ELECTROMAGNETIC WAVES

in various contexts

• free space; $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$

■ simple linear materials

dielectrics $v_{\text{phase}} = \frac{1}{\sqrt{\mu\epsilon}} = \frac{c}{n} \Longrightarrow \text{optics}$

- \blacksquare conductors and plasmas
- waveguides

What is the speed of EM waves in a wave guide?

Maxwell Equations

where there are no free charges or currents

$\nabla \bullet \stackrel{\rightarrow}{\mathrm{B}} = 0$	$\nabla \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}$
$\nabla \cdot \stackrel{\rightarrow}{\mathrm{D}} = 0$	$\nabla \times \overrightarrow{H} = \frac{\overrightarrow{\partial D}}{\partial t}$

For simple materials, $\vec{D}(\vec{x},t) = \epsilon \vec{E}(\vec{x},t)$, constant ϵ $\vec{B}(\vec{x},t) = \mu \vec{H}(\vec{x},t)$, constant μ

In free space, $\mu = \mu_0$ and $\epsilon = \epsilon_0$.

The PDEs

 $\vec{E}(\vec{x},t) \text{ and } \vec{B}(\vec{x},t) \text{ obey the wave equation.}$ sc1 $\nabla \times (\nabla \times \vec{E}) = \nabla (\nabla_{i}\vec{E}) - \nabla^{2}\vec{E}$ $= -\nabla^{2}\vec{e}$ $\Rightarrow = \nabla \times (-\frac{\partial \vec{B}}{\partial t}) = -\mu \frac{\partial}{\partial t} (\nabla \times \vec{H})$ $= -\mu \frac{\partial}{\partial t} e \frac{\partial \vec{E}}{\partial t} = -\mu e \frac{\partial^{2} \vec{E}}{\partial t^{2}}$ $\therefore \nabla^{2}\vec{E} - \mu e \frac{\partial^{2}}{\partial t^{2}}\vec{E} = 0.$

Plane wave solutions in a uniform medium (including free space); and so far we are not specifying any boundaries

 $\vec{E} = \vec{E}_0 \cos(\vec{k} \cdot \vec{x} - \omega t)$

$\vec{E} = \vec{E}_0 \cos($	$\vec{\mathbf{k}} \cdot \vec{\mathbf{x}} - \omega \mathbf{t}$
$\nabla \cdot \vec{\mathbf{D}} = 0$	$\vec{k} \cdot \vec{E}_0 = 0$
$(\nabla^2 - \mu \epsilon \frac{\partial^2}{\partial t^2}) \vec{E} = 0$	$-k^2 + \mu\epsilon \omega^2 = 0$
$\frac{\omega}{k} = \frac{1}{\sqrt{\mu\epsilon}} =$	$v_{\text{phase}} = \frac{c}{n}$

But there is more to it ...

$$\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E} = \vec{k} \times \vec{E}_0 \sin(\vec{k} \cdot \vec{x} - \omega t)$$

$$\therefore \vec{B} = \frac{\vec{k} \times \vec{E}_0}{\omega} \cos(\vec{k} \cdot \vec{x} - \omega t)$$

$$= \vec{B}_0 \cos(\vec{k} \cdot \vec{x} - \omega t)$$

$$\vec{B}_0 = \frac{\vec{k} \times \vec{E}_0}{\omega} = \frac{1}{v_{\text{phase}}} \hat{k} \times \vec{E}_0$$

5

EM waves in an enclosed space – waveguides

The PDFs are the same, but now we have boundary surfaces!

A rectangular waveguide, with dimensions $\delta x = a$ and $\delta y = a/2$; waves propagating in the z direction.

Inside is free space; $\mu = \mu_o$ and $\epsilon = \epsilon_o$. The walls are metal, which we'll approximate by a perfect conductor. So on the surfaces,

 $\vec{E}_{\text{tangential}} = 0 \text{ and } B_{\text{normal}} = 0;$ $E_{\text{normal}} = \Sigma/\epsilon_0 \text{ and } \vec{B}_{\text{tangential}} = \mu_0 \hat{n} \times \vec{K}.$ We are looking for solutions such that the fields are $\propto e^{i(\text{kz} - \omega \text{t})}$;

(using complex functions; the Re Part is understood);

so $\frac{\partial}{\partial z} \longrightarrow ik$ and $\frac{\partial}{\partial t} \longrightarrow -i\omega$.

	$\vec{F} = \hat{z} F_z + \vec{F}_T$ where $\vec{F}_T = \hat{x} F_x + \hat{y} F_y$	
	$\nabla \bullet \stackrel{\rightarrow}{\mathbf{D}} = 0$	$ik E_z + \nabla_T \cdot \vec{E}_T = 0$
Out[=]=	$\nabla \bullet \stackrel{\rightarrow}{\mathbf{B}} = 0$	$ik B_{z} + \nabla_{T} \bullet \vec{B}_{T} = 0$
out-j-	$i\omega \vec{B} = \nabla \times \vec{E}$	$i\omega\mu \vec{H} = (\hat{z}ik + \nabla_T) \times (\hat{z}E_z + \vec{E}_T)$
	$-i\omega \vec{D} = \nabla \times \vec{H}$	$-i\omega\epsilon \vec{E} =$
		$(\hat{z}ik+\nabla_T)\times(\hat{z}H_z+\overset{\rightarrow}{H_T})$

Separate the curl equations into longitudinal and transverse components,

 $i\omega\mu H_{z} = \hat{z} \cdot (\nabla_{T} \times \vec{E}_{T})$ $i\omega\mu \vec{H}_{T} = \hat{z} \times (ik \vec{E}_{T} - \nabla_{T}E_{z})$ and

 $-i\omega\epsilon E_{z} = \hat{z} \cdot (\nabla_{T} \times \vec{H}_{T})$ $-i\omega\epsilon \vec{E}_{T} = \hat{z} \times (ik \vec{H}_{T} - \nabla_{T}H_{z})$

And now solve for E_T and H_T in terms of E_z and H_z ...

 $i\omega\mu \overrightarrow{H}_{T} = ik \ \hat{z} \times \overrightarrow{E}_{T} - \hat{z} \times \nabla_{T}E_{z}$ $= ik \ \hat{z} \times \left[\begin{array}{c} \frac{i}{\omega\epsilon} \ \hat{z} \times (ik \ \overrightarrow{H}_{T} - \nabla_{T} \ H_{z}) \right] - \hat{z} \times \nabla_{T}E_{z}$ $(i\omega\mu - \frac{ik^{2}}{\omega\epsilon}) \ \overrightarrow{H}_{T} = - \frac{k}{\omega\epsilon} \ \nabla_{T}H_{z} - \hat{z} \times \nabla_{T}E_{z}$ $\overrightarrow{H}_{T} = \frac{ik}{(\mu\epsilon\omega^{2}-k^{2})} \left[\nabla_{T}H_{z} - \sqrt{\epsilon/\mu} \ \hat{z} \times \nabla_{T}E_{z} \right]$ and similarly $\overrightarrow{E}_{T} = \frac{ik}{(\mu\epsilon\omega^{2}-k^{2})} \left[\nabla_{T}E_{z} - \sqrt{\mu/\epsilon} \ \hat{z} \times \nabla_{T}H_{z} \right]$ $Let \ \gamma^{2} = \mu\epsilon\omega^{2} - k^{2}$

TE waves

 $E_{z} = 0 \text{ and } H_{z} = H_{0} \psi(\mathbf{x}, \mathbf{y}) \ e^{i(\mathbf{k}\mathbf{z}-\omega\mathbf{t})}$ $E_{x} = \frac{i\mathbf{k}}{\gamma^{2}} \sqrt{\frac{\mu}{\epsilon}} \frac{\partial H_{z}}{\partial y} \text{ and } E_{y} = \frac{-i\mathbf{k}}{\gamma^{2}} \sqrt{\frac{\mu}{\epsilon}} \frac{\partial H_{z}}{\partial x}$ The wave equation \Longrightarrow $(\nabla^{2} - \mu\epsilon \ \partial_{t}^{2}) \ H_{z} = 0$ $(\nabla^{2}_{T} + \mu\epsilon\omega^{2} - \mathbf{k}^{2}) \ \psi = 0$ -- with boundary conditions -- $\partial_{x}\psi(0, \mathbf{y}) = \partial_{x}\psi(\mathbf{a}, \mathbf{y}) = \partial_{y}\psi(\mathbf{x}, 0) = \partial_{y}\psi(\mathbf{x}, \mathbf{a}/2) = 0$ -- implies -- $\psi(\mathbf{x}, \mathbf{y}) = \cos(\frac{m\pi x}{a}) \cos(\frac{n\pi y}{a/2}) \text{ where } \mathbf{m}, \mathbf{n} \in \mathbb{Z}$ and $\mu\epsilon\omega^{2} - \mathbf{k}^{2} = (\frac{m\pi}{a})^{2} + (\frac{n\pi}{a/2})^{2} \equiv \gamma^{2}$

★ The cutoff frequency ω_{mn} Propagation $\propto e^{i(kz-\omega t)}$ requires that k is real; i.e., $k^2 > 0$. Then we must have $\omega > \omega_{mn}$ where

 $\mu \epsilon \,\omega_{\rm mn}^2 = \gamma_{\rm mn}^2 = (\frac{{\rm m}\pi}{{\rm a}})^2 + (\frac{{\rm n}\pi}{{\rm a}/2})^2$

Note: In the limit $a \to \infty$, $\omega_{mn} \to 0$; the frequency cutoff goes away.

★ The speed of EM waves in the waveguide

$$\mathbf{v}_{\text{phase}} = \frac{\omega}{\mathbf{k}} = \frac{c\omega}{\sqrt{\omega^2 - \omega_{\text{mn}}^2}} > \mathbf{c}$$
$$\mathbf{v}_{\text{group}} = \frac{d\omega}{d\mathbf{k}} = \frac{c\sqrt{\omega^2 - \omega_{\text{mn}}^2}}{\omega} < \mathbf{c}$$

Note: In the limit $a \to \infty$, v_{phase} and $v_{\text{group}} \to c$, as we know. ★ Surface current densities Consider the case {mn} = {10}. $\psi(x,y) = \cos(\pi x/a)$ AND $\gamma = \frac{\pi}{a}$ $\vec{H}_T = \frac{ikH_0}{\gamma^2} \hat{x}(\frac{-\pi}{a})\sin(\pi x/a) e^{i(kz-\omega t)}$ $\vec{H}_T = \frac{kaH_0}{\pi} \hat{x} \sin(\pi x/a) \sin(kz-\omega t)$ $\vec{K} = \hat{n} \times \vec{H} = H_0 \hat{n} \times [$ $\hat{x} = \hat{n} \times \vec{H} = H_0 \hat{n} \times [$ $\hat{x} = \hat{n} \sin(\pi x/a)\sin(kz-\omega t)$ $+ \hat{z} \cos(\pi x/a)\cos(kz-\omega t)$] • The walls at x = 0 and x = a have $\hat{n} = \pm \hat{x}$; there $\vec{K} = \pm \hat{y} H_0 \cos(\text{kz-}\omega t)$.

• The walls at y = 0 and y = a/2 have $\hat{n} = \pm \hat{y}$; there $\vec{K} = \pm \hat{z} H_0 \frac{ka}{\pi} \sin(\pi x/a) \sin(kz - \omega t)$ $\mp \hat{x} H_0 \cos(\pi x/a) \cos(kz - \omega t)$ 16

15

a = 1; k = 1/a; fz[x_, z_] = Sin[Pi * x / a] * Sin[k * z]; fx[x_, z_] = Cos[Pi * x / a] * Cos[k * z]; StreamPlot[{fx[x, z], fz[x, z]}, {x, 0, 1}, {z, -4, 4}, FrameLabel → {"x", "z"}, BaseStyle → {ff, 24}, ImageSize → Large]

Waves in a conducting medium

Recall homework problem 8-3.

8-3. (a) Derive the wave equation for an electromagnetic wave in a material with permittivity ϵ and conductivity g. (Ignore magnetization.)

(b) Solve the equation for a plane wave with frequency $\omega.$

(c) Calculate the absorption length for a good conductor. (What is meant by a "good" conductor?)

(A) $\nabla \times \vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t}$ and $\nabla \times \vec{H} = g \vec{E} + \epsilon \frac{\partial \vec{E}}{\partial t}$. Evaluate $\nabla \times (\nabla \times \vec{E})$ and simplify $\Rightarrow \mu_0 \epsilon \frac{\partial^2 \vec{E}}{\partial t^2} - \nabla^2 \vec{E} + \mu_0 g \frac{\partial \vec{E}}{\partial t} = 0$ (B) A plane wave solution has $\vec{E} \propto e^{i(kz-\omega t)}$. Solution requires $k^2 = \mu_0 \epsilon \omega^2 + i \mu_0 g \omega$. (C) Write $k = \beta + \frac{i\alpha}{2}$ where α is the absorption coefficient. Absorption length $= \delta = 1/\alpha$. For a good conductor, $\delta \approx \sqrt{\frac{2}{\mu_0 g \omega}}$

(same as the "skin depth" defined in Section 5.18).