L2 Global
Status and Opportunities

James T. Linnemann
Michigan State University
London Workshop
January 6-8, 2000
L2 Trigger

- 10 KHz L1 out to 1 KHz L2 out
 - 128 L2 decision bits, 1:1 with L1
 - few % deadtime

- Global Processor selects events
 - threshold for object
 - matching objects from different detectors
 - cuts on quality
 - kinematic variables (but Zv=0…probably)

- Objects from single-detector preprocessors
L2 Preprocessors

- Cal em TT clustered em pt, η, φ, quality (L1)
- Cal jet TT clustered jet pt, η, φ, quality (L1)
 - Ç no ICD
 - Ç large tiles only from tower seeds
- CFT pt, φ, quality (no uv so no η)
 - Ç tags with CPS
 - Ç STT: confirmed CFT tracks; impact parameter-oriented lists
- FPS E, η, φ, quality (upstream*downsteam)
- Mu pt, η, φ, quality
- No vertex position information (η_{detector})
L2 Global

TCC → L3

VME:

- L3, Monitoring to TCC via DP Mem
- VME: < 1 KHZ

Magic Bus:

- > 10 KHz
- L2G Inputs So … Sn
- Admin/Worker Comm
- L2 Answer to L2 HW FW

Scaler gates

L1, L2 HWFW

SCL (Includes L1 Qualifiers)

Fred

S0 → Sn

L2 Answer

J. Linnemann, MSU 01/12/2000
L2Global Hardware

- Alpha processor for Worker
- Another for Administrator
- Add more Workers if can’t keep up

Ç hidden from user software
L2 Global Software

- Above user level: buffer handling, monitoring
 - I/Ogen: a great deal of data access and formatting hidden from user

- Above user level: script interpretation
 - L2 script runs iff its L1 fires
 - Speed, and efficiency independent of other triggers
 - 128 bits 1:1 with L1 for now
 - Fanout later if needed (would need pre-scaling)
 - Interface with user code defined
 - Script runner implemented
 - Parameter initialization still not implemented

- Working on adding to simulation
L2 Infrastructure

- 60 nsec time budget for L2G overall
 - tight coding required
 - budget per algorithm less crisp--but shorter!
- C++ with static allocation, no user I/O
 - see L2 coding guidelines; error logger allowed
- Considerable effort made to hide complexities
 - buffers hidden; IOGen; classes for h, j
- modified Linux (eases debugging)
 - Linux turned off when run starts
 - maybe even during run downloading
L2 Global Algorithms

- Some rough C++ code exists (timing tests)
 - not using real interfaces, environment
- Now ready to begin drafts of final algorithms
- L2Global algorithms differ from L2 Preprocessors algorithms:
 - don’t run every event
 - many accept multiple input object types
 - variable input parameters from script (instances)
- Dylan & Roger’s talks for details
 - writing, and adding to simulation
Doing a L2 Algorithm
includes liaison with ID group!

- Coding is demanding, *but a small part*
 - MSU: technical assistance, or even final rewrite if necessary
- Verify algorithm *(each new version)*
 - in simulation, before going online
 - test data, automated release tests
 - in test stand (larger data volumes); analyze results offline
- Monitor Online
 - make L3 EXAMINE histograms
 - compare simulation v.s. actual results
- Tune cuts *(less relevant for simpler algorithms)*
 - as part of ID Group: define baseline cut values
 - possibly different tunings for different physics topics
- Measure, parameterize turn-on curve *(mostly indep. of physics)*
 - efficiency v.s. Et offline / Thresh L2 (resolution, tails, relative scale)
 - parameterize v.s. Et, \mathcal{L}; put in parameterized MC
3 Types of L2G Object Algorithms

- **Match**
 - create by matching preprocessor objects
 - ζ threshold, # objects, quality cuts
 - e, g, m
 - jets, t (?)

- **Cut**
 - # CFT tracks with $p_T > x$
 - # tracks with impact significance $> x$

- **Relation**
 - Transverse Mass $> x$
 - $D_j < x$
Match

- Relatively complex:
 - multiple object type matches (but known in advance)
 - more cuts to study
 - will require interaction with preprocessor experts

- electromagnetic e, g:
 - matches among cal, ctt/stt, cps, fps
 - exact relation of e, g code to be determined

- m matches among mu, ctt/stt (vary with quality req’d)
 - slow mover tag from scintillator timing?

- jets: is this just a cut on L2CAL output? Tracks too?

- t: ID group should define needs
 - or just further cuts on jets?
Cutting Tools

- **Simplest**
 - single object type, known in advance
 - mostly coding, technical verification
 - still, cut studies, turn-on curve measurement
 probably by preprocessor group

- **Etmiss**

- **Tracks**
 - CFT? Require STT confirm?

- **Tracks with impact significance**

- **Jets (if just calorimeter jets)**

- **t? (even if cal-only, new cut studies needed)**
Relations: t 2 L2G objects from previous tools in script

- Complexity similar to cutter but no preprocessor team
- Different input: pointers to passed object lists
- Objects of different generic type
 - Not known in advance: technical issues
- Rapidity range: a degenerate case (n=1?)
- Transverse mass, invariant mass
 - Need Z_v or an approximation strategy
 - Studies, and parameterization needed
- D_h, D_j, and $D_\mathcal{R}$ (=isolation)
 - $< x$, $> x$, and 180° variants (Jet co-linearity, etc.)
- H_T (from jets)
Speculative:
not clear when/if done

- Zvertex
 - Define, then cut on?
 - Use in Et definition?
 - L0? Potentially STT ZV?
 - # primary vertices? Same issues
 - Luminosity-dependent efficiency--lots of studies!

- Displaced Vertex
 - x-y vertex finder among displaced tracks?
Responsibilities and Opportunities I

Matching

- MSU will do e, g tools:
 - probably most complex
 - with SUNYSB for PS, low Pt; UIC on Cal

- need volunteers for mtool

- Jet, and t tools
 - volunteers needed for both
 - also need crisper definitions from/with ID groups

Ç are these a small or large amount of work?
Responsibilities and Opportunities II

Cutting and Relational

- MSU: simple # CFT tracks > Thresh: sample cutting
- MSU will do transverse mass: sample relational
 - SUNYSB collaborates on invariant mass tool, esp. low mass

- Need volunteers for rest of cutting and relational tools

- If no volunteers mid-Feb, MSU will code 1st versions
 - so simulations can proceed
- Even if MSU codes 1st versions, may still need help
 - cut tuning, parameterization, monitoring