Theory of Radiation
Chapter 9

We have studied waves and how they
propagate...

- in free space

- in dielectrics

- in metals and plasmas

- in waveguides
Now, how are these waves created?

Chapter 9 is about the theory of radiation.

This theory is the prerequisite for Chapter
10 — scattering and diffraction.

Fields and radiation of a localized
oscillating source

p(x,t) = p(x) et
J(X,t) = J(x) et
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with iw p=VeJ

The real part is the physical quantity.

These are the sources.

What are the fields?

Well, first, we'll calculate the potentials.

In the Lorenz gauge, recall
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Recall the retarded Green' s function
for the wave equation
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For a harmonic source, J (X') et .
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where k = w/c (wave number)
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In principle this solves the problem:

Given J (;) e “t do the integral (x).




The approximate solution for a small
source

Let d = “the source dimension”;
a characteristic size.

Let A = the wavelength of the
radiated waves; A = 2rc/w.

Assume d < A.
Think of examples ...

A example |limitd <«
500 nm | yellow light | 5000 A
3GHz [MWoven [10cm
TMHz |AMradio |[300m

Zones

Assume d < A.

name (alternative) |r range

Near zone |(static) d<r<A
Intermediate | (induction) |d<<r~A
Far zone (radiation) |d < A<r

The most interesting case is the radiation
fields.

In the far zone, E(;) and B()_()) ~O(1/r) for
large r.

That implies S(x)~ 0(1/ 1.

This is the “inverse square law of energy

flux” which is required by conservation of
energy.




The near zone

The factor e™® in the integral (x):

eik|;_X'| where k = 271/A

and |)_()—X'|:\/I‘2 + (r'? —=2rr'cos(y).

In the near zone we can approximate

eik|X_X‘| ~ 1. Then
J(xhd3x'
A(X,t)z IJO ( ) —lwt
4" | x=x"|

The fields are “quasi-stationary”,
oscillating in time, but static in space.

The Far Zone ; r > A ; kr =2xr/A > 2nx.

Now we use this approximation:

R
|;<)—x'|=\/r2 + (r')2 = 2rr'cos (y)

=1 —r'cos(y) + O(r?/r)

We'll neglect the last term O(d?/r)
compared to d. Furthermore, we’ll approx-

imate
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So the result is
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Comments

= 1 /=Y i5 an outgoing spherical wave.
Note the “inverse square law”.

= The integral depends only on the

angles of A,

— observation position = X=rAf ;

— 11 = &, sinf cos¢ + &, sinf sing + &, cosb ;
(eventually we’ll pick the Cartesian
directions)
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= We don’t need the scalar potential in the

far zone, because we can use Faraday’s

law to calculate E.
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Electric Dipole Fields and Radiation
(Section 9.2)

The potential in the far zone is
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Nowk A » ¥’ is O(%£4), small in far zone.
We can expand exp[-ikfiex’] in powers of
kfex’.

The result is the multipole expansion for
radiation.

The dominant term is the electric dipole
approximation;

approximate exp[—ikfz-;'] ~ 1.
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Rewrite the result - = o
Calculate E and B in the radiation zone,

from the electric dipole potential.

Jydx=]

N -
x'(V'eJ) d3x'

by Gauss's theorem

The results are (exercise)

. > o Electric dipole radiation
=—|wfx'p(x') d3x’ by the 2 & > aik
finuit i _ckf/a e —iwt
. continuity equation =i (n X p) e
=—iwp p = electric dipole moment E _ ZO I:)I <
Here p isthe electrlc_)dlpole moment of “showing the typical behavior of radiation
the charge density p(x). fields.”
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Power radiated per unit solid angle
by an oscillating electric dipole

and A+ S dA=dP; dA=r?dQ.
The time-averaged differential power is

dP 1 A2
— =—Re[r*fAi*E x H*]
dQ 2

Exercise.

Show, from the equations for H and F in
the far zone,

dP =C2 ZO k4
dQ 325772

B Footnote about polarization.
mIf }_9) is real then
dP c*Z,
dQ 3272

where 6 is the angle between 1_5 and 1;
dP/dQ « sin? @ is called “typical dipole”;
(draw a picture)

The total power; (note f sin®f dQ = 8?” )

Kk p2 sin’0




