ELECTROMAGNETIC WAVES

in various contexts

I free space; c = $\frac{1}{\sqrt{2}}$ μ_0 ϵ_0

 \blacksquare simple linear materials

dielectrics $v_{\text{phase}} = \frac{1}{\sqrt{\mu \epsilon}} = \frac{c}{n} \implies \text{ optics}$

- conductors and plasmas
- waveguides

What is the speed of EM waves in a wave guide?

Maxwell Equations *2*

where there are no free charges or currents

$$
\overrightarrow{\nabla \cdot \vec{B}} = 0 \overrightarrow{\nabla \times \vec{E}} = -\frac{\partial \vec{B}}{\partial t}
$$
\n
$$
\overrightarrow{\nabla \cdot D} = 0 \overrightarrow{\nabla \times \vec{H}} = \frac{\partial \vec{D}}{\partial t}
$$

For simple materials, \boldsymbol{D} \rightarrow $\left(x\right)$ \rightarrow $,t)=\epsilon E$ \rightarrow $\left(x\right) \$ \rightarrow $,t)$, constant ϵ B \rightarrow $\left(x\right) \$ \rightarrow $,t) = \mu H$ \rightarrow $\left(x\right)$ \rightarrow $,t)$, constant μ

In free space, $\mu = \mu_0$ and $\epsilon = \epsilon_0$.

The PDEs

 \rightarrow

 \rightarrow

 \rightarrow

 \rightarrow

 $\left(x\right) \$,t) and B $\left(x\right)$,t) obey the wave equation. E **sc1** $\nabla \times (\nabla \times \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E}$ $= -\nabla^2 \vec{\epsilon}$ $= -\nabla^2 \vec{\epsilon}$
 $\left(\frac{1}{2} - \nabla \times (-\frac{1}{2})\vec{B}}\right) = -\mu \frac{\partial}{\partial c} (\nabla \times \vec{H})$ $= -\mu \frac{\partial}{\partial t} e^{\frac{-\mu^2}{2t}} = -\mu e^{\frac{-\mu^2}{2t}}$ $\nabla^2 \vec{E} - \mu \in \frac{2^2}{2!} \vec{E} = 0.$

Plane wave solutions in a uniform medium (including free space); and so far we are not specifying any boundaries

E \rightarrow $=$ E \rightarrow $_0$ cos(k \rightarrow • \overline{X} \rightarrow – ωt

3

4

$$
\vec{E} = \vec{E}_0 \cos(\vec{k} \cdot \vec{x} - \omega t)
$$

$$
\nabla \cdot \vec{D} = 0 \qquad \vec{k} \cdot \vec{E}_0 = 0
$$

$$
(\nabla^2 - \mu \epsilon \frac{\partial^2}{\partial t^2}) \vec{E} = 0 \qquad -k^2 + \mu \epsilon \omega^2 = 0
$$

$$
\frac{\omega}{k} = \frac{1}{\sqrt{\mu \epsilon}} = V_{phase} = \frac{c}{n}
$$

But there is more to it ...

$$
\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E} = \vec{k} \times \vec{E}_0 \sin(\vec{k} \cdot \vec{x} - \omega t)
$$

\n
$$
\therefore \vec{B} = \frac{\vec{k} \times \vec{E}_0}{\omega} \cos(\vec{k} \cdot \vec{x} - \omega t)
$$

\n
$$
= \vec{B}_0 \cos(\vec{k} \cdot \vec{x} - \omega t)
$$

\n
$$
\vec{B}_0 = \frac{\vec{k} \times \vec{E}_0}{\omega} = \frac{1}{v_{\text{phase}}} \hat{k} \times \vec{E}_0
$$

5

EM waves in an enclosed space — waveguides

The PDFs are the same, but now we have boundary surfaces!

7

8

A rectangular waveguide, with dimensions δx = a and δy = a/2; waves propagating in the z direction.

Inside is free space; $\mu = \mu_0$ and $\epsilon = \epsilon_0$. The walls are metal, which we'll approximate by a perfect conductor. So on the surfaces,

E \rightarrow $tangential = 0$ and $B_{normal} = 0$; $E_{\text{normal}} = \Sigma / \epsilon_0$ and B \rightarrow tangential $\stackrel{\rightarrow}{=}\mu_0 \hat{n}\times \stackrel{\rightarrow}{K}$. We are looking for solutions such that the fields are $\propto e^{i(\text{kz}-\omega t)}$;

(using complex functions; the Re Part is understood) ;

so $\frac{\partial}{\partial z} \longrightarrow i\mathbf{k}$ and $\frac{\partial}{\partial t} \longrightarrow -i\omega$.

Separate the curl equations into longitudinal and transverse components, *9*

10

iωμ H_z = $\hat{z} \cdot (\nabla_{T} \times \vec{E})$ T) iωμ H \rightarrow $_{\rm T}$ = $\hat{\rm z}$ × (ik $\stackrel{\rightarrow}{\rm E}$ $_{\rm T}$ – $\nabla_{\rm T}\rm{E}_{z}$) and

 $-i\omega \epsilon E_z = \hat{z} \cdot (\nabla_\text{T} \times \vec{H})$ T) $-i\omega\epsilon$ E \rightarrow $_{\rm T}$ = $\hat{\mathbf{z}} \times (i\mathbf{k} \overrightarrow{\mathbf{H}})$ $_{\rm T}$ – $\nabla_{\rm T}\rm{H}_{z}$) And now solve for E \rightarrow $_T$ and H \rightarrow $_T$ in terms of E_z and H_z ...

iωμ H \rightarrow $_{\rm T}$ = ik $\hat{z} \times \vec{E}$ \rightarrow $T - \hat{z} \times \nabla_T E_z$ $=$ ik $\hat{z} \times$ $\left[\frac{1}{\omega \epsilon} \hat{z} \times (\text{i} \text{k H})\right]$ $(T - \nabla_T H_z)$] – $\hat{z} \times \nabla_T E_z$ $(i\omega\mu - \frac{ik^2}{\omega \epsilon}) \vec{H}$ $\vec{H}_{\rm T} = -\frac{k}{\omega \epsilon} \nabla_{\rm T} H_{\rm z} - \hat{\bf z} \times \nabla_{\rm T} E_{\rm z}$ H $\vec{H}_{\text{T}} = \frac{\text{i} \text{k}}{(\mu \epsilon \omega^2 - \text{k}^2)}$ [$\nabla_{\text{T}} H_z - \sqrt{\epsilon / \mu}$ $\hat{z} \times \nabla_{\text{T}} E_z$] and similarly E $\vec{E}_T = \frac{ik}{(\mu \epsilon \omega^2 - k^2)} [\nabla_T E_z - \sqrt{\mu/\epsilon} \hat{z} \times \nabla_T H_z]$ Let $\gamma^2 = \mu \epsilon \omega^2 - k^2$

TE waves

11

12

 $E_z = 0$ and $H_z = H_0 \psi(\mathbf{x}, \mathbf{y}) e^{i(kz-\omega t)}$ $E_{X} = \frac{ik}{\gamma^2}$ μ ϵ $\partial H_{\rm z}$ $\frac{\partial H_z}{\partial y}$ and E_y = $\frac{-\mathrm{i} \mathrm{k}}{\gamma^2}$ μ ϵ $\partial H_{\rm z}$ ∂x The wave equation \implies $(\nabla^2 - \mu \epsilon \partial_t^2) H_z = 0$ $(\nabla_{\rm T}^2 + \mu \epsilon \omega^2 - k^2) \psi = 0$ -- with boundary conditions -- $\partial_x \psi(0, y) = \partial_x \psi(a, y) = \partial_y \psi(x, 0) = \partial_y \psi(x, a/2) = 0$ -- implies -- $\psi(x,y) = \cos(\frac{m\pi x}{a}) \cos(\frac{n\pi y}{a/2})$ where $m,n \in \mathbb{Z}$ and $\mu \epsilon \omega^2 - k^2 = (\frac{m\pi}{a})^2 + (\frac{n\pi}{a/2})^2 \equiv \gamma^2$

 \star The cutoff frequency ω_{mn} Propagation $\propto e^{i(\text{kz}-\omega t)}$ requires that k is real; i.e., k^2 > 0. Then we must have $\omega > \omega_{mn}$ where

 $\mu \epsilon \omega_{mn}^2 = \gamma_{mn}^2 = (\frac{m\pi}{a})^2 + (\frac{n\pi}{a/2})^2$

Note: In the limit a $\rightarrow \infty$, $\omega_{mn} \rightarrow 0$; the frequency cutoff goes away.

 \star The speed of EM waves in the waveguide

13

$$
v_{phase} = \frac{\omega}{k} = \frac{c\omega}{\sqrt{\omega^2 - \omega_{mn}^2}} > c
$$

$$
v_{group} = \frac{d\omega}{dk} = \frac{c\sqrt{\omega^2 - \omega_{mn}^2}}{\omega} < c
$$

Note: In the limit $a \rightarrow \infty$, v_{phase} and $v_{group} \rightarrow c$, as we know. ★ Surface current densities *14*Consider the case ${mn} = {10}$. $\psi(\mathbf{x}, \mathbf{y}) = \cos(\pi \mathbf{x}/\mathbf{a})$ AND $\gamma = \frac{\pi}{\mathbf{a}}$ H $\vec{H}_{\text{T}} = \frac{\text{i} \text{k} \text{H}_0}{\gamma^2} \hat{x} (\frac{-\pi}{a}) \sin(\pi x/a) e^{\text{i} (kz - \omega t)}$ H $\vec{H}_{\text{T}} = \frac{\text{ka } H_0}{\pi} \hat{x} \sin(\pi x/a) \sin(\text{kz}-\omega t)$ K \rightarrow $= \hat{n} \times \hat{H}$ \rightarrow $=$ H₀ \hat{n} ×[$\hat{\mathbf{x}} \frac{\mathbf{k}\mathbf{a}}{\pi}$ $\frac{\pi}{\pi}$ sin(π x/a)sin(kz–ωt) + \hat{z} cos($\pi x/a$)cos(kz- ωt)]

 \bullet The walls at $x = 0$ and $x = a$ have \hat{n} \hat{a} $=\pm \hat{X}$ $\hat{\bm{\nu}}$; there $\it K$ \rightarrow $= \pm \hat{y} H_0 \cos(kz-\omega t).$

• The walls at $y = 0$ and $y = a/2$ have \hat{n} \hat{a} $= \pm \hat{y}$ $\hat{\mathbf{c}}$; there $\it K$ \rightarrow $= \pm \hat{z} H_0 \frac{k a}{\pi} \sin(\pi x/a) \sin(kz-\omega t)$ $\mp \hat{x}$ H₀ cos(π x/a) cos(kz- ωt)

16

15

a = 1; k = 1 / a; fz[x_, z_] = Sin[Pi * x / a] * Sin[k * z]; fx[x_, z_] = Cos[Pi * x / a] * Cos[k * z]; StreamPlot[{fx[x, z], fz[x, z]}, {x, 0, 1}, {z, -4, 4}, FrameLabel → {"x", "z"}, BaseStyle → {ff, 24}, ImageSize → Large]

Waves in a conducting medium

Recall homework problem 8-3.

8-3. (a) Derive the wave equation for an electromagnetic wave in a material with permittivity ϵ and conductivity g. (Ignore magnetization.)

17

(b) Solve the equation for a plane wave with frequency ω .

(c) Calculate the absorption length for a good conductor.

(What is meant by a "good" conductor?)

