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The total cross section da/dQ 2 for the production of a muon pair of invariant mass 
Q2 via the Drell-Yan mechanism and the Feynman x F differential cross section 
d2a/dQ2dXF are calculated in QCD retaining all terms up to order as(Q2). The calcula- 
tions are performed using dimensional regularisation of the intermediary infrared and 
collinear singularities, but we present our results in a form independent of such details. 
The corrections to both these cross sections coming from radiative corrections to the 
lowest-order qff annihilation diagram are found to be large at present values of Q2 and S 
when the cross section is expressed in terms of patton densities derived from leptoproduc- 
tion, for all Drell-Yan processes of practical interest. Numerical calculations ar.e presented 
which show, for any reasonable parametrisation of the parton densities, that the neglect 
of higher-order terms in as(Q2) is not justifiable. The quark-gluon diagrams on the other 
hand give small corrections in this order and are only important for PP scattering. 

1. Introduction 

In  a p reced ing  pape r  [1 ] we have  cons ide red  deep  inelast ic  l e p t o p r o d u c t i o n  and  

the  Drel l -Yan process  in  q u a n t u m  c h r o m o d y n a m i c s  [2 ,3] .  We de f ined  q u a r k  and  

* This work is supported in part through funds provided by the US Department of Energy 
(DOE) under contract EY-76-C-02-3069. 
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gluon densities beyond the leading order in QCD and in terms of  these scale-depen- 
dent pat ton densities [4,5] we calculated correction terms to the leading-order 
results. These correction terms are suppressed by one power of  In Q2 relative to the 
dominant terms in the parton cross sections and hence are negligible in the asymp- 
tot ic  region. At the subasymptot ic  energies of  present day experiments they play an 
important  role. 

The higher-order corrections in the Drell-Yan process [6,7] 

hadron + hadron ~/a+/J - + any th ing ,  

are particularly striking because they turn out  to be large at present energies. The 
modifications of  the Drell-Yan formula (expressed in terms o f  scale-dependent par- 
ton densities derived from measurements in deep inelastic leptoproduct ion)  are so 
large that the retention of  only the first-order correction terms in as(Q 2) is unjusti- 
fied. We stress that this is n o t  an artifact of  our particular definition of  parton den- 
sities beyond the leading order but  rather a result which we will show to be true in 
any expression for the Drell-Yan cross section written in terms of  pat ton distribu- 
tion functions measured in deep inelastic lepton-hadron scattering. The numerically 
important  terms in our result are independent of  details of  how the distribution 
functions are defined from lepton-hadron scattering. 

In this paper we study and extend our previous results on the Drell-Yan process. 
We consider all the contr ibut ions of  order %,  that is bo th  those invoMng an initial 
quark and antiquark as well as those with an initial quark (antiquark) and gluon. 
Using the technique of dimensional regularisation [8,9] of the infrared and collinear 
singularities encountered in the massless quark-gluon theory we derive in detail the 
0 (%)  corrections to the total  cross section * and to the cross-section differential in 
Feynman XF or equivalently in the massive photon rapidity YR- These latter cross 
sections are of special interest because the experimental  data are normally presented 
in this form. We thus calculate cross sections which are directly comparable with 

experimental results. 
In our t reatment  of  the quark and gluon densities **, which we feel to be most 

convenient for many reasons, large corrections appear in the q~ annihilation piece 
of  the Drell-Yan cross section both  in proton-nucleon and antiproton-nucleon colli- 
sions. By way of  contrast,  for r6asonable choices of  the gluon densities the quark- 
gluon corrections are always small even for PP scattering or other processes where 
the leading term is proport ional  to small sea densities. These results run contrary to 
the naive expectat ion that the lowest-order Drell-Yan formula is a good approxima- 
tion at least for 7rP and PP scattering (i.e., valence-valence processes). Such intuition 

* Corrections to the total cross section have also been considered in refs. [10,21]. 
** This caveat is only necessary because we could choose to have small corrections in the Drell- 

Yan process and large corrections to the parton-model expression for F 2. Nothing would be 
gained by such a shuffling of the large correction terms and it would correspond less to the 
normal operational procedure. Full details of our definition of parton densities are given in 
sect. 2. 
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is thus positively misleading in the order in oq(Q 2) in which we calculate. 
The algorithm of perturbative QCD [12] and in particular its application to the 

Drell-Yan process [13] are now well-understood. All the mass-singularity logarithms 
encountered in quark-gluon perturbation theory may be factored from the pertur- 
bative partonic cross section and consistently absorbed into the parton distribution 
functions [14,15], which thereby acquire a calculable dependence on the scale size 
of the interaction, determined in the case of muon production by the invariant mass 
Q2 of the muon pair and the intermediate massive photon. We argue that renormali- 
sation group improved lowest-order perturbation theory from which the mass singu- 
larities have been exorcised according to the above procedure is not adequate to 
describe the Drell-Yan process at present values of Q2. A reliable treatment of the 
Drell-Yan process will require the inclusion of higher-order terms and hence depends 
crucially on the factorisability of both leading and subleading mass singularity loga- 
rithms * 

The structure of this paper is as follows. In sect. 2 we remind the reader of our 
definition of the parton densities beyond the leading order in terms of the deep 
inelastic structure function ~r 2. In sect. 3 we discuss the advantages of the dimen- 
sional scheme for the regularisation of the infrared and collinear divergences and 
calculate the deep inelastic structure function 5r2 and the Drell-Yan cross section in 
order oq. In sect. 4 we derive the corrections to the total Drell-Yan cross section 
do/dQ 2 and discuss the reason why the corrections are large. In sect. 5 we derive the 
results for cross-section differential in Feynman xv. A discussion of the numerical 
size of these corrections in relation to the available experimental data is given in 
sect. 6. 

2. Parton densities beyond the leading order 

In this section we establish our notation and remind the reader of our definition 
of the patton densities beyond the leading order. Let us consider first deep inelastic 
leptoproduction. Q2 is the absolute value ofq  2, where q is the momentum carried 
by the current and x and t are defined by: 

Q2 
x - 2P" q ' t = In Q2/g2,  (1) 

Pis the four-momentum of the target and/l is an arbitrary scale of mass. We also 
define the quantities ~Yi(x, Q2) related to the normal structure functions by ** 

( 9rl, ~r2, 9r3) = (2F1, F2 Ix, F3).  (2) 

We have defined the script ~i because they have a rrtore immediate relationship with 

*See refs. [14,16]. 
** See for example, ref. [17]. 
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the densities of partons. For example, in the naive parton model the electroproduc- 
tion structure functions are given by 

CJl(X) = ~ 2 ( x ) :  ~ e~qol(x),  (3) 1 
where qot(X) is the "bare" distribution of the/ th  type of quark or antiquark inside 
the hadron and sum on l runs over all flavours of quarks and antiquarks. 

Our definition of the parton densities beyond the leading order in QCD is the 
requirement that, in terms of the "renormalised" scale-dependent parton densities 
qt(x, t) the form of eq. (3) is preserved for the structure function cY z with no cor- 
rections proportional to eq(Q2): 

F2 (x, t) 
5r2(x, t) - - -  = ~ e~ql(x, t) . (4) x 1 

Calculating the leptoproduction structure functions ~ri(x, t) i n perturbation theory 
we find, (G0(Y) is the "bare" gluon distribution function): 

I dY~ { /~a ' I 6 (1 -y  ) " ~ t P q q ( ~ ) + ° t s f q , i ( ~ ) l q o l ( Y )  t) --/" + oa 

In the above formula the index 1 runs over quarks and antiquarks of any flavour 
and the numbers ai are the appropriate coupling factors, In particular in electropro- 
duction the a~ are given by the squares of the quark (or antiquark) charges. Eq. (4) 
implies that to first order in a s the relationship between bare and renormalised 
quark densities is given by: 

+ [ tpq  + aJG, 2 OoCV)}. 

Defining the moments of the quark and gluon distributions, 

1 

q~)(t)  = f dx x n - l q k ( x  , t ) ,  
o 

(6) 

1 

G(n)(t) = f dx x n-1 G(x, t) , 
o 

(7) 
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we may rewrite eq. (6) as, 

I Ot's : 4 (n) rii2] I'2~ 1"" (n) f~)21G(o n) q(n)= l+.~t_ ,,/qq+OAsf~q, q~2+ ~,,,,o+o<~ 

where 

(8) 

tt 4(3 j) + 4 (n) 1 1 1 n 2 
~.),qq -I- n (n + 1) 2 ~ 1^ (n) ?/ " = , ~J'q6 = ~ n(n  + 1)(n + 2) (9) j=l 

The generalisation of  eq. (8) to include the effects of  all leading logarithms may 
be written as follows: 

q(n) = (1 + ~s~qn,))q~ n) + a s f ~ ' , ) G  (n) , (10) 

where ~" and G are related to qo and G o by the matrix equation 

= g o  , (11) exp f (o)  da 

and Tn(a) is the standard anomalous dimension matrix given in lowest order by 

I 4  ̂(n) 1 ~orqq 0 1 (qn~ 
(12) 

In terms of  these densities the electroproduction structure function 9"1, for exam- 
ple, may be written 

2 dY {/'~ Ifq,l(~)-fq,2(;~] ql(Y,t) 

+ (__ d),~(t) ~ ,~ Z . (13) 

In this equation a s has been replaced by the running coupling constant as(t ) . 
There are many advantages to this definition of  the quark densities. One of the 

most important is that it appears to be the most natural choice since a large fraction 
of  the information on patton distribution functions inside hadrons comes from 
measurements o fF2  in electroproduction and (anti-) neutrino experiments. There 
are also technical advantages; the corrections to the lowest-order results are inde- 
pendent o f  gauge and the method of  regularisation of  the infrared divergences. For 
example, in eq. (13) the correction terms to the leading-order results are given by [ 18], 
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_ % 4  
0~s [fq, 2(Z) -- fq, l(Z)] - ~ ~ 2z ,  (14) 

a s 1 
as If G, 2 (z)--fG, I(Z)] = ~ ~ 4Z (1 -- Z). (15) 

These corrections are independent of the method of regularisation of the divergences, 
because in this order in perturbation theory they require no regularisation (i.e., they 
are finite). Since they correspond to on-shell matrix elements they are manifestly 
gauge invariant. Thus, whilst any single function f i s ,  in general, convention depen- 
dent, the differences of the functions f are well-defined. 

Another requirement of parton densities is that they should obey the conserva- 
tion of charge: 

1 

f dx[qt(x, t) -q l (x ,  t)] = Or, 
o 

(16) 

where v t is the valence value of the lth quark in the hadron. Using our definition of 
parton densities this condition is automatically satisfied beyond the leading order. 
This can be seen by considering the Adler sum rule [19] which, neglecting powers 
ofafa/Q 2, may be written 

dx [F~P(x ' t) - F~n(x, t)] = Ao.  
x 

o 

(17) 

A 0 is a constant dependent only on the flavour content of the theory. The Adler 
sum rule is true for any combination of vector and axial vector currents. Therefore, 
in order that the Adler sum rule be free from scale-breaking corrections we must 
have 

1 

4,,,(1) = f dz Pqq(Z) = 0 3/qq 
o 

(18) 

1 

fqO) = f dz fq,2(z ) = 0 (19) 72 
0 

These conditions will be explicitly verified in our calculations in sect. 3. Using these 
two conditions it is clear from eq. (6) that if the "bare" quark densities satisfy eq. 
(16), then this condition will be maintained by our renormalised parton densities. 

There still remains a considerable degree of ambiguity in the definition of the 
gluons. However, since we have no probes which couple directly to the gluon field, 
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the exact definition of the gluon field beyond the leading order is irrelevant for cal- 
culations performed only up to order as. All reaction cross sections initiated by 
gluons start in order as,. A sensible requirement to demand of the ghion field is the 
conservation of momentum: 

1 

f x q,(x, t) + a(x, t)] = 1 .  (20) 
I 0 

Since the quark distribution function has been completely defined this condition 
fixes the second moment of the gluon distribution (f is  the number of flavors): 

G(:)(t) = [1 - 2f as(t) f~2,) z] d (2)(/') -- (O~s(t) 2(2{) ~ tT} 2)(t). (21) 

This condition ensures that eq. (20) is free from corrections of order as(t ) (if it is 
satisfied by the bare distributions). A possible complete definition of the gluon field 
would be to extend eq. (21) to all moments of the gluon distribution. In order 
Ots2(Q 2) the exact definition of the gluon density will be important, but for the order 
as calculation which we present here it is immaterial. 

The absorption of the f ' s  into the distribution functions only changes the deriva- 
tives with respect to t in next order in as(t) since 

d d d 
dt - [3(as(t)) das(t) ~ b a2s(t) d%(t-----) " (22) 

The quark and gluon densities therefore continue to satisfy the standard evolution 
equations in order as(t) [5]: 

dql(x , t) as(t)./dy IN q (y) (Y) )1 dt 2n 7 q ql(F, t) + eqG G(y, l , (23) 
x 

dG(x, t)_ as(t ) dy x ~ qt(Y, t) + PGG G(y, t . 
dt 2n 7 q l x 

(24) 

We now move on to consider the implications of these definitions for the Drell- 
Yan process. In the naive parton model the total cross section for the production of 
a lepton pair of mass Q2 in the collision of two hadrons is given by 

d°OV 4ha2 dxl dx2 [ ~ e y q o f  (Xl)~lo}l(x2)+(1 ~ 2)] 6/1~ --X1X2 ~ . = 2 Ill r (25) 
dQ 2 9SQ 2 f ~1 x2 

In this formula x/S is the invariant mass of the incoming hadron system, r = Q2/S, 
the flavour indexfsums over quarks alone and the superscripts [1 ] and [2] label 
the incoming hadrons. If  we assume that such a formula is true in zeroth order in 
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o~ s we may investigate the modifications caused by the order as processes: 

G + q(~) ~ ~" + q(~) ,  (26) 

q + ~ -+ 3'* + G ,  (27) 

together with the virtual gluon corrections to the lowest-order process q + ~ ~ 7. 
Omitting all sums and other obvious factors, the perturbative corrections to the 
Drell-Yan process may be cast in the form: 

d o D V = j  dXl f dx2 ([q[ol](Xl) Ul[02l(x2)+(1 ~2) _ _  
dQ2 o Xl o x2 

+ [ (q [ l l (x l )  + ~-[11 (Xz)) G[021(x2) + (1 ~" 2)] 

× 0 ( 1 - - Z ) [ ~ P D ~ ( z ) t + a s f G , D v ( Z ) ] } ,  (28) 

where z has the meaning, 

7" _ Q2 
z - - -  , (29) 

X1X 2 S 

and s is the incoming four-momentum squared of  the partonic subprocess. Suppres- 
sing similar coupling factors we may also write the perturbative correction to the 
~r 2 structure function due to the interaction of  the virtual photon with a quark as: 

f -y, ( 1 - z ) + O ( 1 - z )  Pqq(Z) t+asfq, 2(z ) qo(Y) 
o 

where z -- x/y. Eq. (30) also defines our quark densities beyond the leading order: 

q(x, t) = ~2(x, O.  (31) 

It  is known that  the functions in eqs. (28) and (30) are in fact equal [13]: 

Pq~Y(z) = Pqq(Z) , (32) 

egY(g)  = PqG(Z) . (33) 

Expressing eq. (28) in terms of our scale-dependent parton densities we obtain (to 
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order as) 

d°OV { 
dQ 2 = f  dxl dx2 [qlll(xl,t)~tlZl(x2, t)+(l`02)] 

X 1 X 2 

× [~(1 - z)  + as( t )  0(1 - z ) ( fq ,  o v ( z )  - 2fq ,~(z) ) ]  

+ [(qIll(xl, t)+~tIll(xl, t))GIZl(x2, t)+ (1 ,02)] 

(1 - z)(fG, oy(z) -- fG, 2(Z))] } , (34) × las(t) 0 

where as has been renormalisation-group improved to as(t). Restoring all factors 
we find the Drell-Yan formula including corrections up to order as(QZ) is given by 

doDY-47rOt2 f d Q 2  95Q2 0 dX---~lX1 o ~ dX2 x2 { [~f e}q~ll(xl't) UT[f2l(x2't)+(1 `02)] 

X [(| -- Z) -t- as(t) 0(1 -- Z)(fq,DY(g ) -- 2fq,2(2)) ] (35) 

t) G[21 (x2, t) + (1 `0 2)] as(t) 0(1 --z)(fG,OY(Z ) --fG,2(Z))} . [~r[21 ] (Xl, + 

We therefore see that, at least as far as the cross section do/dQ 2 is concerned, the 
problem reduces to the identification of the two terms (fq,DV -- 2fq,2) and 
(]G, DY - - fc ,  2). These correction differences are obviously independent of the 
infrared singularities and the regularisation prescription. For the correction to the 
differential rapidity cross section we will need a slight generalisation of these correc- 
tion terms in which the Drell-Yan cross section is not integrated over angle. Full 
details of this latter problem will be given in sect. 5. 

3. Corrections to leptoproduction and the Drell-Yan process 

To fulfil our stated aim of defining the parton densities beyond the leading order 
in terms of the structure function 9r2 we must calculate current-parton deep inelas- 
tic scattering cross sections up to order as to identify the terms fq, 2 (z) and fG, 2(z). 
The former quantity is calculated from the graphs shown in fig. 1 with an incoming 
quark and the latter from the graphs of fig. 2 with an incoming gluon. 

In calculating these partonic cross sections we encounter divergences. We may 
regulate these divergences in any way we choose since, in our method of definition 
of the parton densities, any regularisation dependence will cancel in the physical 
corrections which are given by differences of the functions f. Thus we could intro- 
duce parton masses, or continue the external parton legs slightly off-shell as we did 
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\ 

(a I (b) 

\ 

(c) (d) 
Fig. 1. Diagrams giving the corrections of order a s to the point-like quark-current cross sections. 
The incoming current is denoted by a wavy line, the gluon by a spiralling line and the quarks by 
a continuous line. In calculating (a) the quark wave-function renormalization must be taken into 
account in order a s. (a) + (b): the virtual-gluon corrections 3"* + q -, q; (c) + (d): the real-gluon 
corrections 3'* + q --' q + G. 

< 
< 

Fig. 2. Diagrams of order gs contributing to gluon-current scattering. 

in our previous paper [1 ]. In this paper we choose to regulate the divergences by 
performing the calculation of  real and virtual gluon corrections in a number of  
space-time dimensions different from four. This method has several technical advan- 
tages. Using dimensional regularisation the gauge invariance of the theory is assured 
at all stages. The phase-space integrals are considerably simplified because of  the 
presence of  only massless partons. 

The absorbtive part of  the forward photon-parton scattering amplitude may be 

expanded in the usual structure function expansion: 

uu + qUqV 
WtW= (-g --~--) Wl +(p t~ p ' q  )(pV_ P "q v] 

- - - ~ - " q  J •2, (36) 

where p is the incoming parton momentum and q is the momentum carried by the 
photon  current. The structure functions WI and Wz are in general functions of  the 
variable z and Q2, where Q2 is the absolute value of  current momentum q2 and z is 

Q: 
z - (37) 

2p "q " 
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In analogy to the relations for virtual photon-hadron scattering we have that, 

cj:z(z, Q2) - P" q W2 , 
z 

(38) 

~rl(Z, Q2) = 2W 1 . (39) 

It is convenient to project out two different linear combinations of  the patton 
structure functions by saturating the virtual-photon indices with the tensors _gUy 

1 and pUpV. From eq. (36) we obtain in n dimensions (e = 2 - in).  

-gUVWuv = (1 e) Or2(z, Q2) _ 3 - (~ - -  e)(Or2 (z, Q2) _ Or1 (z, Q2) ) ,  (40) 

Q2 
pUpV Wu v = ~z 2 ( ~r2(z, Q2) _ 7:1 (z, Q2)) . (41) 

The second of  these combinations is proportional to the longitudinal cross section. 
The results for the longitudinal cross section require no regularisation and are well- 
known [18]. They have been given in our notation in sect. 2. Extraction of  the 
structure function 9"2 requires only that we calculate the quantity in eq. (40) from 
the relevant graphs. 

We consider first of  all the graphs with incoming quarks. The lowest-order graph 
fig. 1 a gives the result 

cY 2 = 6 (1 - z ) .  (42) 

This result defines the normalisation of  our partonic cross section. The calculation 
of  the cross section in the :~ext order requires the evaluation of  the real-gluon emis- 
sion graphs figs. 1 c,d and the interference o f  the lowest-order graph, fig. I a, with 
the virtual graph, fig. lb. In order that the coupling constant remain dimensionless 
in an arbitrary number of  dimensions we make the replacement g --> g(/l) c, where/J 
is an arbitrary parameter with the dimensions of  mass. 

The real gluon emission graphs describe the reaction 

3'*(q) + q(P) -+ q(P')  + G(k) ,  (43) 

where the symbols in brackets are the momenta carried by the fields. In n dimen- 
sions the invariant matrix element squared for this reaction is given by 

IMv*q~qGI 2 = 4~ s 4(1 - e)(/a2) c (1 -- e) + st ' 

where as =g2/47r, s = (p  + q)Z, t = (p  - k)  2 and u = (p p,)2. In this expression the 
virtual-photon indices have been summed over by contraction with _gUy and all 
manipulations performed in n space-time dimensions [9]. 

The two-particle phase space (PS) in n dimensions for the production of  two on- 
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shell massless objects may be written 

P ~ F  dnp, y n ~  = j ( 2 - ~ 2 1  (27r) n 6(n)(p + q - p - k) 6+(p '2) 6+(k2) • (45) 

In the parton-virtual photon c.m.s, with incoming momenta directed along the 
(n - 1)th direction we may write 

k = ([kL ..... lkl cos 0 ) ,  (46) 

where the dots indicate n - 2 unspecified momenta. In this frame we may perform 
n - 2 angular integrations so that eq. (45) reads 

,,o 1 

1 (47r)e f dlkllkI~-2ef d(cos O)(1-cos20)-eg(s-Zx/slkl).(47) 
PS = 4---~ i-O-----e ) o -1 

Performing the I k I integration using the delta function and changing the variable of 
angular integration y = ~(1 + cos O) we have finally for the centre of mass two-par- 
ticle phase space 

1 

p s =  1 (4rr~e 1 f d y ( y ( 1 - y ) ) - e .  (48) 
8rr \s]  P(1 -- e) b 

In this frame we may write 

Q2(1 - z) _ Q 2  ( _ a 2  
s - , t = 1 - y ) ,  u = . y ,  

z z z 

so that we obtain the contribution to 5r2 [real as 

721real = ~ 4[47r/a2, e 1 ( 1 3~, Q2 ] r ( l : e )  3z+z'(1 -z)- '  f dyO,(1 -y))-~ 
o 

(49) 

I ( i - z  l--z),)  2zy 1} X + (1 - e) + • (50) 
- y  1, (1 - z)(1 - y )  

In the above equation we have inserted the contribution from the longitudinal cross 
section according to eqs. (14) and (40). The integrations over the angular variable y 
which would diverge in the limit y ~ 1 (the region of  forward gluon emission) are 
finite for small negative values of  e. Performing the integral over y we have 

% 4[47r~u2~ e P(1 - e) [ 
5r2(z'Q2)lroa~ - 2rt 3!~ Q2 ] Y-(1-- ~e) [3z + ze(1-- z)-e 

I. l l + z 2  3 1 1 1__~1} X + 3 - z . . . .  -~e . (51) 
e "i ---z 21 - z  
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In this expression we have dropped terms of  order e if they do not ultimately lead 
to a finite contribution. At this stage it is useful to make the singularities in e mani- 
fest by defining distributions having finite integrals as e -+ 0 using the identity 

1 (5(1 - z ) +  1 e(ln(1 - z )~  ze(1 _ z ) - l - e  ~. - - C  (1 - z)~ \ 1 - z ]+ 

In z 
- -  -l- 0 ( 5 2 ) .  ( 52 )  + e l  - z  

The distributions denoted by the small cross (+) are defined as usual. For example, 
the distribution 1/(1 - z)+ is defined such that 

h(z) ~ h ( z ) - h ( 1 )  
f ~ ( 1  - z ) + - f ~  1 - z  (53) 
0 0 

Further details on the distributions and on their moments are given in an appendix 
at the end of  this paper. Expanding the other terms in eq. (51) in the normal way: 

Z 
+ O(e 2) (54) z C ( 1 - z )  - e = l  + 5 1 n l _ z  

we finally obtain the contribution of  real-gluon emission graphs, figs. 1 c,d, to ~r2: 

~ ~ 4 ~ 4 ~ 2 ~  ~ r ( 1 - e )  [ 2  1 l + z  2 3 
9r2(z, Q2) [tea I 

27r3~ 02 ] F ( 1 - 2 e ) [ e  z6( l"  + - - 8 ( 1  
e (1 - z ) +  25 

To complete the calculation of  ~r 2 we must now calculate the interference of  
the virtual-gluon correction fig. lb  with the lowest-order graph fig. la and the asso- 
ciated external quark leg wave-function renormalisation. Since our method of  regu- 
larisation is explicitly gauge invariant we may calculate in any gauge. It is convenient 
to calculate in the Landau gauge in which the vertex correction and the quark self- 
energy are individually ultraviolet finite. In fact in this gauge, using dimensional 
regularisation, the quark self-energy vanishes in order % for massless quarks [9]. 
Quark wave-function renormalisation is therefore not needed, and in this gauge the 
problem reduces to the calculation of  the order % corrections to the photon vertex. 
Our result is 

FU(q2)=TU{l+~n4(4nl't2'~eF(l+e)p2(1-e)F-2~ ~ _q2 ] P~ ~-2ee) [_-~ 

After use of  the expansion, 

r(1 + e) r(1 - e) = 1 + e 2 17r2 + 0 ( 6 4 )  , (57) 
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we may write the contribution to 72 from figs. la,b as 

{ + %  4~4rr/.t2~ e P ( 1 - e )  -[... ! 
72(z' O2)lvirtual = ~(1-- Z) 1 -'JT~ 3 t--Qf-J ~ l - - ~ e )  

Adding the real and virtual contributions to 72 we obtain 

1% ,., , ,/4a'U2] e F(1 e) 
72(z' QZ)=a(l - z)--e S "qqtZ)[--O~--} ~1 2 ~) 

+._4 E (~n~11 z, ~ 3 
2n3  ( l + z  2) - z  / + - 2 ( I - z ) +  

+ 3 + 2 z - ( 9 + - ~ n  2) 8 ( 1 _ z ) ] .  

l + z  2 
In z 

1 - z  

3- 8--~1} (58) c 

(59) 

The double pole in e has cancelled between real and virtual graphs as it must. 
This is the familiar cancellation of soft singularities. The coefficient of the single 
pole in 1/e and hence of the logarithm of Q2/la2 is just the normal anomalous dimen- 
sion function [5] 

4( l + z 2  ) 
Pqq(Z) = ~ ( i - ~ Z ) ~  + + 36(I - z) . (60) 

Eq. (59) allows us to identify the final object of this calculation which is the func- 
tion fq,2 defined in sect. 2: 

asfq, 2(z)=~-~ ~ ( l + z  2) - - l n z + 3 + 2 z  
+ 2 ( l - z ) +  1 - z  

- - ] ~ + ~ 8 ( 1 - z )  - - -+3 'E-- ln4n - (61) 
-- Z)+ C 

The occurrence of the Euler-Mascheroni constant 7E and the In 4n in these expres- 
sions is an artifact of dimensional regularisation and they will not be present in the 
physical predictions of the theory. The moments offq,2(z) defined as 

1 
fq(n) _ /" dz zn-lfq,2(z ) (62)  

0 

are easily derived using the table of Mellin transforms given in the appendix to this 
paper: 

n l 1 
%f(qn') = as 4 1 2 1 - 2 2 j  2 n(n + 1) l + n  z 

2n3 = kj=l I j=l 

~1  3 2 9 ~ ( l  )1 ~63, +3 "= j + - - + - - 2 n  n + l  2+3' - +TE - l n 4 n  • 



G. Altarelli et al. / Drell- Yan process in QCD 475 

7 ~  ) is the anomalous dimension [3] 

n 

j : l  " 

Two remarks should be made about eq. (63). The first is that the first moment 
f~ql) vanishes: 

(,) 
,2 = 0 .  ( 6 4 )  

This is a consequence of the Adler sum rule. As explained in sect. 2, the importance 
of this fact for our definition of patton densities is that the number of valence 
quarks inside the hadron is maintained beyond the leading order. 

The second remark is that discarding the pole in 1/e in eq. (63) we directly 
obtain the result of Bardeen et al. [20], for the coefficient function of the quark 
operator in the light-cone expansion. Their calculation took into account the renor- 
malisation of the operator matrix element beyond the leading order necessary in 
the minimal subtraction scheme. 

We now proceed to extract the quantity fc ,  z(Z). The relevant Feynman graphs 
are shown in fig. 2. With the experience gained in the calculation offq,2(z ) the 
labour is small. The matrix element, with the virtual-photon indices contracted with 
_gUU, may be obtained by crossing from eq. (44), after suitable modification of the 
colour sums and averages 

'MT"G-'qq'2 = 4as-~(1-  e)(P2)e { (1 -- e ) ( t  + t )  + 2q2S-ut 2e}. (65) 

The final particle phase space is the same as before and so, using eq. (49) for the 
partonic variables s, t and u, we have for the gluon contribution to ~r2: 

1/47rp2~e 1 {6z(1 - z) 
~-T:(z'Q:)=~2\Q: ] r(1-e) 

1 

+ -~ze(1 - z) -e f dy(y(1 _ y ) ) - e  
0 

× [ ( 1 - e ) ( l + l l y  2 ) - 2 z ( 1 - z ) ( l + l l y ) ]  } • (66) 

In the above equation we have inserted the appropriate combination of the longitu- 
dinal cross section, eq. (15), as required by eq. (40) and dropped terms of order e if 
they do not ultimately lead to finite contributions. Performing the angular integra- 
tion in y we have 

l _ 1 as , ,  , , [47rp2'~ e F ( 1 - e )  
e2)---,  rqotZ t- ) F6 
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as 1 F 2 1 - z +  )] 
+-~-~L(z +(1 - z ) 2 ) l n  ~ 6z(1 - z  . (67) 

The function PqG(Z) is given as usual by 

PqG(Z) = ~[Z1 2 + (1 -- Z) 21 • (68) 

From eq. (67) we can identify the quantity fG, 2(Z): 

OCs l ( r  2 1 - z  
as fG'2(Z)=~2[  tz +(1- -z )Z) ln  z + 6 z ( 1 - - z )  

The expression for fc ,  2 in eq. (67) is appropriate for electroproduction with one 
quark flavour of unit charge. From our definition offG, 2 in eq. (5) is clear that 

1 fG,2 is defined from the quantity ~9" 2 so that it gives the gluon correction for either 
a quark or an antiquark. The gluon correction to. 9" 2 always contains the correction 
for a quark and an antiquark because the gluon dissociates into a quark-antiquark 
pair. To each quark plus antiquark with unit coupling there corresponds a gluon 
correction equal to 20q f a, 2 (z). 

Using the table of moments in the appendix we may take moments offc,  2(z) 

( n 
An) _ %  I 4 4 + I n 2 + n + 2  ~ 1 
J ~ , 2 - ~ , ~  n + l  n + 2  n---2--n(n+l)(n+2)]=t 

+ 77d (-- 1+ 7E-- In 47r)} , (70) 

where ~/(qnd is the usual anomalous dimension function: 

_ n 2 + n + 2  
3"(~ n(n + l)(n + 2)" (71) 

This result is again compatible With the results of ref. [20] * 
Thus armed with the functions fq, 2(z) and fG, 2(z) we may now proceed to cal- 

culate the corresponding quantities for the Drell-Yan process. There are two types 
of contributions in this order; the modifications of the lowest-order quark-antiquark 
annihilation process shown in fig. 3 and the contributions involving an incoming 
gluon shown in fig. 4. Since we are not interested in correlations between the plane 
of the ~+~t- pair and the incoming scattering plane we sum over the polarisations of 

* In the sense defined above forfq, 2. Our conventions for the gluons correspond in the language 
of the light-cone expansion to a sfightly different definition than normal for the gluon opera- 
tors. 
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(a) (b) 

(c )  (d) 
Fig. 3. Diagrams giving corrections of order as to the basic quark-antiquark annihilation graph 
of the Drell-Yan process, in calculating (a) the quark wave-function renormalization must be 
taken into account in order %. (a) + (b): the virtual-gluon corrections q + 9-"  3'*; (c) + (d): the 
real-gluon corrections q + ~ G + ~/ . 

Fig. 4. Diagrams of order gs contributing to the process q(g) + G ~ q(~) + 3' • 

the virtual pho ton  by  cont rac t ion  of  the massive pho ton  by  indices with the tensor  
_g.up. 

We consider first o f  all the lowest-order quark-ant iquark  annihi la t ion diagram 

fig. 3a: 

q(P) + q (P ' )  ~ 7*(q)  • 

The matr ix  e lement  for this process (in n dimensions)  is given in our  normal isa t ion 

by  (s = (p  + p,)2) 

1 - e s ( 7 2 )  
I g q q ~ * [ 2 -  27V- 2-g" 

In this equa t ion  the factor 1 I N  comes from the average over the N initial  colours 
(N = 3). The phase-space factor for the product ion  of  a pho ton  of  mass Q2 is 

PS = 2_~ 8 (1 - z ) ,  (73) 
s 

where the variable z, here, and throughout  our  t rea tment  of  the Drell-Yan process 

has the meaning: 

z = Q 2 / s .  (74) 
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Combining eqs. (72) and (73) we have the results for the lowest-order quark-anti- 
quark annihilation diagram: 

daq~(Z, Q2) 
dQ 2 - 6(1 - z ) .  (75) 

This equation defines the normalisation of our partonic Drell-Yan cross section used 
throughout the rest of  this paper. It corresponds to multiplying all invariant matrix 
elements by a factor 2N/(1 - e). 

The contribution of the real-gluon emission diagrams is easily evaluated. The 
matrix element for the process 

q(p) + ~(p ' )  ~ G(k) + 7*(q ) ,  (76) 

is given by 

IMQ~.~*GI2=4as-Z~Z-7.~ (/fl) e ( 1 - - e )  + - - 2 e  . (77) 
Ut 

In n dimensions we may write the phase space for the production of a massive pho- 
ton as 

1 

_ 1 (4n) e dlkl lkl  1-2e ; d(cos 0)(1 - c o s 2 0 )  - e  
PS 4n ['(1 - e )  o - ]  

× 6(s - Q2 _ 2x/~lk 0 • (78) 

Performing the integration over the gluon momentum I kl and making the charge of 
variablesy = l(1 + cos 0) we obtain 

l(47r]e8nkQZ] F ( l l  e)Z,(1 z),_2e__' PS = - - ; dy(y(1 _ y ) ) - ¢ .  (79) 
o 

In terms of  the variables Q2, y and z, the invariants s, t and u are given in the c.m.s. 
by: 

Q2 Q2,(1 Q2 
s = -  , t = - z)(1 - y ) ,  u = - - -  (1 - z )  y .  (80) 

Z Z Z 

Substituting these values into the matrix element eq. (77), we obtain for the 
real q~ contribution to the Drell-Yan cross section 

1 doq~(z, Q2)l _(x s 4/4n/.t2~e I z)l-2ez~ f d y y - e ( 1  _y)-C 
dQ 2 Ireal 2n 3 ~ Q2 ] P(1 - e) (1 - 

0 

- 2z 2e~.  ( 8 1 )  

J 
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The contribution of  the virtual graphs, figs. 3a,b, can be obtained from the value 
of  the Vertex correction given in eq. (56). Note that in the Drell-Yan process 
q2 = Q2 > 0 (whereas in deep inelastic scattering q2 = _Q2 < 0). We therefore 
obtain an extra factor of  ( - 1 )  e relative to the deep inelastic scattering case. Expand- 
ing this factor up to terms of  order e 2 we obtain for the real part: 

a s 4 (4rr/a2~ e P(1 + e) lP2(1 - e) 
Re [,U(Q2) = ,,[u 1 + ~ -  ~ \ 02 ] P(1 - 2e) 

I 2 3 8+ 21} (82) X e2 e 

This difference of  7r 2 between the Drell-Yan process and deep inelastic scattering 
will turn out to be of  considerable numerical importance and we will discuss it 
further in sect. 4. Suffice it to say at this point that the coefficient o f  7r 2 is control- 
led by the magnitude of  the double-pole terms in e (the soft divergence) ~'. Eq. (82) 
allows us to write for the virtual q~ annihilation contribution to the Drell-Yan pro- 
cess 

{ +%4_/47r/~2~ e P ( 1 - e )  
d°qq(z 'Q2) = 6 ( I - z )  1 21r3~ Q2 ] 'P-O--~-e) 

dQ 2 virtual 

x[ 
Integrating eq. (81) over y and adding it to the virtual contribution eq. (83) we 
would obtain the contribution of  the q~ annihilation graphs to the total cross sec- 
tion. This will be done in sect. 4. Since we are also interested in the angular distribu- 
tion o f  the massive photon we will leave eqs. (81) and (83) as the final result of  the 
q~ calculation in this section. 

Lastly we must calculate the contribution of  the quark gluon scattering graphs 
shown in fig. 4. As before the matrix element for the process 

q + G -+ q + 7" (84) 

is given by the matrix element for the time-reversed process which we haye already 
given in eq. (44). After suitable modifications of  the sums and averages over colours 
we obtain 

]MqG~*q 12 = 4~s ~ - ' ~  (1 - -  e) + - -  st + 2e . (85) 

The indices of  the massive virtual photon have been contracted with the tensor 
_guy. Introducing the dimensional phase-space equation (79)and making the substitu. 

* The coefficient of the soft singularity logarithms is the same in any on-mass-shell regulariza- 
tion scheme. 
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tions eq. (80) we obtain for the quark-gluon Drell-Yan cross section 

doqc,(z, Q2)_ as 1 [4n/~21e 1 { 1 
dQ 2 2rr 2 \ 02 ] F(I-~ i) (1 - z ) l - 2ez  e f dy{y(l _y ) ) - e  

0 

7] 1 2zy 
+ ( l - z ) ( 1  y))- 1} .  X [ ( 1 - e ) ( ( l _ z ) ( l _ y  ) 1 -  y._] ) 

As usual we have dropped terms of order e where they are innocuous. 

(86) 

4. The Drell-Yan cross section d6/dQ 2 

In this section we complete the calculation of the first-order corrections to the 
total Drell-Yan cross section; the corresponding results at fixed xv are obtained in 
sect. 5. We first use the results of sect. 3 to derive the final expression for doqg/dO 2. 
Integrating eq. (81) over the angular variable y we obtain: 

doqt/(z, 0 2) _ as 4 (4"/rp2] e P(1 - e) 

d0 2 tea, 3 0 2 ! b-d --27) 

Using distribution identities as in eq. (52) we can make the terms singular as e -+ 0 
manifest, yielding, 

doq~(z, Q2)l _ a  s 414rq.12~ e r(1 ---e) ! V 2 - z )  2 l + z  2 
dQ 2 real 2 r r3 \  Q2 ] P ( 1 - 2 e ) L e  26(1 e ( 1 - z ) +  

+ 4 ( 1 + z  2) 1 1 L z )  + - 2  l_-~ln_ z J .  (88) 

Adding the virtual graph contribution we obtain: 

2 as ,~ , ,[47rp2\ e p ( 1  - e)  doq~(Z, Q2)_ ~ (1 - z) - 1--qq{Z) t - ~ J  

2-~3 - 2 J - z  In z + (~7r2-8)5(1 - z  ' (89) 
+ 

where Pqq(Z) has its usual meaning (eq. (60)). This is the manifestation in this order 
of the universality of mass singularities. Comparison of eq. (89) with eq. (28) allows 
us to extract fq, Dy(z): 

&sfq,DY(Z) - - ~ ' ~  4(1 +z 2) + -2  ~ In z + ( ~ r r 2 - 8 ) 5 ( I - z )  
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+ k ( l _ z ) - + } 6 ( 1 - z )  - + T E - l n 4 7 r  . (90) 

By subtrac t ing  2fq,2(z ) (eq. (61))  we obta in  tile quant i ty  relevant for the correc- 
t ions to the Drell-Yan formula *: 

0~s(fq, DY -- 2fq, 2) 

_ %  4[ 3 6 - 4 z + 2 ( l + z 2 ) ( ~ )  )1 (91) 2~ 5 (l -~)+ + +(1 +~2)~(1 - ~  . 

The moments of this function are given by: 
4 r n ,~,  k ~,. . ( , , )  _~,.(n),_0~s [ - /=~1 l 3 4 ~ 1 1 

t~okjq, D Y . l  q, Z, - " ~  5 3 - + 4  - ~  - 
] n n + 1 k=l k/=l j 

n 2 ] 
- + -  + I + }Tr 2 ( 9 2 )  

n ( n + l )  / ( n + l )  2 

Performing the integral  over y in eq. (86) we obta in  the per turbat ive  correct ions  
to dOqG/dQ2: 

dOqG(Z ' Q2) 1 %  n , ,/4¢rU2'~ e I '(1 e) 

+ 2~r 2 z2 + (1 - z) 2) In (1 - z) z 3 2 - -  z 3 2  + z +  . 

By compar ison  with eq. (28)  we may extract  ¢q,DY(Z): 

~ s f G ' D Y ( Z )  - ~  z 2 + ( 1 -  z )2 ) In  (1" --2")2Z ~Z3 2 +Z+~3  

(93) 

( '  )1 - - + T E - l n 4 ~ r  , + (Z 2 + (1 - - Z )  2) ff 

Taking the difference be tween  this quan t i ty  and eq. (69) we obta in  

O~S 1 
0~s(fG,DY( Z ) - f G , 2 ( Z ) ) = ~ - ~  2,[( -72 + (1 Z) 2) ln(1 --Z)+29-Z 2 - 5Z+ 3] . 

The moments  o f  this quan t i ty  are 

n 
% 1 [  2 2 n Z + n + 2  ~ 1 

~(f~n')DY-ff f?2)=~2 (n+ l )  2 (n+2) z n(n+ l ) (n+2)/=, 7 

(94) 

(95) 

* This equation corrects eq. (93) of ref. [1]. This is the content of the erratum to ref. [1]. 
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13 1 7 + 3 - ]  
+ ~n~ (96) 2 n + 2  n + l  

This completes our calculation of  the corrections to the Drell-Yan total cross sec- 
tion. 

In order to make a preliminary estimate of  the size of  these corrections we plot 
the moments o f  these corrective terms in fig. 5. We have plot ted the quantities in 
curly brackets in eqs. (92) and (96), so that in the case of  the q~ terms the scale of  
the corrections is given by multiplying the quantity plot ted by %/27:. Taking a 

z 
notat ional  value of as/27r ~ T 6  appropriate for Q2 ~ 100 GeV 2 we see that for this 
value ofc~ s the q~ corrections are by no means small compared to 1. The gluon cor- 
rections (expanded scale) are negative and small. Whilst it is true that in the evalua- 
t ion of  the cross section the gluon corrections will be convoluted with a substantial 
gluon distribution tending to increase their effect, for reasonable parametrisations 

40 

30 

20 

I0 

0 
-o.2 
-0.4 

-o.6 
-o.8 
-I.o 

2 . (n) _ _ f ( n )  . 

i l l# I /  

2 4 6 8 I0 
I I I I I 

. (n) _ f ( n )  
2 T/-(fG,DY G,2 ) 

(ex ponded scole) 

[2 14 n 
I I 

Fig. 5. Plot of the moments of the Drell-Yan correction terms 2n(f(n,~)y - 2fq(n,~) and 
2n(fq(n~)¥ - f~)2)asa  function of n. Note that the scale of the ordinate has been multiplied 
by ten for negative values. Also plotted is the function ~(2 ln2n + n 2) which gives a large contri- 
bution to 2n(fq(n~)y - 2f(,n~). 
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of  the gluon distribution they will remain small [1]. We therefore concentrate our 
at tention on the quark-antiquark terms. 

The terms in eq. (91) which are giving large corrections are tire last two. Would it 
have been possible to predict the form of  these terms before doing the calculation? 
The answer is that in large measure we could have. Consider first of  all the logarith- 
mic distribution 2(1 + z2)(ln(l - z) / ( l  - z))+. The calculation of  the logarithmic 
terms in the real gluon emission graphs for the leptoprodnct ion and the Drell-Yan 
process can be represented, in a slightly schematic notation,  as 

~r2 ~(5(1 - - z ) +  Ocs 4 1 + z 2 / m a x  dt (97) 
27r3 l Z z  7 '  

train 

0¢ s 4 1 + 2 2 / m a x  dl 
doq~ ~ 6 (1 - z) + 2 J --  (98) 
dQ 2 ~ 3  - i ~ - z 3  t ' 

train 

where the integration over the final two-particle phase space is represented as an 
integral over the four-momentum transfer squared. The value o f  tmi n in eqs. (97) 
and (98) is common to both integrals and dependent on the particular method 
chosen to regulate the collinear divergences. The values of  tmax on the other hand 
depend on the particular process and are, for leptoproduct ion 

Q2 Q2 
tmax - , Z - , (99) 

Z 2p • q 

whereas for the Drell-Yan process we have 

Q2(1 - - z )  Q2 
tmax - , z = - - .  (100) 

z S 

Performing the integration we obtain, in this extended leading logarithmic approxi- 
mation, 

OLs(fq, Dy -- 2fq,2) ~ --~ 4 2  1+ 22 -i---7z ln(l  - z ) .  (101) 

The above derivation is valid for values o f z  < 1. In order to see how the expres- 
sion in eq. (101) becomes the distribution (1 + z2)(ln(1 - z)/(1 - z))+ (a result con- 
nected with the cancellation of  the soft singularities) we have to consider the also 
virtual graphs. 

The other large term in eq. (91) is the delta function at z = 1 with coefficient 
4 2 

1 + g~ . As already noted in sect. 3, a term of  magnitude 77 2 in this expression comes 
from the mismatch of  the space-like values of  q2 appropriate for electroproduct ion 
and the time-like values appropriate for lepton-pair production.  The coefficient of  
this factor o f  7r 2 is determined by the strength of  the soft singularity. Details of  how 
it arose in our method of  regularisation have been given in sect. 3. In fig. 5 we have 
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also plotted the quantity 4(2 ln2n + 7/2) which is the approximate form of the mo- 
ments of those correction terms for which we have given a simple explanation. The 
presence of both these terms is related to the existence of soft gluon singularities in 
the theory. 

5. The differential cross section d2o/dQ 2 dx F 

The data for the Drell-Yan process come from the observation of muon pairs 
over a limited solid angle and are often presented in the form of a cross-section dif- 
ferential in Feynman XF, where XF is related to the momentum of the muon pair 
along the beam direction in the hadron-hadron c.m.s.: 

2qz s 
xr ~ /S '  S (102) 

X I X  2 

For the lowest-order process q + ~ ~ 3'*, the z component of the virtual-photon 
momentum equals the z component of the momentum of the annihilating partons: 

~X/~ 5 (qz - qz °) = 6(x ,  - x 2  - XF). (103) 

The differential cross section in the naive patton model is hence given by (A = 
4rra2/9S) 

Q2d2o_  A ~ 2 Ill 0 -I21 0 
da2dXF x O + x  0 [ e/qo.r (xl)qo¢ ( x 2 ) + ( 1 ~ 2 ) ] .  (104) 

The parton densities are evaluated at the points 

x O =  1 5(XF + X~F + 4 0 ,  

x o = ~/x0 = i(--XF + X~X~+ 4 0 .  (105) 

When higher-order corrections are included this simple form is no longer main- 
tained. Partons initially having momenta x I (x2) greater than x° (x  °) can degrade 
their longitudinal momentum by the emission of partons. The z component of the 
virtual photon momentum is given in this case by 

i s  - Q2 Xl - x2 s + Q2~ Xl + x2  
qz = [ - - ~ s  cos 0 + - -  - - ,  , (106) 

xl  + x2 2x/s : 2 xx/~-~lx2 

so that xv  is fixed in terms of the parton c.m. scattering angle 0 to be: 

l z , + z t  ~ X / ~ 6 ( q z - q ° ) : 6  Xl + X 2 ) - - ~ c o s O + ( x , - x 2 ) - - - f - - x  . 007)  

Inserting this delta function into the sum of eqs. (81) and (83) we obtain an expres- 
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sion for the q~ contribution to the cross section: 

Q2d2o _ A f dXl dxz 
dQ2dxv X 1 X 2 

+ a  s 4/4rq.t2] e 1 
- - - - H ( x I , x 2 )  1 "~ 5~'--~'-] F ( I - e )  

2 ) as 4{4rrp2'~ e 0 ( 1 - z )  
x -7 ~-3-+rr2-8e 80-z)8(x,-x2-xv)+~-~--Q-~-] r(1-O 

1 
X f dy 6 [(x 1 + x2)(1 - z ) y + x l z - x  2 -xv]  ze(1 -z)-2eY-e(1 _y)-e  

0 
,w, 

where for (relative) compactness of notation we have set: 

H(X1, X2) = ~ e~ to./of [~ [1](Xl) q[o} ] (x2) + (1 ~ 2)] . (109) 
f 

Directing our attention temporarily to the real graph contributions in eq. (108) we 
use the identities 

( l - z )  - l - e -  1 6 ( 1 - Z ) +  1 e ( l n ( 1 - z ) l  
e ( l - z ) +  \ 1 - z  /+' 

1 
y - J - ~  - 8 0') 

e Y+ \ Y l+ 

to write 

(i  lo)  

ze( l_z)_2ey_e( l_y)_eI ( l_e) ( l_z ) (_2+l l_y+y)  + 1  2 ( ~ - 7 -  1) (1 1 1  -Y + 1 ) 1  

{(_; 3) 
= + 8(1  - 0 ( 8 ( 1  - y )  + 8 0 , ) )  

+ 8 (1 - z  ) I -  l ( ( l ~ +  + --~+ ) + ln y + ( ln(1-Y ) 1 -  y \---i-f y ]+ + ~ 
y \ y /+A 

+ (6 ( 1 - y )  + 6 (y)) ( -z)+ + 36(1-z )  + ( 1 - z ) ( l + 2 1 n ( 1 - z ) - l n  z) 

- 2 Z l _ z  \ ~ ] + ]  ( l -z)+ -y)+ 
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Performing the integral over y and adding in the virtual terms we obtain *: 

dQZdxFQ2d2° -Af ~---c'x, dx-~2x 2 H ( X l ' X 2 ) (  6 ( 1 - z )  6 ( x l  x2-xF)+~zrr 4 (-4~2zteo \ {d / p( l l -e )  

X [(27r 2 -  8) 8 (1 - z )  6 (x I - x  2 --Xv) + 0 (1 --z) [6 (x I -- zx2 --XF) +6 (zx 1 --X2 --XF)] 

~_ 1[ l+Z2 + ) ( --+lnz 4z(ln(1--z)] ]7 × L-~\(I-~ ~(1-z1 +(l-z) 1+21n(l-z)-lnz-2z 1-z ~--Y-7-z1+lJ 

O(1-z)O(y*)O(1-y*t[_2(l_z1+ 1+z2( 1 ~)]?} 
+ (-1 Z z-Z~I +x2) (1 - z )+  (1 -y*)+  + , (1121 

where 

y * = ( x 2 - x z ° ) ( x z + x ° )  1 _ y ,  = (x , -x° ) (x ,+x°2 )  (113t 
x2(1 - z ) (x l  +x2) '  Xl(1 -z ) (x l  +xz)" 

The interchange y* ++ (1 - y * )  occurs when the replacements (XF +~ --XF), (Xl ~+ Xz) 
are made. Evaluating the integrals constrained by delta functions we have: 

QZd2o 
A 

dQ2dxF 

o 1 ~ lxO]-i 

 xoT-/, x= (114) 

+ % 4 _ ? d X l ?  dx 2 H ( x , , x 2 )  I _ 2 ( l _ z )  + l+zZ ( 1 
27r3JOx1 -X-l-l xa 0 X2 (1 7zl--TXl+X2) (1--zl+ -O--Y*)+ 

where 

5 - '  + ln~-g+TE-- ln47r  i --z)+ + 3 6 ( 1 - z )  

* When multiplied by a delta function 8 (1 - z), the x F fixing delta function 
[(x 1 + x2)(1 - z) y + XlZ - x 2 - XF] reduces to 6(x I - x 2 - XF) times the integral in dy 

which is zero over the distributions 

1 , 

y+' ( l - y ) + '  \ y ]+ 

and --~n 2 over 

In y ln(1 - y) 
_ _  - 1 - _ _  

1 - y  y 
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]n z + 4 z ( l n ( l - z ) i  } (115) +(1-z ) ( l+21n( l - z )  l n z ) - 2 z ~  i i - ~  I+ " 

The final step in the calculation o f /he  q~ correction is to express the product o f  
distribution functions H(xl, x z) in terms of /~(x l ,  x2, t) containing quark densities 
defined through ~2, eq. (30). After renormalisation-group improvement of  the % 
to % ( 0  we obtain 

Q2d2o _1 - 0 /)[1 + ~(t)4_(4_.2 + 1) 1 
d Q 2 d x F - A { ~ [  H(xl'xO' 2 .  :3 3 

+ Ots(t ) dxl H(x 1, x°, t) g + O~s(t ) / t (x  O, x 2, 
X 1 X'~2- t-x2"2 I ]  

(116) 

+O~s(t) 4 1 dx I 1 dx 2 ~(xl,x2, t) - 2 ( l - z ) +  l+'z2 "(1 + 
21r 3 ~ x 2 ( 1 - z ) ( x l + x z )  ( 1 - z ) ~  - y * ) +  y + i j  

where 

. 4  E (%z)) zd asg(Z) -£-~n3 2 - 3 z + ( 1  + z  2) 1 3 I (117) 
+ 

The first line in eq. (116) is simply a scale correction to the patton-model result. 
We will refer to this as the delta-function contribution for obvious reasons. The sub- 
sequent lines contain the effects o f  pattens cascading down from x l ,  (xz) > x °, (x°). 
Integrating eq. (116) over xF we obtain, after some simple manipulations, the q~ 
contribution to the total cross section Q2 do/dQ2. 

The last term in eq. (116) contains the product of  two distributions. The explicit 
method of  handling this product is as follows. We first change the variables of  inte- 
gration xl ,  x2 to z and u =y*  using the Jacobian: 

dx I dx 2 1 dz du 
- ( 1 1 8 )  

X 1 X 2 (1  - -  2 ) (X  1 + X 2 )  Z J ( z ,  ld) ' 

where 

J(z,u) = (x2 + ~2)(1-  u) + (Xl +-fT1) u , (119) 

and x 1 and x 2 are expressed in terms o f z  and u according to 

--XF + [X~ + 49"(1 -- (1 -- z) U(1 + ((1 -- z)/z) U)] 1/2 
x2 - 211 -- (1 -- z) u] - - '  

g 
xl  - • (120) 

ZX 2 
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< 

i i Xl 

o O ×l I 

Fig. 6. The region of integration m the x 1, x 2 plane shown for the case xOl > x O is given by the 
rectangle A + B + C. Note that only in region A does the integration range extend to z = l or 

ll=O. 

Consider ,  for example ,  the integral  

t d x t  t d x  2 H(xt,xz) l + z z 1 

fx~ X--~.fx~'X2. (1 ----Z)--)~t +---X2)(1 --z)+Y~'- 

= f f  dz  I + Z 2 du H(z, u) (121) 
z (1 - z ) +  u+ J ( z ,  u )  " 

A÷B+C 

The domain  o f  in tegrat ion (fig. 6) splits into three regions A, B and C. Assuming 
for the moment ,  xv > O, ( the case shown in fig. 6), it is only in region A that  the 
poles at z = l and u = 0 can be reached. In region A , x  ° ~<z ~< 1 and 0 ~< u ~< 1 so 

that  

ffA ~ (T-zl+~,+s(z,~,) ~o z ( l -zT+ o u \J(z,u) - ~ , ~ f  "(122) 

Note that  the difference appearing in the u integrat ion vanishes at z = 1. This is 
because z = 1 and 0 ~< u ~< 1 imply  x l ,  2 = x° ,  2 for arbi t rary  u. The whole  integral ,  
eq. (122) ,  therefore  has no pole at z = 1 and no further  subt rac t ion  at z = 1 is 

required: 

To-z)+"+J( z,u)= 7 J57,@ (123) 
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The points z = 1 and u = 0 are excluded from regions B and C so we may write 

ff dz l + z  2 d u H ( z , u ) _ f f d z  1 +z 2 duH(z,u) (124) 
z(-1--z)--+u--]'J(z,u) -f  1 - z  u J ( z ,u ) '  

B+C B+C 

The final result over the whole region of integration may formally be written as 

f f dz l + z 2 du H(z, u) 
z (1 - z)+ u+ J ( z ,  u) 

A+B+C 

/~/," d z l + z  2 d u H ( z , u )  / ~ _  l + z  2 7  duH(z,O) 
= J J  z 1 - z  u J ( z , u )  axO 1 z 1 - z  a u ~ z , ~  " (125) 

A+B+C 0 

It may easily be checked that eq. (125) is also valid for xv <- O. The companion 
integrals with v* -+ 1 - y *  can be obtained by the substitutions XF -+ --XF and 
H(xl, x2) -+ H(x2, xl). 

The quark-gluon contribution to the differential cross section can be obtained 
from eq. (86) using an essentially identical procedure *: 

Q 2d20 _ A f d X l f d X 2  f Xl [ as 1 [47r/22] e O(1--Z)  
- -  K(x~'x2)-~ 21~ 0 2 ] F ( 1 - - - ~  dQ 2 dx v x2 

0 0'*) 0(1 -y*)  I2z(  1 - z )  + (1 -z)2(1 -y*)  + (z2+ (1 - z )  z) - -  
+ (1 --Z)(X 1 +X2) 

% 1 [4rqa2] e 0 ( 1 -  z) 
+ K ( x z ' x l ) ~ - 2  I Q2 ] r'(1 - - ~  

where 

× I  6 ( x l z - x 2 - x F ) L  l ( zz+(1-z )2)+(zz+(1-z )z ) ln(1-z )2  e z +1 

+ O__(v*) O (1-Y*) ~2z( l _ z)+( l _ z)Z y* + (zZ+( l _ z)2)_Z] l } 
(1 - z ) ( x l  + x 2 )  1_ " 

(126) 

K ( X l , X 2 )  ~ 2 I l l  = e)(qo f (Xl) + C~[o} 1 (Xl)) GI021 (x2).  
f 

(127) 

Defining the quark densities as usual in terms of  72, so that K(xl,  x2) becomes 

* The quark-gluon corrections to d2o/dQ2dy R have also been considered in ref. [22]. 
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/~(Xl, x2, 1) and performing the integrals where possible we obtain 

QZd20 

dQ2dxF 

1 

=A (x~+4z) l /2  t_ xo xz \x2---/ 

1 dx, t). 
+ 2rr 2~o-~-1 ~o x2 ( l ~ z ~ + x - 2 2 )  

1 * 
X [2z(1 - z) + (1 - z)2(1 - y * )  + (z 2 + (1 - z) z) (1 - y  )+1 

+ 0¢s(t) 1 X~l~ dx__~l xff~2 ~dx2 K(x2 'x l ' t )  
2~ 2 x I x 2 ( 1 - z ) ( x l + x 2 )  

× I2z( l  - z) + (1 - z)Zy * + (z 2 + (1 - z)2)y+A , (128) 

where, 

ash(z ) - - ~  ~ [(z 2 + (1 - z) 2) ln(l - z) + 1 - 6z(1 - z)] . (129) 

The sum of  eqs. (116) and (128) gives our final result for the differential cross sec- 
tion. 

By simple modifications one could also obtain the rapidity distribution. The 
rapidity is defined as 

= 1 ln[~E + qz'~ 
YR ~ ~E-E~z] '  (130) 

where E = (q2 + q2 + Q2)1/2 and qz are the 7* energy and momentum along z in the 
hadron-hadron c.m.s. For example O_ 2 d2o/dQ 2 dYR[YR=O, a quantity often used in 
plotting the data, is obtained from our eqs. (116) and (128) by setting XF = 0 and 
replacing H(xl,  x2, t) and / ( (x  1 , x 2, t) by 

2(xlx2 + r) 2(XlX2 + r) 
/~(X1, X2, t) and /((Xl,X z, t) 

(X 1 + X2) (X1 + X2) 
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6. Numerical calculations 

Preliminary estimates presented in sect. 4 indicated that the quark-antiquark 
annihilation terms in the total  cross section received large corrections when the 
effect of  gluon radiation was included. We now present detailed calculations for the 
differential cross section which will confirm those conclusions. 

In all calculations we set ~/S = 27 GeV and consider incident protons on nucleons 
as in the data of  ref. [23]. The protons are directed along the positive z direction. 
Our input parton densities at a reference momentum Q2 = Q~ = 75 GeV 2 are (SU(4) 
symmetric sea) 

Uv(X) = u - ~- = 1.78(1 - X)3(1 + 2.3 X)/X/X , 

dr (x)  = d - d = 0.993(1 - x)3/X/x ,  

s(x) = 0.21(1 - x)V/x ,  (4 flavours) , 

G(x) = 2.54(1 - x )S /x .  (131) 

With this parametrisation the momentum carried by the various components  (n = 2 
moment)  is 

U(v2)(Q 2) ~- 0 .30 ,  d(vZ)(Q~) ~- 0 . 1 0 ,  

s(2)(Q~) -~ 0 .026 ,  G(2)(Q2o) -~ 0 .40 .  (132) 

The running coupling constant is parametrised as usual by 

12rr 
%(Q2) - 25 ln(QZ/A2) ' (133) 

with A = 0.5 GeV. The renormalisation-group improvement implicit in the above 
formula has been inserted by hand in the formula of  the previous sections, since 
calculations performed in O(oe 0 are insensitive to the change with scale o f  the cou- 
pling constant.  By the same token,  we have no way of  knowing (short o f  actually 
performing calculations in higher orders) whether Q2 or some other large variable is 
the correct variable to describe the fall-off of  the running coupling constant.  This 
represents a theoretical uncertainty in our estimate of  the size of  the correction 
terms. 

The evolution of  the pat ton densities (eqs. (23), (24)) with changing Q2 is cal- 
culated as follows. Firstly, the moments o f  the densities are performed analytically. 
These moments can then be calculated at the appropriate value of  Q2 using the well- 
known eigenvalue matrix of  the logarithmic exponents.  Finally at each Q2 of  inter- 
est inverse Mellin transforms are taken. A check on the inversion procedure at every 
value of  Q2 is obtained by recalculation of  the moments from the final x-dependent  
parton densities and comparison with the original moments at that value o f  Q2. The 
errors are less than 2% throughout  the Q2 range of  interest for all moments  with 
n ~ 1 0 .  
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Fig. 7. Plot of the changes in the cross section, a = Q2d2o/dQdYRlYR=O due to the correction 
terms. The quantity AO/a 0 (where o 0 is the naive prediction with scaling parton densities) is 
plotted against r. The different curves refer to different values of Ao = (o -- o0). (a) o = aTO T 
includes all the correction terms (q~ and qG) in eqs. (116) and (128). (b) o = o 6 includes only 
the delta function contribution. The variation of this piece is due to the running coupling con- 
stant. The correction is large at all values of r. (c) o = Oqg includes all the ~q corrections other 
than the delta function. (d) o = OqG shows the quark-gluon corrections. This correction term is 
negative and is shown changed in sign. 

In fig. 7 we plot the changes in Q2d2o/dQ 2 dyR l yR=0 due to the corrections. The 
total corrections together with various components are shown plotted as a fractional 
change with reference to o 0, the naive scaling parton model results. The total correc- 
tion (TOT) spans the range from 80% to 100% in the range of r investigated. At low 
values of r this correction is almost entirely due to the delta-function contribution 

4 2 (8) proportional to 5n + 1 whereas at the highest value of r, both this term and the 
other q~ corrections (q~ (no 8)) play an equal role. The quark-gluon correction 
( - q G )  is negative and does not exceed 15% in the range investigated. 

The size of the delta-function correction is independent of the form of the input 
q and ~ distributions and is determined by the running coupling constant. Since the 
fall-off of the coupling constant is only logarithmic, these corrections can only be 
made small by increasing Q2 by several orders of magnitude. The other q~ correc- 
tions (in particular the term whose moments grow like ln2n) depend on the form of 
the input distributions. In valence-valence quark-antiquark annihilation processes 
(e.g., nN, PN) these latter terms will be slightly less significant at lower values of r. 

In fig. 8 we plot Q2 d20/dQ2dyR l yR= ° as a function of r. The dotted curve shows 
the cross section with Q2 dependent parton densities. The solid curve has all the 
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Fig. 8. Q2d2o/dQ2dYRlY,,R= 0 in cm 2 plot ted as a function of  ¢. The dashed curve is the parton- 
model prediction with QZ dependent  parton densities. The solid curve is the prediction includ- 
ing all the corrections in order as(Q2). 

as(Q 2) corrections included. The scale is logarithmic. 
Lastly in fig. 9 we show the shape of the rapidity cross section as a function of 

xF for several values of  r. Only the relative magnitudes of the curves at each value 
of r are significant. The total corrections are large at all values o fxF  and r, so that 
there is no special configuration in which the correction can be ignored. The quark- 
gluon correction is small and negative at all values ofxF.  

7. Conclusions 

The numerical analysis of  sect. 6 has shown that the corrections to Drell-Yan 
processes expressed in terms of leptoproduction parton densities are so large at pre- 
sent values of  Q2 that the lowest-order formula for the Drell-Yan process with scale- 
breaking patton densities is unreliable. A correct theoretical description will require 
the inclusion of the significant terms appearing in higher orders in the perturbation 
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Fig. 9. Plot of a = Q2d2o/dQ2dxF versus x F for various values of Q2 and r. The scale for each 
graph is arbitrary and is obtained by dividing all curves by the maximum value of the complete- 
ly corrected cross section Q2d2OTO.T/dQ2dx F. The relative size of the various curves in each 
diagram is significant. OTO T is the cross section including all the correction terms, o is the par- 
ton-model prediction with patton densities evolved to the appropriate value of Q2. CrqG only 
includes the effects of the quark-gluon correction. On each graph the appropriate values of 
Q2, r, %, and x~' (the maximum value ofxF)  are given. 

series. A possible  clue to  the  i den t i f i ca t ion  o f  such  te rms  in h igher  orders  is the  fact  

t ha t  in o rder  c~ s the  large t e rms  are the  vestiges o f  the  cancel led  soft  s ingular i ty .  

Our  analysis  leaves open  the  poss ib i l i ty  o f  descr ib ing Drel l -Yan type  processes  in 

t e rms  o f  Drel l-Yan p a r t o n  densi t ies  alone.  At  the  present  stage o f  e x p e r i m e n t a l  

i n f o r m a t i o n  th is  implies  a subs tan t i a l  loss o f  predic t ive  power .  
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A p p e n d i x  

In this  a p p e n d i x  we presen t  a series o f  results  c o n n e c t e d  wi th  the  m o m e n t s  o f  the  

f u n c t i o n s  e n c o u n t e r e d  in the  text .  We def ine the  m o m e n t s  o f  a f u n c t i o n  f ( z )  to be,  

1 

f(") : f dz z"-l f(z). (A.I) 
o 

In tab le  1 we list the  m o m e n t s f  (n) co r r e spond ing  to the  f u n c t i o n s f ( z ) .  The  distr ibu- 

t ions  1/(1 - z)+ and  (ln(1 - z) / (1 - z))+ are def ined  in t e rms  o f  the i r  integrals  w i th  

an a rb i t r a ry  f u n c t i o n  h(z) 

: 1 /  h ( z ) -h (1 )  (A.2)  
dz h(z) (1 - z)~ = dz I - z ' 

o o 

l (?__?) i 
: dz h(z) : dz(h(z) - h ( 1 ) )  1 - z + -:  (A.3)  

o o 

The above  d i s t r i bu t i ons  d i f fer  f rom the  n o r m a l  func t i ons  1/(1 - z) and  

Table 1 I 
The moments f (n)  of the function f(z) defined by the relation f(n) = : dz zn-lf(z) 

0 

f(z) f(n) 

1 

lnz  

In z 

(1 - z) 

ln(1 - z) 

6(1 - z) 

1 

(1 - z ) +  

ln(1 - z)~ 

1 - z  ]+ 

1 

n 

1 
n 2 

n-1 

/=i /2 

n 

_!21 
nj=l l 

I 

n--I 

j:l J 

n--I k 

k=l k ]=l I 
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In(1 - z)/(1 - z) by funct ions which have support  only  at z = 1. It therefore  fol lows 
that the integral 

t 1 t 1 x I 

f -fdzh(z)o z)+ fdzh(z) , (A.4) x d z h ( Z ) ( l _ z ) +  o - o 1 - z  

and similarly for the dis t r ibut ion (ln(1 - z)/(1 - z))+. 

The moments  o f  these distr ibut ions are readily derived using the ident i ty  

n - - I  

(z n - l - 1 ) = ( z - 1 )  ~ z j - 1 .  (A.5) 
]=1 

In generalizing table 1 it is useful to  remember  the convolu t ion  theorem for Mellin 
t ransforms 

f ~ ~ . 
f ( z )  = x g(x)  h /(~) =g~n)h(~) 

2 

(A.6) 
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