Skip to main content
Michigan State UniversityPHY 431 Optics at MSU

Superfluidity of Liquid Helium-4

About the experiment

Helium gas liquefies at 4.2 K at atmospheric pressure. When it's cooled to lower temperatures, there is a phase transition at 2.17K to a new liquid phase which exhibits the property of superfluidity. The superfluid has the properties of a Bose-Einstein condensate: extraordinarily low viscosity and nearly infinite thermal conductivity. Heat propagates as a wave called second sound. Using an acoustic resonator, you will measure the speed of sound in gases and in liquid helium. In the superfluid phase, you will measure the speed of second sound as a function of temperature. You can show that the speed of second sound becomes quite slow at the superfluid-normal fluid transition (the lambda point).. This experiment uses a phase-sensitive lock-in detector to measure standing wave resonances in a cylindrical acoustic cavity. You will also learn how to handle cryogenic fluids such as liquid nitrogen and liquid helium.

What you will learn

  • Experience with liquid helium and cryogenics

Preparation

Required reading:

Recommended reading:

Supplementary materials