
ELECTROMAGNETIC WAVES
in various contexts
▮ free space; c = 1

μ0 ϵ0

▮ simple linear materials
dielectrics
vphase = 1

μϵ
 = c

n  ⟹ optics

▮ conductors and plasmas
▮ waveguides

What is the speed of EM waves
in a wave guide?

Maxwell Equations

where there are no
free charges or currents

∇• B
→
= 0 ∇× E

→
= – ∂B

→

∂t

∇• D
→
= 0 ∇× H

→
= ∂D

→

∂t

For simple materials,

D
→

(x
→

,t) = ϵ E
→

(x
→

,t) , constant ϵ

B
→

(x
→

,t) = μ H
→

(x
→

,t) , constant μ

In free space, μ = μ0 and ϵ = ϵ0.

2



The PDEs

E
→

(x
→

,t) and B
→

(x
→

,t) obey the wave equation.
sc1
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Plane wave solutions in a uniform medium 
(including free space); and so far we are not 
specifying any boundaries

E
→

 = E
→

0 cos( k
→
• x
→

 – ωt)

E
→
= E

→
0 cos( k

→
• x
→
– ωt)

∇• D
→
= 0 k

→
•E
→
0 = 0

(∇2– μϵ ∂2
∂t2 ) E

→
= 0 –k2 + μϵ ω2 = 0

ω
k = 1

μϵ = vphase = c
n
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But there is more to it ...
∂B
→

∂t  = – ∇× E
→

 = k
→

 × E
→

0  sin( k
→
• x
→

 – ωt)

∴ B
→

 = k
→
× E

→
0

ω  cos( k
→
• x
→

 – ωt) 

= B
→

0 cos( k
→
• x
→

 – ωt)

B
→

0  =  k
→
× E

→
0

ω  = 1
vphase

 k
0
 × E

→
0
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The wave fronts are planes ⟂ to k
→

 .
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EM waves in an enclosed space
— waveguides

The PDFs are the same, but now we have 
boundary surfaces!
A rectangular waveguide, with dimensions 
δx = a and δy = a/2; waves propagating in 
the z direction. 
Inside is free space; μ = μo and ϵ = ϵo.
The walls are metal, which we’ll
approximate by a perfect conductor.
So on the surfaces,

E
→

tangential = 0   and   Bnormal = 0 ;

Enormal = Σ / ϵ0   and   B
→

tangential = μ0 n0  × K
→

 .
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We are looking for solutions such that the 
fields are ∝ ei (kz – ωt) ;
(using complex functions; the Re Part is 
understood) ;
so ∂

∂z  ⟶ ik  and   ∂
∂t  ⟶ –iω .

Out[!]=

F
→
= z0 Fz + F

→
T where F

→
T = x0 Fx + y0 Fy

∇•D
→
= 0 ik Ez + ∇T•E

→
T = 0

∇•B
→
= 0 ik Bz + ∇T•B

→
T = 0

iω B
→
= ∇×E

→
iωμ H

→
= (z0ik+∇T)×(z0Ez+E

→
T)

–iω D
→
= ∇×H

→
–iωϵ E

→
=

(z0ik+∇T)×(z0Hz+H
→
T)
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Separate the curl equations into
longitudinal and transverse components,

iωμ Hz = z0 • (∇T × E
→
T)

iωμ H
→
T = z0 × ( ik E

→
T – ∇TEz )

and

–iωϵ Ez = z0 • (∇T × H
→
T)

–iωϵ E
→
T = z0 × ( ik H

→
T – ∇THz )

And now solve for E
→

T  and H
→

T  in terms of 
Ez and Hz ...
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iωμ H
→
T = ik z0× E

→
T – z0× ∇TEz

= ik z0 × [ i
ωϵ z

0 × (ik H
→
T – ∇T Hz)] – z0× ∇TEz

(iωμ – ik2
ωϵ } H

→
T = – k

ωϵ ∇THz – z
0× ∇TEz

H
→
T = ik

μϵω2–k2 [ ∇THz – ϵ / μ z0× ∇TEz ]

and similarly

E
→
T = ik

μϵω2–k2 [ ∇TEz – μ / ϵ z0× ∇THz ]

Let     γ2 = μϵω2 – k 2
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TE waves

Ez = 0 and Hz = H0 ψ(x,y) ei (kz-ωt)

Ex = ik
γ2  μ

ϵ  ∂Hz
∂y  and Ey =  -ik

γ2  μ
ϵ  ∂Hz

∂x

The wave equation ⟹

(∇2 – μϵ ∂t2) Hz = 0

(∇T2 + μϵω2 – k2) ψ = 0
-- with boundary conditions --

∂xψ(0,y) = ∂xψ(a,y) = ∂yψ(x,0) = ∂yψ(x,a/2) = 0
-- implies --

ψ(x,y) = cos(mπxa ) cos( nπya/2 ) where m,n ∈ ℤ

and μϵω2–k2 = (mπa )2 +( nπa/2 )
2 ≡ γ2
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★  The cutoff frequency ωmn

Propagation ∝ ei (kz-ωt) requires
that k is real; i.e., k 2 > 0.
Then we must have ω > ωmn where

μϵ ωmn2 = γmn2 = (mπa )2 +( nπa/2 )
2

Note: In the limit a → ∞,  ωmn → 0;
the frequency cutoff goes away.
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★  The speed of EM waves in the waveguide 

vphase = ω
k = cω

ω2 - ωmn2
> c

vgroup = dω
dk = c ω2–ωmn2

ω < c

Note: In the limit a → ∞, 
vphase  and vgroup → c, as we know.
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★  Surface current densities

Consider the case {mn} = {10}.

ψ(x,y) = cos(πx/a) AND γ = π
a

H
→
T = ikH0

γ2 x0 ( –πa )sin(πx/a) e
i (kz-ωt)

H
→
T = ka H0

π x0 sin(πx/a) sin(kz-ωt)

K
→
= n0×H

→
= H0n0×[

x0 ka
π sin(πx/a)sin(kz–ωt)

+ z0 cos(πx/a)cos(kz-ωt) ]
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●   The walls at x = 0 and x = a
have n0  = ±x0 ; there

K
→

 = ± y0  H0 cos(kz-ωt).

●   The walls at y = 0 and y = a/2
have n0  = ± y0 ; there

K
→

 = ± z0 H0 ka
π  sin(πx/a) sin(kz-ωt)

     ∓ x0  H0 cos(πx/a) cos(kz-ωt)
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a = 1; k = 1/a;

fz[x_, z_] = Sin[Pi*x/a]*Sin[k*z];

fx[x_, z_] = Cos[Pi*x/a]*Cos[k*z];

StreamPlot[{fx[x, z], fz[x, z]},

{x, 0, 1}, {z, -4, 4}, FrameLabel → {"x", "z"},

BaseStyle → {ff, 24}, ImageSize → Large]

0.0 0.2 0.4 0.6 0.8 1.0

-4

-2

0

2

4

x

z

16



Waves in a conducting medium

Recall homework problem 8-3.
8-3.  (a)  Derive the wave equation for an electromagnetic wave
in  a  material  with  permittivity  ϵ  and  conductivity  g.  (Ignore
magnetization.)
(b) Solve the equation for a plane wave with frequency ω.
(c) Calculate  the absorption length for a good conductor.
(What is meant by a “good” conductor?)

(A)  ∇× E
→

 = – μ0 ∂H
→

∂t
  and  ∇× H

→
 = g E

→
 + ϵ ∂E

→

∂t
 .

Evaluate  ∇× (∇×E
→

 ) and simplify 

⇒ μ0 ϵ ∂
2 E
→

∂t2  – ∇2E
→

 + μ0 g ∂E
→

∂t
 = 0

(B) A plane wave solution has  E
→

 ∝ e i ( k z-ω t ).
Solution requires k2 = μ0ϵω2 + i μ0gω.

(C) Write k = β + iα
2

 where α is the absorption coefficient.

Absorption length = δ = 1/α.

For a good conductor, δ ≈ 2
μ0 gω  

(same as the “skin depth” defined in Section 5.18).
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