Error Detection/ Correction Policy

James T. Linnemann
Michigan State University
BU STT Workshop
December 19, 1999
Error Handling Strategy

- Confine errors to single event, single channel
 - missing an event boundary: event synch error
 - only SCL_INITIATE will clear this

- count errors as detected
 - VME readback in monitoring for diagnosis

- no elaborate recovery or detection
 - unless can be FIXED locally
 - and faster, more reliably than operator intervention
 - else: support diagnosis, save evidence
 - data flow hang can usually localize problem

- Process malformed events to extent possible
 - tag in header (L2 has standard bits defined)
SCL INITIALIZE

why we avoid it

- Needed if event fragments don’t match
 - must clear all buffers EVERYWHERE and restart
 - violent: touches EVERY front end crate

- Avoidance:
 - redundancy header to trailer (protect 1-bit errors)
 - try to preserve event format (to find trailer)
 - try to preserve event boundary (else must re-init)
 - detect missed event boundary (end or begin)
 - send pads before End Event to reframe if needed
Synchronicity

● Link synchronization losses (physical layer)
 • phase (frame boundary) loss
 • frequency lock loss
 • strategies:
 – stop event flow
 – auto-resynch on pads (cypress)

● Event synchronization loss
 • event number mismatch
 – only detectable where event numbers exist
 ● cft tracks (and L1 SCL info)
 ● not SMT data (until you add a header/trailer)
 ● clusters to fit card
Physical Layer
Synchronization Loss

- Loss of frame boundary (phase) lock
 - cypress: assumed after n consecutive errors
- Loss of frequency (PLL) lock (chipset)
- may have different recovery times
- G-link and Cypress auto-recover on pads
 - between two events possibly (Cypress)
 - preserve event boundary!
 - G-link: raise L1 BUSY
 - only useful because unbuffered: busy stops event flow
 - generates a stream of pads to resynch on
 - allows recovery without SCL Initialize
Event Synchronization Loss

- only detectable where event numbers exist
 - cft tracks (and L1 SCL info)
 - not SMT data (until you add a header/trailer)
 - beware: event end is just special data value
 - clusters to fit card

- Fight loss of event boundaries!
 - Input 2-state machine: event/idle
 - 2 starts, 2 stops insert boundary
 - works with frame synch recovery: ready for next event means will see next start even if previous stop lost
 - redundancy between header and trailer
 - if headers mismatch but correct number in trailer, OK

- Lost boundary? don’t guess which source: SCL_INIT
Event Synch Error Handling: need report to central point

- FRC notified (Admin Alpha in rest L2)
 - sets ERROR1 in SCL (and records time)
 - will provoke SCL_INITIALIZE when ack. from FW
 - Header status bit is sufficient (from STC say)
 - no gain for “immediate” notify via say special character
 - could define so onlyTFC reports to FRC…
 - no pressure to handle SCL_INITIALIZE in 10 sec say
 - could make re-synch of links part of drill
 » if no special mode of Xmit required to resynch…
L2-style Geographic Section

- Will propose modification to GS protocols
 - VBD initialization with crate info
 - maybe re-initialize by computer
 - time-stamped record of L1, L2 error declarations
 - handled by "Dallas Chip" in FE sections
 - TCC must be involved for L2
 - L1 busy handling rationale differs
 - busy not guaranteed to halt event flow (when buffered)
 - a serious confusion already exists if > 16 events
 » let buffers fill, SCL_INIT when mismatch found
 - emphasis on diagnosis, since prevention not guaranteed
L1 Busy

- Only use it when it really helps you:
 - possibly during SMT or CFT input?
 - possibly during link recovery for these G-links
 - possibly during link recovery IFF
 - buffered
 - if it’s a buffered link, won’t stop the data source from sending next event: will get SCL_INIT anyway
 - can recover on pad characters alone
 - if you need to set the transmitter in a resynch mode, you need to do something more violent than a data pause
 - alternative is to scl_init now (don’t finish until link recovers)
VRB surprises…
may impact your CFT inputs?

- VRB G-link inputs intrinsically 8-bit oriented
 - 16-bit word stream split into two 8-bit buffers
 - read all upper halves, then lower halves (or vice versa)
 - great for SMT data; not so hot for CFT tracks...
 - Event boundary:
 - SMT: 16b data, end event from special value (no begin?)
 - CFT, L1FW,L1 Cal:
 - 16b data + 4 control bits = 20b in 24b frame
 - bits 17,18 tag begin/end goes with 1 8-bit stream
 - bits 19,20 goes to other: send begin/end tags twice
L2 Header

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Notes/Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td># objects (NOT IN HEADER)</td>
<td>[note 255 max!]</td>
</tr>
<tr>
<td>B1</td>
<td>Header Length in 4B words (1B)</td>
<td>[=3 for default]</td>
</tr>
<tr>
<td>B2</td>
<td>Object Length in 4B words (1B)</td>
<td>[ALL same size!]</td>
</tr>
<tr>
<td>B3</td>
<td>Header/Trailer Format # (hi 3 bits)</td>
<td>[ONLY changes if new format]</td>
</tr>
<tr>
<td></td>
<td>Object Format # (lo 5 bits)</td>
<td>[ONLY changes if new format]</td>
</tr>
<tr>
<td>B4</td>
<td>Data Type # (1B)</td>
<td>[unique in all L2 MBT inputs]</td>
</tr>
<tr>
<td>B5</td>
<td>Bunch # (1B)</td>
<td></td>
</tr>
<tr>
<td>B6-7</td>
<td>Rotation# (2B)</td>
<td>[B6 is LSB of rotation]</td>
</tr>
<tr>
<td>B8</td>
<td>Algorithm Major Version (1 B)</td>
<td>[e.g. 7 from Version 7.1]</td>
</tr>
<tr>
<td>B9</td>
<td>Algorithm Minor Version (1B)</td>
<td>[e.g. 1 from 7.1]</td>
</tr>
<tr>
<td></td>
<td>or Processor Specific Bits (1B)</td>
<td>[esp. if hardware data source]</td>
</tr>
<tr>
<td>B10</td>
<td>Processor Specific Bits (1B)</td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td>Status Bits</td>
<td>[b7 on means some error]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[some standard for L2 Proc]</td>
</tr>
</tbody>
</table>
Standard Status Bits
b7, b0 for all; others if L2proc

7 error on event (any kind): use at own risk
6 no processing attempted (none required)
5 object list truncated (any reason)
4 Receiver error on some input physical trailer
3
2
1 more data-type info (processor-specific)
0 0 for real data, 1 for MC data
L2 Trailer

B0 Bunch # (1B) = B5 of Header
B1 Data Type # (1B) = B4 of Header
 (Swapped even/odd from Header)
B2 Longitudinal Parity of even Bytes
B3 Longitudinal Parity of odd Bytes
 or--if parity too slow to calculate, Turn # (B6-7 of Header)
 MBT Out, SLIC, FIC will append physical trailer with 8-bit
 hardware-generated longitudinal parity

Zero padding to 16 B group FOLLOWS trailer, before End of Event
L2 Physical Trailer

- FIC, SLIC, MBT Out: add a physical 2B trailer
 - after logical trailer, before End Event
 - This BREAKS 16B boundary, but handled by MBT
 - B0 8 bit longitudinal parity of received data
 - B1 Status Bits [b7 on if any receive error]
 - not included longitudinal parity!
 - b0, b1 are type ID: 0 = FIC, 1 = SLIC, 2 = MBT

- MBT inputs place this in B0, B1 of 16B physical trailer
 - adds B14, its own longitudinal parity of everything received
 - B15 its own Error Bits [b7 on if any receive error]
 - reserves 4B for incoming, may give error locations in B4-13
 - MBT Outs produce 2B physical trailer like FIC
Endianness and Unpacking

- So Far, spec covers only getting into Alpha memory
- Work has started on understanding how this propagates to L3 and offline
Reframing Cypress: On Provocation model

- **During Reframing:**
 - no data into FIFO
 - stays in reframe until successful (identifies Pad)
 - any benefit of timeout?
 - upstream buffers may fill, generating L1 Busy
 - LED to indicate reframing? Counter/flipflop?
 - How to identify channel? Rotary: channel n or ALL?

- **Causes of reframing:**
 - Powerup
 - n consecutive bad or unknown control char
 - front panel (flipflop?)
 - VME (SLIC, MBT): part of SCL Initialize handling
 - Admin. will hold off clear of L1 Busy: read status
State bit (IDLE/EVENT) is input to FIFO handling logic
Begin Event

- Be sure input fifo correctly aligned
- ready to resume inserting data into FIFO
End Event

- Close up FIFO: stop inserting data
- Mark FIFO with end of event tag
- pad FIFO to 16B? (in case of errors)
 - probably handled by reset on Begin Event
- Add physical trailer recording errors
 - On readout of FIFO
Input during IDLE

- FIFO DISABLED
 - data format insensitive to errors in PAD’s
- Pad Ignore (even tho clocked)
- Data count (IDLE errors)
 - 2 consecutive DATA = BEGIN? Probably not...
- Error count
- Special Character:
 - Begin normal start of EVENT (align FIFO)
 - End assume missed Begin
 - any other: count
Input during EVENT

- **FIFO ENABLED**
 - sensitive to errors in PADS
 - try to preserve data format
- **Pad** Ignore (even tho clocked)
- **Data** insert into FIFO
- **Error** insert into FIFO, tag ERROR

- **Special Character:**
 - **End:** tag End, normal start of IDLE
 - **Begin:** assume missed End
 - **other:** insert into FIFO, tag ERROR (?)
Cypress Self Test

- Excellent for debugging, Bit Error Rate testing
 - transmitter: send sequence of ALL symbols
 - receiver: verify got sequence in order
 - SLIC, MBT: both Xmit and Rcv on board

- Start/stop can’t be special characters!
 - All: VME (or Mbus for MBT)
 – and a front panel flipflop?
 - test point(s) on front panel?
 – Should see a pulse every cycle through test sequence
 – or just an error counter for VME reading