L2 Components

James T. Linnemann
Michigan State University
DØ Workshop
July 9, 1998
Agenda

- Schedule this summer JL 5
- Prototype/testing issues JL 15
- MBT progress Bard/Baden 20
- MBT/SLIC Inputs Fortner 20
- SLIC status Fortner 20
- FIC status Le Du 15
- VME Space/Initialization JL/Laurens 15
- Monitoring JL 20
- Alpha ordering/ Test Stands JL 10
Prototypes / Testing

- Connectors on VIPA crates
- Bit3 Extenders
- Any other purchases needed?
- VMETRO VME Bus analyzer?
- Any other test equipment required?
VME and MBus Initialization

- **VME initialization:**
 - based on VIPA geographical addressing
 - card finds own slot number
 - uses to define VME base address
 - applies to MBT, SLIC, worker Alpha’s
 - what about Bit3? (jumpers)

- **Mbus initialization:**
 - Administrator .exe ASSUMES it knows which cards are in which crates
 - modify source code to move cards
 - it thus addresses relevant control registers
 - it downloads to MBT Mbus base address
 - Alphas get correct .exe based on Internet card
 - Alpha Workers usually have distinct .exe’s
 - .exe only work if at correct slot
 - defines own VME and Mbus space
VME Address Space

- Long Note from Philippe
- Issues
 - WHAT IS VISIBLE FROM TCC
 - VME space is 32b/crate = 4GB
 - TCC views through all (16) crates thru single 32MB window on Bit3 617 card (28b)
 - splits for A32, A24, A16 spaces separately
 - interrupts also must be mapped
- Principles
 - equal share of direct mapped VME space
 - for each crate
 - for each card
 - try to confine problems to 617 in TCC crate
 - try to make test code = final code
 - 412 (VME VME) not 617 (VME PCI)
 - equivalent ONLY for direct mapped
- How do we proceed
Bit3 cards

- **617 VME to PCI**
 - ok when at most 3 crate test stand
 - limitation is PCI slots in PC
 - 32MB window of 4GB in TCC Comm crate
 - but individual Bit3 driver calls can hit anywhere in TCC crate, just slower

- **412 VME to VME**
 - need if 4 or more crates
 - + 6u VME crate with 617
 - EACH have 32MB windows
 - up to 8K pieces of 4KB or more each
 - Paged (indirect) addresses
 - 64kB..128..256..512..1MB window
Communication

- TCC Communication Crate
 - single 617 VME to PCI
 - use 16 windows to map to 412’s
 - a 412 VME to VME for each L2 crate
TCC Communication Crate

- 16 windows (1 per L2 crate)
 - enough for 7L2 (no STT?) + L1, L2 FW
 - addr 28-31 define window
 - each window 4GB/16 =1/4 GB = 256 MB
 - upper 8MB = reserve for MPM of 412
 - set up with jumpers, NOT SOFTWARE

- DIRECT MAPPING: only A32
 - A16, A24 by paged mode
 - write base address to 412
 - Interrupts also by mapping in 412

- So, Use A32 when possible?
Proposal for L2 crate

- 256MB window direct mapped (a28)
 - propose divide by 16 8MB blocks
 - 4b card + a24
 - = 15 cards + 8MB MPM
 - thus, 8MB (4?) for important stuff
 - base addresses above a25
- then paged A32
 - 4b card + a28, 256MB each
 - is this enough for 64MB alphas?
 - Size of Universe window(s) on alphas
- Need further conventions for
 - A24 (16 MB total)
 - A16 (64 KB total)
 - for interrupts
- is 16 “cards” the right number
 - 32 seems a waste but...
VME Census

- Card Name
- Master or Slave only?
- Uses of A32
- Uses of A24
- Uses of A16
- Interrupts generated
- Interrupts recognized/handled
- Base address by jumper, geographic, or software?
VBD

- 8kB of A16 to control
 - base address by jumper
 - Input (once per reset, not just per run!)
 - lists of pointers to word counts
 - list of start addresses

- reads word counts by A16/D16
 - = 1 universe window/alpha

- data read incrementing from start address by A24/D32
 - = 2nd universe window/alpha
Fast Monitoring and ECL Scalers

- **ECL Scalers in Framework:**
 - Always there, even if card crashed
 - Reliable for diagnosis, “stale” only if hung

- **ECL in Alphas**
 - Alpha Administrator (6 X 32 bits/crate)
 - State
 - Buffer Count
 - Alpha Worker (10 or so X 8 bits/worker)
 - State (simpler)
 - Note: LOTS of other info available by VME but only if Admin or TCC forcibly extract

- **ECL in FIC (about 6 in system)**
 - keep interface simple (no VME)
 - Buffer count X 4 channels
 - Proposal: 8 bits/FIC
 - jumper select: channel 0:3 or worst of 4
 - 0, 1, 2, 3-6,7-10,11-14,15, 16
Fast Monitoring via VME

- Replicate function of ECL scalers on VME board:

- Define scaler gates, sample these at some reasonable frequency
 - 132 ns not necessary
 - read out at .2 Hz or so
 - 1000 samples =>200 Hz; try 1 KHz or so
 - pick convenient down-scaled from clock

- Appear in monitoring by Administrator copying to TCC DPM

- Applies to:
 - MBT
 - SLIC
VME Scalers: MBT?

- 8 scalers per card
 - same definition as FIC
- OR 17 scalers per card
 - 0, 1, 2, ..., 17
- Select Channel: 0…7
- Define buffer count as number of events with SOME information
- OR worst of 8 (including L1 SCL)
 - always arrives first, pushes up apparent occupancy
- OR worst of 7 (excluding L1 SCL)
- Question: How to enforce time-consistent copy-before-read of scalers
VME Scalers: SLIC

- Same definition as for MBT (0:15) for buffer occupancy
- Add State information for
 - Master DSP
 - DSP 0:3
 - How many bits?
- Master DSP copies counters to readout area on receipt of Collect Status
- Similar questions on getting consistent counts.