Physics 472 - 2020 Quantum Mechanics Problem Set 11

- 1. Consider a system with 2 states with equal energies, $H^{(0)}|\psi_1\rangle = E^{(0)}|\psi_1\rangle$ and $H^{(0)}|\psi_2\rangle = E^{(0)}|\psi_2\rangle$. At t = 0 there is turned on a perturbation $H^{(1)} = V$ with matrix elements $V_{12} = V_{21}^*$ and $V_{11} = V_{22} = 0$. Solve the time-dependent Schrödinger equation and find the time-dependent wave function $|\Psi(t)\rangle$ assuming that at t = 0 the wave function of the system is $|\psi_1\rangle$.
- 2. The expressions for the δ -function below are written as the limits for $T \to \infty$. Make plots of these expressions before you go to this limit; set T = 1, 10, 25.

$$\delta(x) = \frac{1}{2\pi} \lim_{T \to \infty} \int_{-T}^{T} dt \, e^{ixt}, \quad \lim_{T \to \infty} \frac{\sin xT}{x} = \pi \delta(x), \qquad \lim_{T \to \infty} \frac{1 - \cos xT}{Tx^2} = \pi \delta(x)$$

What has to be done to prove these relations?

- 3. Consider a one-dimensional particle of mass m in a potential $U(x) = -\alpha \delta(x)$ with $\alpha > 0$. The particle is driven by a field at frequency $\omega > m\alpha^2/2\hbar^3$, with $H^{(1)} = -Fx \cos \omega t$. Calculate the rate of transitions from the ground state to the states in the continuous spectrum.
- 4. Show that $\nabla^2 |\mathbf{r} \mathbf{r}'|^{-1} = -4\pi\delta(\mathbf{r} \mathbf{r}')$