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From the grad student handbook ...
CLASSICAL ELECTRODYNAMICS II (PHY 842)

Electrostatics of conductors
Electrostatics of dielectrics
Microscopic models of dielectric media
Magnetostatics
Para-, dia-, and ferromagnetism
Quasi-stationary fields, skin effect
Electromagnetic waves in material media

propagation, reflection, refraction and polarization
Waveguides and resonant cavities
Scattering and diffraction
Electrodynamics of special media

(plasma, superconductors)
Energy loss by charged particles
Cherenkov radiation.

Topics for the final exam ...
? Electrostatics of dielectrics
? Propagation of plane waves
? Lorentz model of dispersion; ϵ(ω)
? Waves in a free electron plasma; ωp
? Skin depth; δ
? Waveguides
? Short answer questions from the homework assignments

Dielectrics

∇• E
→

 = ρ / ϵ0 

ρ = ρfree – ∇• P
→
   ;  also could have σbound = n( • P

→

∇• (ϵ0  E
→

 + P
→
 ) = ρfree

D
→

 = ϵ0 E
→

 + P
→
 = ϵ E

→

Maxwell Equations

∇• B
→

 = 0 and ∇× E
→

 = – ∂B
→

∂t

∇• D
→

 = ρfree and ∇× H
→

 = J
→

free + ∂D
→

∂t   

D
→

 = ϵ E
→

 and B
→

 = μ H
→

Boundary Conditions
Δ Dnormal = σfree

Δ Etangential = 0

Examples with permittivity
▮ Parallel plate capacitor : C =  ϵAd
▮ Fields for a dielectric sphere in a constant electric field
▮ Propagation of plane waves : vphase = ωk = 1

μϵ
 = c

n

▮ Reflection and refraction

▮ Dispersion : ϵ (ω)
ϵ0

 = 1 + Σ 
ωp

2

ω0
2 –ω2 + iωγ

 ; ωp
2 = ??

▮ Cherenkov radiation



History of Cherenkov Radiation
1888 predicted by Heaviside (but forgotten)

1904 predicted by Sommerfeld (but forgotten)

1910 Marie Curie (noted a blue glow from radium in water)

1926 Lucien Mallet (radium in water)

1934 Pavel Cherenkov (supervisor Sergey Vavilov)

1937 Ilya Frank and Igor Tamm (the theory)

1958 Nobel Prize (Cherenkov, Frank and Tamm)
EQ
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DERIVATION OF THE FRANK-TAMM FORMULA
FOR CHERENKOV RADIATION

§ Consider a charged particle moving relativisti-
cally along the x-axis, in a medium with index of 
refraction n(ω) = μ ϵ(ω)  / μ0 ϵ0 . The particle 

velocity is v
→

 = (v,0,0) and is approximately 
constant.
Start with Maxwell's equations; vector and 
scalar potentials in the Lorenz gauge; and 
Fourier transform the equations

(x
→

,t) → (k
→

,ω). ⟹

(k2 - μϵ ω2) Φ = ρ/ϵ [functions of k
→
,ω]

(k2 - μϵ ω2) A
→
= μ J

→

§ For a charge of magnitude ze (where e is the 
elementary charge) moving with velocity v, the 
charge density and current density can be 
expressed as

ρ ( x
→

,t) = ze δ3( x
→

 – v
→

 t )

and J
→

( x
→

,t) = v
→

 ρ( x
→

,t); taking Fourier 
transforms,

ρ(k
→
,ω) =

ze
2π

δ(ω - k
→
•v
→
)

J
→
(k
→
,ω) = v

→
ρ(k

→
,ω)

§ Substituting these charge and current densi-
ties into the wave equation, gives the potentials:

Φ =
ze
2πϵ

δ ω - k
→
• v
→

k2 - μ ϵ ω2

A
→
= μϵ v

→
Φ
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§ These are the potentials.  Now calculate the 

fields, E
→

 = –∇Φ –∂A
→

/∂t  and B
→

 = ∇×A
→

; Fourier 
transformations...

E
→
= i (μϵ ω v

→
- k

→
) Φ [functions of k

→
,ω]

B
→
= i μϵ k

→
× v

→
Φ

Check units:
μϵ ω v = [sec /m]2 [1/sec] [m/sec] = [1 /m];

μϵ v E = [sec /m]2 [m/sec]  [V/m] = [Vs / m2]  

§ Field components
Consider the electric field as a function of
frequency at a point at some perpendicular
distance b from the particle trajectory;

i.e., E
→

(x
→

,t) at  x
→

 = ( 0, b, 0 ).
In frequency space,

E
→
(x
→
,ω) =∫

d3 k

(2π)3/2
E
→
(k
→
,ω) eibky
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§ First we compute x component of E
→

.
The integrand is  i(μϵω v – kx) Φ .
The integrals over kx and kz are straightfor-

ward, and that leaves [x
→

 = (0b0)]

Ex(ω) =
–izeωπ

(2π)5/2
κ2

ω2 
-∞

∞
dky

eibky

 ky2 + κ21/2

where κ2 =  ω2 ( 1 / v 2 – μϵ)  

Use Mathematica to calculate the integral,
(* Using Mathematica *)

IntegrateCos[ 17 *x] Sqrt1 + x2, {x, -Infinity, Infinity}

2 BesselK[0, 17]

Ex(ω) =
–ize

(2π)3/2 ϵ

κ2

ω
K0(κb)
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§ Similarly,

Ey(ω) =
ze

(2π)3/2 ϵ

κ
v
K1(κb)

Ez = 0

Bx = By = 0

Bz(ω) = μϵ v Ey(ω)
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§ Radiated energy
▮ Let δU = the radiated energy when the particle 
traverses distance δxp .
▮ Let Pa  = the power passing through a cylinder 
of radius a around the x axis. (a is the same as b)

By energy conservation,

(
δU
δxp

)rad =
Pa
v

=
1
v

-∞

∞
ρ9 • (E

→
× H

→
) d(area)

=
1
vμ


-∞

∞
( –Ex Bz) dx 2π α
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Change the integration: The integral over dx at 
one instant of time is equal to the integral over 
time at any one position; ∴ change dx = v dt ⟹

(
δU
δxp

)rad =
–2π a

μ

-∞

∞
Ex(t) Bz(t) dt

Convert it to a frequency integral and use
complex fields ⟹

(
δU
δxp

)rad =
– 4π a

μ
Re{ 

0

∞
Ex(ω) Bz

★(ω) dω }
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§ We can make an approximation
For macroscopic Cherenkov radiation, consider  
b  ≫  atomic dimensions and b ≫ wavelengths 
of the Cherenkov light; then

κb ∝
ω b
c

=
2π b

wavelength
≫ 1

Km[κb] ~
π

2 κb
e–κb

(* Verify using Mathematica *)

Series[BesselK[0, x], {x, Infinity, 1}]

Series[BesselK[1, x], {x, Infinity, 1}]

ⅇ-x+O 1
x

2 π

2

1

x
+ O

1

x

3/2

ⅇ-x+O 1
x

2 π

2

1

x
+ O

1

x

3/2
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Thus,

Ex(ω) ⟶
–ize

(2π)3/2 ϵ

κ2

ω
π

2 κ a
e–κa)

=
–ize
4πϵ

κ2

ω
e–κa

κa

Similarly,

Style"Ey(ω) ⟶
ze

4 πϵ

κ

v

e–κa

κa

AND Bz(ω) = μϵ v Ey(ω)", ff

Ey(ω) ⟶
ze
4πϵ

κ
v

e–κa

κa
AND Bz(ω) = μϵ v Ey(ω)

(
δU
δxp

)rad =
– 4π a

μ
Re{ 

0

∞
Ex(ω) Bz

★(ω) dω }
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The rest is just algebra with complex numbers 
(about 2 pages long) ⟹

(
δU
δxp

)rad = 
0

∞
dω Re{-i κ★ κ }

μ
4π

z2e2 ▫

▫ ω ( 1 –
1

β2 μr ϵr
) e–κ+κ

★ a

WHERE β=v/c

If κ is purely imaginary then the formula 
collapses to

(
δU
δxp

)rad = 
0

∞
dω

μ
4π

z2e2 ω ( 1 –
μ0 ϵ0

β2 μϵ (ω)
)

independent of the radius a ;
this is the Cherenkov radiation.
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When is κ purely imaginary?

We defined ...

κ2 = ω2 ( 1/v2 – μϵ )

OR, κ2 =ω2 (
1

v2
–

1

vphase
2

)

κ is purely imaginary if   v  >  vphase ;
i.e., κ is purely imaginary if the particle is moving 
faster than the speed of light in the medium.

11

The energy radiated by the moving charge

(
δU
δxp

)rad =
μ z2 e2

4π

v > c/n (ω)

ω (1 –
c2

v2 n2 (ω)
) dω

This is the Frank–Tamm equation. 
References: Jackson, Section xxx
Wikipedia, " Frank Tamm formula"
(probably written by Jackson, but in Gaussian 
units).
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Example: water for visible light has n(ω) ≈ 1.33.    
Why is Cherenkov light blue?
What is the minimum particle speed to produce 
Cherenkov radiation in water?
fig1
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Cherenkov light forms a cone around the
trajectory of the charged particle.
Calculate the angle of the cone.

Answer: cosθ  = 1
nβ

Note β > 1
n  because v > c

n  = speed of light.
fig2
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Illustration as a shockwave
fig3
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