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Scattering and Diffraction
Chapter 10

Chapter 9 is about the theory of radiation.

Chapter 10 — Scattering and Diffraction — makes use of the the-
ory of radiation.

What is the difference between reflection and scattering?
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Radiation by an oscillating electric dipole
(Section 9.2)

For d ≪ λ , electric dipole radiation is
usually the dominant form of radiation.
Consider a charge distribution for which 
the electric dipole moment oscillates har-
monically with frequency ω,

p
→
(t) = p

→
e–iωt

Then the vector potential in the far zone is

A
→
(x
→
) = –i μ0ω4π p

→ eikr
r e

–iωt

p
→
= ∫ x

→
' ρ(x

→
') d3x'
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The radiation fields
(homework problem 13-1)

E1 radiation far zone

H
→
= 1μ0 ∇× A

→
~ ck

2

4π (n. × p
→
) e
ikr

r e
–iωt

E
→
= iZ0k ∇×H

→
~ Z0 H

→
× n.

where Z0 = μ0 / ϵ0  = μ0 c = 377 ohm.
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Section 10.1
Scattering for long wavelengths

We start with an incident plane wave 

Einc = ϵ0 E0 eik n0 •x ϵ0 = pol. vector
n0 = inc. direction

Hinc = n0 × Einc /Z0
where k = ω/c.

(Factor e–iωt is understood.)
▮ These fields of the incident wave
polarize the object 
⟹ electric dipole moment p

→
(t)

and perhaps magnetic dipole moment 

m
→

(t) 

4



▮ These sources radiate outgoing waves.
In the radiation zone

Esc = k2 eikr
4πϵ0 r

[(n×p)×n – n×m/c]
n = direction of observation
r = distance from the object
Hsc = n × Esc /Z0
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The radiated power

dP
dΩ = r2 n• {Re Esc} × {ReHsc}

or, dPdΩ = 12 r
2 Re{ n• Esc ×Hsc* }

or, dPdΩ = 12 r
2 6ϵ*• Esc72 1Z0

and inc flux = 1
2 Z0

6ϵ0*• Einc72

6



The differential scattering cross section

dσ
dΩ

[n,ϵ;n0,ϵ0] =
dP /dΩ

inc. power flux

dσ
dΩ

[n,ϵ;n0,ϵ0] =
r2 ϵ* •Esc

2

ϵ0* •Einc
2
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Result for dipole radiation

dσ
dΩ

[n,ϵ;n0,ϵ0] = ,

=
k4

(4πϵ0 E0)2
|ϵ*•p + (n×ϵ*)•m/c72
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Comment.

The moments p
→

 and m
→

 will depend on E
→

inc , because 
these are moments of the distribution induced by the inci-
dent wave.
So  dσ/dΩ will not depend on E0, and will depend on 
the incident polarization ϵ"0.
To proceed we need to consider specific examples of 
the scattering object.
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(B) Scattering by a small dielectric sphere
Parameters: radius a, permeability μ = μ0,
relative permittivity ϵr = ϵ(ω) / ϵ0 . 
Assuming the frequency is small enough 
to justify the quasi-static approximation 
for the dipole moment,

p = 4πϵ0(
ϵr– 1
ϵr + 2

) a3 Einc

dσ
dΩ

= k4 a6 6
ϵr– 1
ϵr + 2

72 6ϵ*•ϵ072

Interesting feature: the scattered radiation 
is linearly polarized in the plane spanned 
by n/  and ϵ"0.
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Assume the incident radiation is unpolar-
ized (that’s the usual thing). Then what is 
the dependence of the cross section on ϵ" ?

dσ>

dΩ = 12 k
4a6 6 ϵr– 1

ϵr+2
72 cos2θ

dσ⟂
dΩ = 12 k

4a6 6 ϵr– 1
ϵr+2

72

where  ϵ"  is 
1 to the scattering plane
⟂ to the "
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Results and Figure 10.2

Π(θ) = σ⟂ – σ >
σ⟂+σ >

( dσdΩ )unpol = k
4a6|(ϵr-1)/(ϵr+2) 2 (1+cos2θ)/2

σ = 8π3 k
4a6 |.. 2

fig10p2
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What can we say about this?
scan1
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(C) Scattering by a small conducting 
sphere

In this case,

p
→
= 4π ϵ0 a3 E

→
inc

m
→
= –2π a3 H

→
inc

As before calculate the radiated power and 
the cross section ... 

dσ
dΩ

[n,ϵ;n0,ϵ0] = k4a6 6ϵ*•ϵ0 –
1
2
(n⨯ϵ*)•(n0⨯ϵ0)72

13

See Figure 10.3.
fig10p3

What can we say about this case?
scan2

14



(D) Collection of scatterers
◼ Interference of waves scattered by
different scattering centers;
◼ dσ/dΩ = (dσ /dΩ)0 × form factor;
the form factor depends on the
spatial distribution of the scatterers; 
◼ familiar from Bragg scattering — using
X-ray scattering to determine crystal
structure.
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