Physics 472 - 2020 Quantum Mechanics

https://web.pa.msu.edu/courses/2020spring/PHY472/desc_PHY472.html

Problem Set 1

1. Show that

$$(A^{\dagger})^{\dagger} = A; \quad (AB)^{\dagger} = B^{\dagger}A^{\dagger}, \quad [A, BC] = [A, B]C + B[A, C].$$

Express $[AB, C]^{\dagger}$ in terms of A^{\dagger}, B^{\dagger} and C^{\dagger}

- 2. Use the result of the previous problem to calculate the commutator of the operators of the x-component of the momentum operator **p** and the y-component of the angular momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$. Evaluate also $[L_x, x], [L_x, y], [L_x, z]$
- 3. Consider a particle of mass m which moves along the z-axis in a potential $U(z) = \infty$ for $z \leq 0$, $U(z) = -\Lambda/z$ for z > 0 ($\Lambda > 0$).
 - In what energy range does the particle have bound states?
 - Find the behavior of the wave functions of the bound states for large and small positive z
 - Is that set of eigenfunctions of the Hamiltonian $H = (p_z^2/2m) + U(z)$ with the chosen U(z) complete for the set of continuous functions $\psi(z)$ defined for $-\infty < z < \infty$?
- 4. For the previous problem, find the energy levels of the bound states.

Each problems is 10 pt.