

Exercise.

Show, from the equations for H
→

 and E
→

 in 
the far zone,

Out[!]=

dP
dΩ

=
c2 Z0
32π2

k4 C(n>×p
→
)×n>D2
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▮  Footnote about polarization.

▮  If p
→

 is real then

Out[!]=

dP
dΩ

=
c2 Z0
32π2

k4 p2 sin2θ

where θ is the angle between p
→

 and n2 ;
dP/dΩ ∝ sin2 θ is called “typical dipole”;
(draw a picture)

The total power;   (note ∫  sin2 θ  dΩ = 8 π
3  )

Out[!]= P =
c2 Z0
12π

k4 p2
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