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Experiment 1:  Thin Converging Lens  PHY 431 
 

This experiment is a classic exercise in geometric optics. The goal is to measure the 
radius of curvature and focal length of a single converging lens from which you can calculate the 
index of refraction n. We shall explicitly consider the errors that accompany any measurement 
and how errors are analyzed to yield a quantitative estimate of uncertainty. This includes 
quantities derived from measurements, such as the index of refraction here.   

In the procedures for this lab, you are explicitly reminded to estimate the uncertainty 
several times.  (In future labs these reminders will not necessarily be included.)  Please see 
Appendices (i)-(iii) for reference material and relevant equations. The questions, labeled Q1, Q2, 
… should be directly addressed in your report in the Analysis & Discussion section.  

 
Procedure: 
A. Choose a converging lens for the experiment.  By definition, the focal length f of a lens is the 

image distance from the lens center, for an infinitely distant object. To obtain a rough 
estimate of f, project an image of some distant object, e.g. a tree, in the space outside the lab 
onto the white paper.  Q1. Why does the object appear upside down? 

B. Use a spherometer to measure the radius of curvature of both surfaces of your lens.  See 
Appendix (i). You begin by finding the “zero” position, x0, using a scratch-free spot on your 
bench (which is a good approximation to a flat surface). Then perform the measurement with 
your lens in place, x1; the distance h is then |x0-x1|.  (Always be sure to include the 
uncertainty. In this case you can repeat the measurements a few times to obtain an estimate 
for the spherometer’s precision, 𝜎𝜎𝑥𝑥0.)  Consult the manual for the spherometer.  You can use 
the tables there. Q2. Which edge of the spherometer head rests on the measured convex 
spherical surface and which on concave?  For which edge should you use the specified 
diameter or radius in determining the radius of curvature of your surfaces?  Q3. Having 
estimated measurement uncertainties σx0 and σx1, write an expression for σh and evaluate it 
using your data.  For now you can ignore error on b.  

C. Arrange an object (the T on the lamp window) and screen on the optical rail, with a 
separation greater than 4f.  Locate the lens position which gives a sharp image on the screen. 
Record the object and image distances measured from the center of the lens.  (Be sure to 
estimate the uncertainty for these distances.)  Use the thin lens equation to calculate f.  (Also 
calculate σf.)  Repeat this for 4 positions of the screen increasing the object-screen separation 
in increments of about 2 cm.  Find your best value for the focal length using the equation by 
the end of Appendix (ii) (the mean).  Q4. How does the best value for f compare to your 
original rough estimate?  

D. Insert a variable iris before/after the lens.  Observe the image as the aperture size is changed.  
Specifically note how the aperture affects your ability to focus the image.   Q5. What is the 
meaning of the term “depth of field” in this context?     

E. Place the light source a distance less than f from the lens. Try to position the screen to bring 
the object into focus.    Q6.  Are you encountering any difficulties?  What is going on here?  

F. Calculate the index of refraction (including uncertainty) for the glass of your lens using the 
lensmaker’s equation.  (Remember that your report should include comments as to whether 
or not your value is reasonable).  
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 Appendix (i): Miscellaneous Equations 
 
Thin Lens Equation:  
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Lensmaker’s Equation: 
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Spherometer Equation: 
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Appendix (ii): Random Errors & Error Propagation 
 

Random fluctuations in the measurement process lead to a Gaussian distribution about 
the true value. This distribution gives us a parameter, σ, called the “standard deviation”.  
(Systematic errors can give a non-Gaussian distribution.)  Essentially, if many measurements are 
taken, 68% of the data points lie within xx σ±0 , where 0x  is true value.   

Now, suppose an arbitrary function f(x,y) depends on the variables x and y, assumed to 
be independent of each other. How do we compute the uncertainty in f, σf, given σy and σx?  
Under the assumption that the uncertainties are small compared to the range over which f 
significantly varies, the following expression works:  
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For exemplary specific functions this yields: 
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Lastly, we address the situation where we make N measurements of the same quantity x, each 
with an uncertainty of σx.  Intuitively, we expect that combination of a number of measurements 
will yield uncertainty smaller than σx.  In fact, if the fluctuations of measurements around the 
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true value are uncorrelated, the estimated uncertainty in the average over measurements is 
reduced by N/1 compared to individual measurements, when N is large:  
 

𝑥̅𝑥 =
(𝑥𝑥1 + 𝑥𝑥2 + ⋯+𝑥𝑥𝑁𝑁)

𝑁𝑁
 →  𝜎𝜎𝑥̅𝑥 =

𝜎𝜎𝑥𝑥
√𝑁𝑁

 

 
If 𝜎𝜎𝑥𝑥 is unknown, it can be estimated from the spread in measurements and formulaically from 
 

𝜎𝜎𝑥𝑥2 ≈
𝑥𝑥2��� − 𝑥̅𝑥2

𝑁𝑁 − 1
 

 
for large N, with the approximation improving as 𝑁𝑁 → ∞ 
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Appendix (iii): More on Errors  
 

Random & Systematic Errors 
 

Random and statistical errors are type of errors related, respectively, to precision and accuracy.  
Random errors vary between successive measurements.  They are equally likely to be positive 
and negative.  They tend to be always there in an experiment.  Their presence is obvious from 
distribution of values obtained.  Their impact can be minimized by performing multiple 
measurements of the same quantity.  
 
Systematic errors are generally constant throughout a set of measurements.  They may result 
from calibration of equipment or from methodology behind the measurements.  They cause the 
mean of measured values to depart from the correct value.  They can be difficult to estimate.  At 
times the manufacturers provide accuracy of the instruments they supply.  In absence of such 
information, one can assume that the systematic error is at least half of the last digit that the 
instrument provides in a measurement. 
 
When few measurements are carried out, random (also called reading) errors tend to have more 
impact on the outcome of the measurements.  However, if many measurements are carried out 
and the impact of random errors diminishes, the systematic errors begin to dominate the overall 
error. 
 
As an example illuminating systematic errors, let us 
consider a situation where researchers are to determine 
an average weight of some population.  If they select 
representative samples of the population, illustrated 
with boxes in the upper panel of the adjacent figure, 
errors are purely random.  Following central-limit 
theorem, the distribution of the average weight for 
samples, Gaussian curves there, narrows as sample 
size increases, eventually becoming very narrow 
around the true average for the population.  The width 
of the distribution can be estimated using the 
distribution of weight values for a sample.  However, 
if the researchers make local arrangements such that 
they can only weigh those above the age of 10, 
illustrated with boxes in the lower panel of the figure, 
their samples begin to be biased towards higher values 
of weight.  When their samples become very large, the 
distribution of the average weight for a sample 
becomes narrow, but it peaks around a value that is 
systematically in excess of the true average for the 
population.  Increasing the size of a sample does not 
help to eliminate the bias.  It is impossible to estimate 
the bias on the basis of a sample alone.   
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Understanding the nature of the bias, one can try to correct for it, e.g. using data for another 
population.  However, even after such correction some residual systematic error will remain that 
the size of a sample will not help with.  Other systematic errors may be due to the weighted 
individuals being in clothes, scale calibration etc. 
 
For functions systematic errors are propagated in the same fashion as random errors, using 
partial derivatives when errors are small.  For net final error, the one with random origin is added 
in quadrature to the systematic error: 
 
(net error)2 = (random error)2 + (systematic error)2. 
 
In the experiments done today, the systematic errors stem e.g. from accuracy of the ruler and 
from approximating a thick lens with a thin lens.  If error of random origin is large, the 
systematic error may be disregarded, but not if the random error for good or wrong reasons is 
small. 

 
 

Stating Results and Errors 
 

Generally state errors to 1-2 significant digits.  Two digits are advisable, if the leading digit is 
low.  Quote result to the same significance as error.  When using scientific notation, quote value 
and error with the same exponent.   
 

• Value 33, error 11  →  33±11 
• Value 72, error 36  →  70±40 
• Value 5.6 × 103, error 6 × 102  →  (5.6 ± 0.6) × 103 

 
Incorrectly stated results: 

• 36±0.7 
• 36.06±0.7 

 


