Physics 472-2020
 Quantum Mechanics

https://web.pa.msu.edu/courses/2020spring/PHY472/desc_PHY472.html
Problem Set 1

1. Show that

$$
\left(A^{\dagger}\right)^{\dagger}=A ; \quad(A B)^{\dagger}=B^{\dagger} A^{\dagger}, \quad[A, B C]=[A, B] C+B[A, C]
$$

Express $[A B, C]^{\dagger}$ in terms of A^{\dagger}, B^{\dagger} and C^{\dagger}
2. Use the result of the previous problem to calculate the commutator of the operators of the x-component of the momentum operator \mathbf{p} and the y-component of the angular momentum $\mathbf{L}=\mathbf{r} \times \mathbf{p}$. Evaluate also $\left[L_{x}, x\right],\left[L_{x}, y\right],\left[L_{x}, z\right]$
3. Consider a particle of mass m which moves along the z-axis in a potential $U(z)=\infty$ for $z \leq 0, U(z)=-\Lambda / z$ for $z>0(\Lambda>0)$.

- In what energy range does the particle have bound states?
- Find the behavior of the wave functions of the bound states for large and small positive z
- Is that set of eigenfunctions of the Hamiltonian $H=\left(p_{z}^{2} / 2 m\right)+U(z)$ with the chosen $U(z)$ complete for the set of continuous functions $\psi(z)$ defined for $-\infty<$ $z<\infty$?

4. For the previous problem, find the energy levels of the bound states.

Each problems is 10 pt .

