Generic Rigidity Percolation in Two Dimensions

D. J. Jacobs and M. F. Thorpe

Department of Physics and Astronomy
and Center for Fundamental Materials Research
Michigan State University, East Lansing, MI 48824

(January 19, 1996)

We study rigidity percolation for random central-force networks on the bond and site diluted generic triangular lattice. Here, each site location is randomly displaced from the perfect lattice, removing any special symmetries. Using the Pebble Game algorithm, the total number of floppy modes are counted exactly, and exhibit a cusp singularity in the second derivative at the transition from a rigid to a floppy structure. The critical thresholds for bond and site dilution are found to be 0.66020 ± 0.0003 and 0.69755 ± 0.0003 respectively. The network is decomposed into unique rigid clusters, and we apply the usual percolation scaling theory. From finite size scaling, we find that the generic rigidity percolation transition is second order, but in a different universality class than connectivity percolation, with the exponents; $\alpha = -0.48 \pm 0.05$, $\beta = 0.175 \pm 0.02$ and $\nu = 1.21 \pm 0.06$. The fractal dimension of the spanning rigid clusters and the spanning stressed regions at the critical threshold are found to be $d_f = 1.86 \pm 0.02$ and $d_{BB} = 1.80 \pm 0.03$ respectively.

I. INTRODUCTION

The simple yet powerful concepts of percolation theory have found their way into many different areas of research [12] including communications, biology, physics, geophysics, and to a host of engineering disciplines. Two important applications which commonly come to mind are those of fluid flow through porous media and the d.c. conductivity in
a metal/insulator composite. The one essential property common to all percolation type problems is that of a connected pathway. Some properties of interest such as fluid flow or electrical current can be traced across various paths within the system. We will apply percolation theory to random elastic central-force networks to gain insight on the geometrical aspects of elasticity where the property of interest is rigidity.

The elastic properties of random networks of Hooke springs has been studied over the past 12 years [3-13]. One of the most interesting findings has been that effective medium theory describes the behavior of the elastic constants and the number of floppy modes remarkably well [14,5] except very close to the phase transition from a rigid to a floppy structure. The success of effective medium theory has allowed complex situations such as the elastic behavior of 3d glasses like GexAsySex to be characterized. In particular some properties of glasses track the mean coordination [3,6] < r > = 4x + 3y + 2(1 - x - y) = 2 + 2x + y where the Ge atoms are all four-fold coordinated the As atoms are all three-fold coordinated and the Se atoms are all two-fold coordinated.

Unfortunately attempts to study the critical behavior in central-force networks have not been very satisfactory and the question of the universality class of the rigidity transition [7,8,11] has remained unresolved. This question is fundamental in understanding the nature of the rigidity transition and may have important implications as to how the character of the glass transition is affected by the mean coordination as has been discussed recently via fragile and strong glass formers [17]. We show here how substantial progress can be made in understanding the geometrical nature of generic rigidity percolation [18].

There are two important differences between rigidity and connectivity percolation. The first difference is that rigidity percolation is a vector (not a scalar) problem and secondly there is an inherent long range aspect to rigidity percolation. For example Fig. 1(a) shows four distinct rigid clusters consisting of two rigid bodies attached together by two rods connecting at pivot joints. Now the placement of one additional rod as shown in Fig. 1(b) locks the previous four clusters into a single rigid cluster [19]. This non-local character allows a single rod (or bond) on one end of the network to affect the rigidity all across the network.
from one side to the other.

FIG. 1. The shaded regions represent 2d rigid bodies. The (closed, open) circles denote pivot-joints that are members of (one, more than one) rigid body. (a) A floppy piece of network with four distinct rigid clusters. (b) Three generic cross links between two rigid bodies make the whole structure rigid. If the bonds were parallel, the structure would not be rigid to shear[19]. (c) Three non-collinear connected rods connecting across a rigid body is generic and contains one internal floppy mode. If they were collinear (along the dotted line), then there would be two infinitesimal (not finite) floppy motions, and under a horizontal compression buckling would occur.

Using concepts from graph theory we set up generic networks where the connectivity or topology is uniquely defined but the bond lengths and bond angles are arbitrary. A generic network does not contain any geometric singularities [9] which occur when certain geometries lead to null projections of reaction forces. Null projections are caused by special symmetries such as the presence of parallel bonds or connected collinear bonds. Rather than these atypical cases their generic counterparts will be present as shown in Figs. 1(b) and 1(c). This ensures that all infinitesimal floppy motions carry over to finite motions [9][20].

All previous studies on rigidity percolation have been on regular (non-generic) lattices which as we now know [18] has inadvertently delayed a proper understanding of the rigidity transition. In non-generic (referred to as atypical) networks many geometrical singularities occur which lead to non-linear effects. For example a diode-like problem frequently occurs
in *atypical networks* where a string of collinear bonds can only be extended with a cost in energy but can be compressed with no cost in energy due to buckling [e.g. Fig. 1(c)]. The diode effect complicates studies because it leads to the breakdown of linear elasticity theory which must be reversible. A simple way to view a generic network is to take a regular lattice structure and randomly displace each site location by a small amount. This introduces local distortions throughout the lattice and is in itself a good physical model for amorphous and glassy materials. All prior studies which inevitably involve the non-linear effects arising from geometrical singularities [4–14], should be considered as a separate problem.

By considering generic networks the diode effect and the problematic geometric singularities are completely eliminated. Therefore the problem of rigidity percolation on *generic networks* leads to many conceptual advantages because all geometrical properties are robust not depending on a multitude of special cases. Moreover real glasses are modeled better by generic networks rather than regular *atypical networks* because of local distortions. In two dimensions there exist efficient exact combinatorial algorithms allowing for the possibility of an in depth study of rigidity percolation.

In section III we will briefly review some previous results on rigidity percolation highlighting both the successes and the unresolved problems. We then give a short description of the *Pebble Game* algorithm in section III which allows the static or geometric properties of rigidity percolation in 2d generic networks to be directly addressed. Here we will discuss three basic applications which include calculating the exact number of floppy modes identifying all rigid clusters and determining the over-constrained regions. We present results obtained using this new approach in section IV for the bond and site diluted generic triangular lattice. Finally we will conclude in section V with a discussion on what we have achieved in this work and what directions still remain for further study.
II. PREVIOUS RESULTS

The rigidity of a network glass is related to how amenable the glass is to continuous deformations that require very little cost in energy. A small energy cost will always arise from weak forces which are present in addition to the hard covalent forces that involve bond-lengths and bond-angles. These small energies can be ignored because the degree to which the network is deformable is well quantified by just the number of floppy modes [3] within the system. A mental picture of floppy and rigid regions within the network has led to the idea of rigidity percolation [34]. An interesting model to consider is one with only central forces because its properties are most different from connectivity percolation which can be recovered if all pivot joints are welded fixed [2122].

Much understanding of the general phenomena of central-force rigidity percolation can be obtained by studying a random network of Hooke springs. To be specific we begin by considering a network of Hooke springs characterized by the potential

\[V = \frac{1}{2} \sum_{\{ij\}} \alpha_{ij} n_{ij} (l_{ij} - l_{ij}^0)^2 , \]

where the sum is over all bonds \(\{ij\} \) connecting sites \(i \) and \(j \) in the network. A bond connecting sites \(i \) and \(j \) is present if \(n_{ij} = 1 \) with probability \(p \) and absent if \(n_{ij} = 0 \) with probability \(1 - p \). The spring constants \(\{\alpha_{ij}\} \) and the equilibrium bond lengths \(\{l_{ij}^0\} \) are positive real numbers but are left arbitrary. In addition the site locations are also left arbitrary as the network is generic. Note that rigidity is a static concept involving virtual displacements so that while it is convenient to use harmonic potentials as done in Eq. (1) any set of pair potentials would give the same results for the geometric aspects of rigidity that is of interest here.

A collection of sites form a rigid cluster when no relative motion within that cluster can be achieved without a cost in energy. Conversely the floppy modes correspond to finite motions of the sample which do not cost energy. Therefore the geometrical properties and the number of floppy modes can be determined by an equivalent bar and joint structure
Note that a d-dimensional system always has at least $d(d + 1)/2$ floppy modes due to d global translations and $(d - 1)d/2$ global rotations.

The number of floppy modes in d dimensions is given by the total number of degrees of freedom for N sites minus the number of independent constraints. A redundant bond can only add additional reinforcement and/or cause internal stress in an existing rigid body. A key quantity is the number of floppy modes F in the network $f = F/dN$. By defining the number of redundant bonds per degree of freedom as n_r we can write quite generally

$$f = \frac{dN - \left(\frac{1}{2}Nz p - dNn_r\right)}{dN} = 1 - \frac{p}{p^*} + n_r$$

where $p^* = 2d/z$ and z is the lattice coordination. Neglecting the redundant bonds as first done by Maxwell [23] we find that f is linear in the bond concentration p and goes to zero at the Maxwell approximation p^* for the threshold. The Maxwell approximation gives a very good account of the location of the phase transition and the number of floppy modes but it ultimately fails since the number of independent constraints is not just the total number of bonds as some bonds are dependent.

Simple Maxwell constraint counting has been applied to 3d network glasses [31115] with covalent bonding. Taking into account the constraints from bond stretching and bond bending forces the number of floppy modes per degree of freedom is found to be

$$f = 2 - \frac{5}{6} \langle r \rangle$$

where $\langle r \rangle$ is the average coordination number. Note that for purposes of counting the number of floppy modes and determining the rigid clusters angular forces may be incorporated as next neighbor central forces. Of course the quantity f cannot be negative nor can it be zero at the rigidity threshold due to the presence of many small floppy inclusions. In the rigid phase the approach of f toward zero as the mean coordination number increases will resemble a Lifshitz tail [24].

Short of the Maxwell constraint counting method other ways that have been used for calculating the number of floppy modes exactly include rank determination of the dynamical
matrix [3] \(\Gamma \) relaxation methods [5,7] \(\Gamma \) transfer matrix methods [6,22] \(\Gamma \) Gaussian elimination [12] and the equation of motion technique [15]. Hence many numerical methods have been explored.

Here we focus on the geometrical aspects of rigidity percolation which have not been directly addressed before. Previous studies have used costly relaxation type methods [which use \(O(N^3) \) floating point operations] so that networks containing \(N \approx 10^4 \) sites already present a difficult numerical challenge. Relaxation methods are well suited for calculating elastic constants but not for characterizing the geometric structure. This is because numerically one cannot identify which bond has exactly zero stress or if a bond accidentally has zero stress. However until now this was the only approach available in determining the stress carrying backbone.

Many basic questions have remained open regarding the nature of the rigidity transition in spite of many years of research by many groups. We mention a few points regarding the triangular lattice. Hansen and Roux [7] and later supported by Arbabi and Sahimi [12] have indicated that the fractal dimension of the stress carrying backbone is about \(D_0 \approx 1.63 \) which is very close to the current carrying backbone in connectivity percolation. Furthermore the elastic moduli critical exponent (also denoted by \(f \)) for more precisely the ratio \(f/\nu \approx 2.95 \) was obtained for the random bond-dilution problem. Curiously this value is the same as the full bond-bending model (all angular forces are present) which has an identical geometry to connectivity percolation. These two results gave strong evidence that the geometrical properties of central-force rigidity percolation is identical to connectivity percolation.

At first the idea that the two types of percolation problems could share the same universality class is surprising since the vector and scalar character have different symmetry properties and because rigidity is a highly non-local phenomenon much different from connectivity. However Hansen and Roux [7] have argued that the reason why this is possible is because at large length scales the central forces are able to yield effective angular forces via lever arms. Thus the central-force problem may renormalize into the full bond-bending model. Knackstedt and Sahimi [10] have suggested using a real space renormalization group
calculation the geometrical properties of site and bond *rigidity percolation* share the same universality class as far as geometry is concerned. However the elastic moduli exponents were shown not to be the same. This has been confirmed by simulation [12] as well namely it has been found that $f/\nu \approx 1.12$ for random site dilution. If the idea of *lever arms* is correct it should equally apply to random site-dilution.

To make matters worse other researchers [518] have obtained contradicting numerical results from those quoted above. One reason for all the uncertainty is the fact that only small systems were studied. This is an especially bad situation because rigidity is an inherently long range phenomenon; thus causing strong finite size corrections [712125] which must be accounted for. Recently it has been suggested [13] within mean field and a simple triangularization scheme that the rigidity transition is first order. More recently it has been shown [26] that on various Bethe lattices the rigidity transition is first order. Clearly progress can be made if exact calculations on large system sizes become possible.

III. THE PEBBLE GAME ALGORITHM

To discuss the pebble game algorithm in detail is out of scope for this paper [27] but a brief description is given here. We have been able to study networks containing more than 10^6 sites using an integer algorithm which gives exact and unique answers to the geometric properties of generic rigidity percolation. Because of the non-local characteristic of rigidity percolation [e.g. Figs. 1(a) and 1(b)] burning-type algorithms [2128] commonly used in connectivity percolation are useless. This implies that the entire structure needs to be specified [29] (stored in memory) since the rigidity of a given region may depend on bonds far away.

A very efficient combinatorial algorithm as suggested by Hendrickson [20] has been implemented to (i) calculate the number of floppy modes (ii) locate over-constrained regions and (iii) identify all rigid clusters for 2d generic bar-joint networks. The crux of the algorithm is based on a theorem by Laman [30] from graph theory.
Theorem: A generic network in two dimensions with N sites and B bonds (defining a graph) does not have a redundant bond iff no subset of the network containing n sites and b bonds (defining a subgraph) violates $b \leq 2n - 3$.

By simple constraint counting it can be seen that there must be a redundant bond when Laman's condition is violated. This necessary part generalizes to all dimensions such that if $b > dn - d(d + 1)/2$ then there is a redundant bond for $n \geq d$. For $n < d$ it follows that if $b > n(n - 1)/2$ then there is a redundant bond. Note that $n = 1$ is an excluded case in Laman's theorem since two sites are required for a bond to be present. The essence of Laman's theorem is that in two dimensions finding $b > 2n - 3$ is the only way redundant bonds can arise. This sufficient part does not generalize to higher dimensions [20].

The basic structure of the algorithm is to apply Laman's theorem recursively by building the network up one bond at a time. Only the topology of the network is specified not the geometry. Because of the recursion only the subgraphs which contain the newly added bond need to be checked. If each of these subgraphs satisfy the Laman condition $b \leq 2n - 3$ then the last bond placed is independent otherwise it is redundant. By counting the number of redundant bonds the exact number of floppy modes is determined.

Searching over the subgraphs is accomplished by constructing a pebble game. Each site in the network has two pebbles tethered to it. A pebble is either free when it is on a site or anchored when it is covering a bond. A free pebble represents a single motion that a site can undertake. Consider a single site having two free pebbles representing two translations. If two additional free pebbles can be found at a different site then the distance between this pair of sites is not fixed. Placing a bond between this pair of sites will constrain their distance of separation. To record this constraint one of the four free pebbles is anchored to the bond. Once the bond is covered only three free pebbles can be shared between that pair of sites. After a bond is determined to be independent it will always remain independent and covered.
We begin with a network of N isolated sites each having two free pebbles. The system will always have $2N$ pebbles; initially two free pebbles per site. We place one bond at a time in the network connecting pairs of sites. The topological placement of either the sites or bonds will depend on the model under study such as the site or bond diluted generic triangular lattice as done here. The independent bonds must be covered by a pebble therefore before a bond can be covered it must be tested for independence. For each bond placed in the network four pebbles (two on each site at the ends of the bond) must be free for the bond to be independent. When a bond is determined to be independent any one of the four pebbles can be anchored to that bond. In general all four pebbles across an added bond will not be free because they are already anchored to other bonds. These anchored pebbles may possibly become free at the expense of anchoring a neighboring free pebble while keeping a particular independent bond covered. In other words pebbles may be shuffled around the network provided all independent bonds remain covered.

It is always possible to free up three pebbles across a bond since they correspond to its rigid body motion. When a fourth pebble across a bond cannot be found then that bond is redundant and it is not covered. In Fig. 2 an example of how pebbles are shuffled is schematically shown on a small generic structure. Two distinct pebbles are associated with each site for which each pebble can either be used to cover a bond or is free to cover a bond. The two pebbles closest to a given site as schematically drawn in Fig. 2 are the pebbles that are tethered to that site. Thus a pebble may either be on a site (free pebble) or on a bond (ancored pebble) but it always remains tethered to a given site regardless of how the pebbles are shuffled. Note that a bond may be covered by a pebble from either of its end sites. Therefore free pebbles can be moved across the network by exchanging the site from which a pebble is used to cover a bond.
FIG. 2. A demonstration of the pebble game on a generic network. Independent (redundant) bonds are shown with solid (dashed) lines which are (are not) covered by a pebble. Large (filled, open) circles denote (anchored, free) pebbles on (bonds, sites). The two closest pebbles to a given site are tethered to that site. Small (filled, open) circles denote sites belonging to (one, more than one) rigid cluster. Over-constrained bonds are shown with heavy dark lines. Shaded regions denote 2d rigid bodies. (a) Five free pebbles indicate 5 floppy modes until a new bond is added and tested for independence. A fourth free pebble is found via the path traced by arrows. (b) The added bond is independent and thus covered. There are now six rigid clusters and four floppy modes.

Over-constrained regions are recorded each time a dependent bond is found. These regions correspond to the set of bonds that were searched in trying to free the fourth pebble but failed. These regions are called Laman subgraphs which violate the condition \(b \leq 2n - 3 \). An added bond onto a Laman subgraph will be redundant.

We identify all the rigid clusters after the network is completely built. First, we identify isolated sites. Then the rigidity of all other sites is tested with respect to a reference bond. If a test-bond between either one of the pair of sites forming the reference bond and the site in question is found to be (dependent) independent) then that site (is it is not) rigid with respect to the reference bond. The test-bond is actually never added to the network. Since a bond can only belong to one cluster (unlike sites) all the bonds within a rigid cluster are ascribed to a particular reference bond. A systematic search is made to map out all rigid clusters.
We show in Fig. 2(b) the end result of the pebble game applied to a simple structure. Many aspects of rigidity are displayed. It can be seen that: (1) The exact number of floppy modes is determined by the number of free pebbles remaining. A depletion or excess of pebbles to cover a set of bonds distinguishes the over-constrained regions from the floppy regions; unlike the approximate global counting of Maxwell. (2) This network is uniquely decomposed into a set of six distinct rigid clusters although the clusters are not disconnected. (3) The free pebble along the bottom edge cannot be shuffled over to the rigid body at the top which already has three free pebbles. This free pebble is shared among three bars and two triangles. Generally, free pebbles get trapped in floppy regions consisting of many rigid clusters giving rise to complex collective floppy motion. (4) The number of redundant bonds is unique whereas their locations are not unique since this depends on the order of placing the bonds. Nevertheless, each redundant bond belongs to a unique over-constrained region (Laman subgraph). For example, there are 19 over-constrained bonds in the rigid cluster at the top of the structure in Fig. 2(b) while having only two redundant bonds. (5) A rigid cluster will generally have sub-regions that are over-constrained. If any bond that is over constrained is removed, the rigidity of the network is unchanged.

An upper bound on the performance of the above algorithm [20] has been shown to scale according to the square in the number of sites in the system. In the implementation of the pebble game near the threshold, the CPU time scales roughly as $\sim N^{1.2}$ where N is the number of sites. Away from the threshold, the system size dependence is linear in N. We find that the pebble game runs about twice as fast for site-dilution than bond-dilution at their respective thresholds. Near full concentration, the performance for both the site and bond-diluted lattices converge to the same time dependence. The difference in performance time is mainly due to a smaller effective system size for a site-diluted lattice ($N = qL^2$ instead of L^2 where q is the site concentration and L is the linear system size). On average, it takes ≈ 1.4 CPU minutes on a Dec-alpha work station to find the percolating rigid cluster for a 1150×1150 bond-diluted system at its critical threshold.

A section of a large network on the bond-diluted generic triangular lattice at p_{cen} is
shown in Fig. 3 after the pebble game was applied. Here we see a typical topology and associated geometry of the set of rigid clusters in this section of network. Observe that nearly all individual rigid clusters form connected paths via *pivots* which are free joints shared by two or more rigid bodies. It can be seen that floppy regions form where the *pivot sites* cluster. Notice that within this section of the network there is a spanning rigid cluster where *rigidity* forms a connected path from top to bottom and left to right. There are also clusters of over-constrained regions in the network which are not percolating in this section. Contrast these over-constrained regions in this figure to a typical stressed backbone shown in Fig. 1 found by Hansen and Roux (1989) [7]. Two important differences underlying the structural characteristics are that we have used generic (not atypical) networks and periodic boundary conditions in both directions (no applied rigid bus bars).

![Diagram of a typical cut-out region from a bond-diluted generic network](image)

FIG. 3. The topology of a typical cut-out region from a bond-diluted generic network at $p = 0.6603$. A particular realization would have local distortions (not shown) similar to Fig. 2. The heavy dark lines correspond to over-constrained regions. The open circles correspond to sites which are acting as pivots between two or more rigid bodies.

IV. NEW RESULTS FOR BOND AND SITE PERCOLATION

In this section we present some new results for central-force *generic rigidity percolation* on both the bond and site diluted triangular net. We begin by working out a better estimate for the bond and site rigidity threshold. The Maxwell counting prediction for the site rigidity
threshold gives $q^* = 2/3$ which is the same as $p^* = 2/3$ for bond dilution. This comes about because the number of sites in a site diluted system is only qL^2 and the number of bonds is $q^2zL^2/2$. When the number of floppy modes is normalized per degree of freedom the final result for f can be expressed in the same way as the left-most side of Eq. (2) with p replaced by q. To get a more accurate estimate for the rigidity threshold the presence of redundant bonds and floppy inclusions must be accounted for.

In a low concentration expansion the first diagram to contribute redundant bonds is shown in Fig. 4(a) where only 11 of the 12 bonds are independent. This diagram leads to a correction for the number of floppy modes as $n_r = \frac{1}{2}p^{12} + O(p^{18})$ and $n_r = \frac{1}{2}q^7 + O(q^{10})$ for bond and site dilution respectively. In a high concentration expansion the first two dominant contributing diagrams are shown in Figs. 4(b) and 4(c) corresponding to dangling ends and isolated sites. These two diagrams lead to $f = 3(1-p)^5 - 2(1-p)^6 + O((1-p)^8)$ and $f = 3(1-q)^5 - 5(1-q)^6 + 2(1-q)^7 + O((1-q)^8)$ for bond and site dilution respectively.

![Fig. 4](image)

FIG. 4. All shaded areas represent a 2d rigid region. We show the topology for: (a) The lowest order diagram on a triangular network to have a dependent bond (dashed line). All 12 bonds are over-constrained. (b) The lowest order diagram for a floppy inclusion corresponds to a dangling bond. (c) An isolated site is counted as a floppy inclusion and contributes two floppy modes at the next lowest order.

It is these type of corrections that will shift the transition from the Maxwell threshold of $2/3$ and be responsible for a non mean-field-like critical behavior. We *equate* the number
of floppy modes from the truncated low and high concentration expansions. For bond and site dilution we estimate the thresholds to be 0.6622 and 0.6877 respectively. Thus we find a small downward shift for bond dilution and a somewhat larger upward shift for site dilution. The pebble game reveals that the rigidity thresholds shift about 50% more than the above estimates to $p_{cen} = 0.66020 \pm 0.0003$ and $q_{cen} = 0.69755 \pm 0.0003$ for bond and site dilution respectively. The site diluted threshold is also in good agreement with that obtained by Duxbury and Moukarzel [31].

It is interesting to note a couple of relationships between floppy modes and the geometry of rigidity percolation. There is a general sum rule for f in terms of the rigid clusters in two dimensions which can be written as

$$ f(p) = 1 - \frac{1}{2} \sum_{s=2}^{N} n_s(p) (2s - 3) $$

where n_s is the number of rigid clusters with s sites per lattice site. Unlike connectivity percolation $\sum_{s=1}^{N} sn_s(p) \geq 1$ because sites are shared at pivots [e.g. Figs. 2 and 3]. If we restrict ourselves to random bond dilution the first derivative of the floppy modes can be expressed in terms of the number of over-constrained bonds N_O as

$$ f^{(1)}(p) = -\frac{z}{2} \left(1 - \frac{N_O}{N_B} \right) \quad \text{for bond dilution} $$

where N_B is the total number of bonds and z is the lattice coordination. This result can be derived by considering all possible outcomes of randomly removing one bond from the network. Observe that the removal of an over-constrained bond does not change the number of floppy modes whereas all other bonds increases the number of floppy modes by one.

The behavior of the number of floppy modes can be studied with great precision for bond dilution by making use of Eqs. (4) and (5). Although there is no simple formula for the second derivative $f^{(2)}$ in terms of a geometrical quantity it can be easily calculated with arbitrary accuracy. We only need to consider the change in the number of over-constrained bonds in the network due to the random placement of one additional bond. If all possible bond placements are considered then $f^{(2)}$ can be calculated exactly for any given network.
However we have found that it is sufficient to perform a Monte Carlo sampling of about 5% of those bonds for a given network.

For site dilution there is no simple expression for the first derivative of the number of floppy modes in terms of a geometrical quantity. This is because when a single site is removed more than one bond is generally removed locally and these bonds influence the network in a correlated way. However we have calculated $f^{(1)}$ in the site dilution case using Monte Carlo sampling by monitoring the change in the number of floppy modes caused by the random placement of one additional site. Furthermore we also performed a Monte Carlo sampling of the random placement of pairs of sites in the network to calculate $f^{(2)}$. This latter calculation turned out to be prohibitive in calculation time for large systems.

We find that the basic characteristics of the number of floppy modes were similar for bond and site dilution. Since we obtained very accurate results for the bond dilution case we present these results by showing $f^{(1)}$ and $f^{(2)}$ in Figs. 5, 6 and 7 respectively. The results obtained for $f^{(2)}$ from our Monte Carlo sampling were found to be more accurate than a direct numerical differentiation of $f^{(1)}$. An additional benefit in calculating $f^{(2)}$ directly is that the results are independent from those for $f^{(1)}$.

FIG. 5. Simulation results for the fraction of floppy modes, $f = F/2N$, for a bond diluted generic network compared to the Maxwell prediction. All error bars are smaller than the symbols. Note that the non-generic threshold[12] is at 0.641.
FIG. 6. The first derivative of the fraction of floppy modes for a bond diluted generic network as calculated exactly from Eq. (5). All error bars are smaller than the symbols.

A sharp peak in Fig. 7 appears without any signs of a discontinuity. The peak most resembles a simple cusp. As can be seen in Figs. 5, 6 and 7 there is virtually no difference between the data for linear system sizes $L = 680, 960$ and 1150. Only very slight system size dependence has been observed. The trend is for smaller systems to show a cusp-like singularity in $f^{(2)}$ as well but with the peak slightly shifted to the left with a smaller amplitude.

FIG. 7. The second derivative of the fraction of floppy modes for a bond diluted generic network as calculated from Monte Carlo sampling. The fitting results for the cusp yields $p_{cen} = 0.6603 \pm 0.0003$ and an exponent of 0.48 ± 0.05. Typical error bars are shown which reflect both the statistical errors in the Monte Carlo sampling and the ensemble averaging.
The Maxwell prediction for f is included in Fig. 5 for comparison. On this scale the failure of the mean field estimate is evident. Nevertheless, on a scale over the range $0 \leq p \leq 1$ it is clear that the rigidity transition is extremely sharp and quite near the mean field threshold of $2/3$. Since it is possible to obtain accurate results near the transition both the threshold and cusp exponent can be found. The cusp singularity in $f^{(2)}$ was fitted to the functional form:

$$f^{(2)}(p) = A + \Gamma \pm |p - p_{cen}|^{-\alpha} \quad \text{for} \quad p \gtrsim p_{cen}.$$ \hspace{1cm} (6)

By integrating Eq. (6) twice both $f^{(1)}$ and f (being independently calculated data sets) were fitted simultaneously. Other than integration constants no additional parameters representing analytical background terms were used in the fitting forms for $f^{(1)}$ and f. From the simultaneous fit of $f \Gamma f^{(1)}$ and $f^{(2)} \Gamma$ we found an exponent of $\alpha = -0.48 \pm 0.05$ and a transition threshold of 0.6603 ± 0.0003. The resulting three fits have also been plotted in Figs. 5, 6 and 7. The fitting was over the bond concentration range shown in the figures.

The behavior of the second derivative suggests that the number of floppy modes is analogous for rigidity and connectivity percolation. In the case of connectivity percolation the number of floppy modes is simply equal to the total number of clusters which corresponds to the free energy \cite{32}. It would be nice if a similar result holds for rigidity percolation. We find that the second derivative of the total number of clusters changes sign across the transition thus violating convexity requirements. In view of Eq. (4) and that typically clusters are not disconnected we suggest that the number of floppy modes generalizes as an appropriate free energy. Therefore we have treated the exponent α in Eq. (6) in the usual context of a “heat capacity” critical exponent. More work needs to be done to see how a free energy can be defined for rigidity percolation.

We now turn to an analysis of the rigid cluster statistics presenting results for bond dilution with free and periodic boundary conditions and site dilution with periodic boundary conditions. Since the free boundary condition data was generated mainly to check boundary effects it was not extensively collected in comparison. Finite size scaling techniques from
percolation theory [233] are applied assuming only a single relevant length scale exists.

We also look at the geometrical properties of the over-constrained regions motivated by our discussions with Duxbury [31]. The over-constrained regions are not necessary to sustain rigidity. An isostatic framework [9] for example has just the right positioning of bonds to form a rigid cluster without a redundant constraint. However when external forces are applied to a rigid isostatic framework using rigid bus bars for example over-constrained regions will be induced across it which forms a percolating stressed region. Within a random environment there will be redundant bonds scattered throughout the network. Here the redundant bonds are essentially acting as external forces on an underlying isostatic framework. Physically the resulting over-constrained regions characterize internal stress caused by bond mismatch. Thus the over-constrained regions propagate stress (without externally applied forces) and are most closely analogous to the current carrying backbone in connectivity percolation. We find that monitoring the probability for a network of linear size \(L \) to contain either a spanning rigid cluster or spanning stressed backbone leads to the same correlation length exponent \(\nu \) and critical threshold.

We have looked at a series of linear system sizes ranging from \(L = 25 \) to \(L = 1150 \) in increments such that the next largest size is roughly a factor of \(\sqrt{2} \) larger. Our networks contain \(N = L^2 (qL^2) \) sites for bond (site) dilution. We typically consider about 40 to 50 different bond (or site) concentrations per system size. A predetermined number of bonds (or sites) are randomly placed into the system in order to have an exact concentration. For linear system sizes of \(L = \{25, 35, 50, 70\} \) we have generated \(N_R = 10000 \) independent realizations per concentration. For sizes \(L = \{100, 120, 170, 240, 340, 480, 680, 960\} \) we have generated at least \(N_R \times L^2 = 10^8 \) number of realizations per concentration and often as much as 8 times that much. The large number of realizations were required to obtain accurate results for the probability for the system to percolate at a fixed concentration.

In Fig. 8 we plot the probability for the system to percolate \(P_A(p) \) for bond dilution with free and periodic boundary conditions. At each fixed bond concentration we generated \(N_R \) independent realizations and calculate
\[P_A(p) = \frac{N_{HV} + \frac{1}{2}(N_H + N_V)}{N_R}. \]

Here \(N_{HV} \) is the number of realizations that had a spanning rigid cluster across the system both horizontally and vertically whereas \(N_H \) and \(N_V \) correspond to the number of realizations that had a spanning rigid cluster only horizontally or only vertically respectively. Other combinations of \(N_{HV}, N_H \), and \(N_V \) were also considered following the techniques of Yonezawa et al [33]. We see that the probability to percolate in Fig. 8 is quite a skewed function to either side of the threshold. For large system sizes \(p \) it is expected that a fixed point will appear where all the curves cross at \(p_{cen} \). We do see this fixed point settling down for system sizes \(L \geq 100 \) (more so with periodic boundary conditions). The crossing point \(P_A(p_{cen}) \) is at approximately 0.85 and 0.15 for periodic and free boundary conditions respectively which indicates strong dependence on the boundary condition.

![Graph showing probability of percolation vs bond concentration]

FIG. 8. The probability for a bond-diluted generic network to percolate rigidity, \(P_A(p, L) \), is plotted for periodic (free) boundary conditions for various system sizes with solid (dashed) line segments drawn between data points. Only four different sizes and several typical error bars are shown for clarity. The vertical solid line indicates our extrapolated threshold.

Various moments can be calculated from the probability density \(\frac{d}{dp} P_A(p) \) for the system to percolate. The correlation length exponent \(\nu \) can then be determined accurately [2B3] from the finite size scaling of the mean width \(\Delta_A \) where

\[\Delta_A = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} \sim L^{-1/\nu}. \]
The advantage of tracking the mean width is that it does not depend on a priori knowledge of p_{cen}. The critical threshold is then extrapolated using the first moment and the value of ν ascertained. We have calculated the moments according to

$$\langle p^n \rangle = 1 - n \int_0^1 x^{n-1} P_A(x) \, dx$$

(9)

by performing an integration by parts. The moments were insensitive to the method of interpolating P_A which included; joining pairs of data points by line segments, a spline fit, and fitting to suitable smooth functional forms.

The above discussion about the probability to percolate and its moments equally applies to the site dilution case. Since we expect the static critical exponents to be the same for bond and site dilution as supported by a simple renormalization group calculation [10] we perform an extrapolation for ν for five different data sets as shown in Fig. 9. One data set corresponds to the percolation of rigidity for bond dilution with free boundary conditions and the other four data sets correspond to the percolation of both rigidity and stress for bond and site dilution with periodic boundary conditions. Each extrapolated curve in the figure shows the result from five simultaneous fits of the data to the form

$$\frac{\log_{10}[\Delta_A(L)]}{\log_{10}(L)} = y = \left[a + \log_{10}(1 + b/L^c) \right] \frac{1}{\log_{10}(L)} - \frac{1}{\nu}$$

(10)

where the desired exponent ν and the effective correction to scaling exponent c were restricted to be the same fitting parameter for each data set. Note that if $b = 0$ in Eq. (10) then one recovers a simple power law dependence with a constant amplitude given by 10^a. We find that $\nu = 1.21$ and $c \approx 0.6$ gives the best fit. We also fixed $c = 1$ so that the finite size correction term would be $1/L$ which has appeared in previous extrapolations [25] for dynamical exponents. The $1/L$ correction allowed us to fit all our data nearly as well. By fixing different fitting parameters while accepting only relatively good simultaneous fits as well as taking into account results from individual fits for each data set separately has lead us to our error estimate. We find the estimate; $\nu = 1.21 \pm 0.06$.

21
FIG. 9. An extrapolation for the exponent ν (as $1/\log_{10}(L) \to 0$) given by the inverse of the negative of the y-intercept. An accurate estimate is made with five data sets simultaneously fitted to Eq. (10). Error bars are approximately the size of the symbols. The solid (dashed) lines denote the extrapolated best fit (with $\nu = 1.21$ and $c = 0.59$) for $\Delta_A(L)$ corresponding to spanning rigid (stressed) regions. The error bar at the extrapolated best value takes into account other comparatively good extrapolations. Note that the fluctuations in finding a network to percolate rigidity and stress are nearly the same.

We show in Fig. 10 the extrapolation of the critical threshold for bond dilution using three different data sets for both free and periodic boundary conditions. These results are obtained from the distributions $P_I \Gamma P_A \Gamma$ and P_U corresponding to the intersection \'average and union of the horizontal and vertical spanning clusters [33] respectively. We have defined P_A in Eq. (7) in terms of $N_H \Gamma N_V \Gamma N_{HV}$ and N_R. Similarly it follows that $P_I = (N_{HV} + N_H + N_V)/N_R$ and $P_U = N_{HV}/N_R$. Each extrapolated curve shown in Fig. 10 is the result from a simultaneous fit over the six data sets to the form

$$y = p_{cen} + (a + b/L^c)L^{-1/\nu}$$

(11)

where the desired threshold p_{cen} was restricted to be the same fitting parameter for each data set. Note that the fitting parameters $\{a, b, c\}$ are different than those in Eq. (10). The exponent ν may be taken as 1.21 from the extrapolation in Fig. 9.
FIG. 10. The extrapolation of the rigidity threshold for bond dilution as $L^{-1/\nu} \to 0$. The different symbols represent data from three separate calculations using the distributions P_I, P_A and P_U defined in the text. The symbol sizes reflect typical error bars. The dashed and solid lines show the best-fit curves to the data with free and periodic boundary conditions respectively. Here we have fixed $\nu = 1.21$ and show the results from simultaneously fitting all six data sets to the form given by Eq. (11) where we find $p_{cen} = 0.6602$ and $c = 0.733$. The error bar at the extrapolated value takes into account other comparatively good extrapolations.

The procedure of our extrapolation is the same as that explained for estimating ν. Our error bars were determined based on fixing various parameters in Eq. (11) (such as $c = 1$) as well as changing ν while accepting only relatively good fits. We find $p_{cen} = 0.66020 \pm 0.0003$ which is in excellent agreement with that obtained from the cusp singularity in $f^{(2)}(p)$ as shown in Fig. 7. Similarly for site dilution we find $q_{cen} = 0.69755 \pm 0.0003$.

Finite size corrections were strongest for bond dilution in Fig. 9 for periodic boundaries and in Fig. 10 for free boundaries. For site dilution (with periodic boundaries) corrections to scaling were found to be weak in both of these extrapolations. Therefore we plot the scaled probability to percolate rigidity in Fig. 11 for site dilution. The data collapse is reasonably good over the entire range of sizes from $L = 25$ to 960 suggesting only weak finite size corrections appear in site dilution. A better data collapse is possible with a ν of 1.24 as extrapolated with a $1/L$ correction to finite size scaling which we believe should be present.
as a surface correction. Unfortunately finding the best data collapse cannot assure us of having more accurate exponents since we are not strictly in the scaling regime.

\[z = (q - q_{cen})L^{1/\nu} \]

![Graph](image)

FIG. 11. The probability for a site-diluted system with periodic boundaries to percolate rigidity, \(P_A(q, L) \), is plotted against the scaled axis \(z = (q - q_{cen})L^{1/\nu} \) with \(q_{cen} = 0.69755 \) and \(\nu = 1.21 \). We note that when using the same value of the threshold, the best data collapse is obtained with a \(\nu \) of 1.25, and that a good data collapse can be found with \(\nu \) in the range between 1.22 and 1.28. Error bars are shown for system size \(L = 960 \). Generally the error bars are the biggest when \(P_A \approx 0.5 \) for any size \(L \), and increase as \(L \) increases because fewer realizations are generated. Also see Fig. 8 which has the same trend.

At the critical threshold a mass scaling analysis of the spanning rigid and stressed backbone allows the fractal dimension \(d_f \) and the backbone dimension \(d_{BB} \) to be found. Note that previous workers [5] have estimated the backbone dimension \(d_{BB} \) denoted earlier in section II as \(D_0 \) to be 1.64. Considering both the bond and site dilution cases with periodic boundary conditions we generated \(N_R = 5000 \) additional realizations for each system size from \(L = 25 \) to 960 and \(N_R = 2500 \) realizations for \(L = 1150 \). The average number of bonds (mass) in a spanning cluster normalized by \(3L^2 \) will scale as \(L^{d_f - 2} \). From this we can determine \(\beta \) since \(d_f = d - \beta/\nu \). Likewise for the stressed backbone its average number of bonds normalized by \(3L^2 \) scales as \(L^{d_{BB} - 2} \).

The bond and site dilution data are fitted simultaneously to the mathematical form given
in Eq. (10) while following the same fitting procedure used to extrapolate ν. We show in Fig. 12 the resulting extrapolations. Finite size corrections are clearly seen in the bond dilution case. We find that $d_f = 1.86 \pm 0.02$ and $d_{BB} = 1.80 \pm 0.03$. Taking $\nu = 1.21\Gamma$ an estimate for β as 0.169 ± 0.03 is obtained.

![Interpolation of the fractal dimension and backbone dimension. The average number of bonds in a spanning cluster, $\langle b \rangle$, is determined at the rigidity threshold for both bond and site dilution. The spanning rigid and stressed regions lead to d_f and d_{BB} respectively. Only three typical error bars are shown on each data set for clarity.](image)

An order parameter can be defined as the probability for a bond to belong to the incipient infinite rigid cluster. If the rigidity transition is second order then the order parameter should scale (for bond dilution) according to

$$P_\infty(p, L) \sim L^{-\frac{\gamma}{\nu}} [\frac{p - p_{cen}}{L^{\frac{1}{\nu}}} L^{\frac{1}{\nu}]}$$

(12)

where the scaling function must have the form $\phi(z) \sim z^\beta$ for $z > 0$ in the critical region. Likewise a similar expression holds for site dilution. In Fig. 13 we plot the appropriately scaled data for bond and site dilution with periodic boundary conditions. The two sets of data collapse onto two respective curves very well giving us the scaling function $\phi(z)$ for each case. The data collapse for the bond and site data are very good using the exponents $\nu = 1.21\Gamma$ and $\beta = 0.175$ and the respective thresholds $p_{cen} = 0.66020$ and $q_{cen} = 0.69755$.

There are no signs of a discontinuity in $\phi(z)$ near $z \approx 0$ to suggest a first order transition.
FIG. 13. The probability for a bond to be on the incipient infinite rigid cluster, \(P_\infty \), is scaled by a factor of \(L^{\beta/\nu} \) for linear system sizes ranging from \(L = 100 \) to \(L = 960 \). We plot the scaled data, representing the scaling function \(\phi(z) \), for both a bond and site diluted system with periodic boundaries using the top-right and bottom-left axes respectively. In this plot, we used \(\nu = 1.21 \), \(\beta = 0.175 \), \(q_{cen} = 0.69755 \) and \(p_{cen} = 0.66020 \).

The \(\beta \) exponent is directly found from the scaling function in Fig. 14 by taking base 10 logarithms of \(\phi(z) \) and \(z \). Fitting only the largest few system sizes over a large range in \(z \) yeilds a \(\beta \) of 0.195 and 0.170 for bond and site dilution respectively. Some finite size effects can be eliminated by fitting the data over a restricted range (larger \(z \)) while including all system sizes from \(L = 100 \) to \(L = 960 \). As shown in Fig. 14\(\Gamma \) the better estimates of 0.179 and 0.171 are obtained for bond and site dilution respectively. All four of these estimates for \(\beta \) from the scaling function are consistent with the independent estimate of 0.169 \(\pm \) 0.03 found above. Note that the site data in Fig. 14 is probably more accurate since the site data has had weaker corrections to finite size scaling on all the quantities studied. We take as our final estimate; \(\beta = 0.175 \pm 0.02 \) where the error bars are set by considering fits over various ranges and different system sizes.
FIG. 14. Taking the data in Fig. 13, we plot the \log_{10} of the scaling function, $\phi(z)$, versus the \log_{10} of the scaling variable, z, (for $z > 0$) in order to estimate the β exponent from the slope of an expected straight line. We show a least squares fit (fitting over the top $\approx 50\%$ of the data points shown) that is extended through all the data points for the bond and site dilution data separately. The slopes are found to be 0.179 and 0.171 for the bond and site data respectively.

V. DISCUSSION

We have calculated the second derivative of the number of floppy modes $f^{(2)}(\Gamma)$ very accurately for bond dilution. The cusp singularity in $f^{(2)}(p)\Gamma$ occurs at the rigidity threshold with a cusp exponent of $\alpha = -0.48 \pm 0.05$ as obtained by fitting Eq. (6) to the data in Fig. 7. From the completely independent extrapolation using the probability for a bond (and site) diluted network to percolate Γ we found $\nu = 1.21 \pm 0.06$. Assuming that the hyperscaling relation $\alpha = 2 - d\nu$ is valid an exponent of $\nu = 1.21$ suggest that the α exponent should be -0.42 which is in numerical agreement with our cusp exponent. This agreement supports our suggestion that f is the appropriate free energy density. Therefore we consider that the cusp in $f^{(2)}$ characterizes the “heat capacity” critical exponent.

Previous best estimates [7,2] for p_{cen} and q_{cen} on the regular (non-generic) triangular network are 0.641 ± 0.001 and 0.713 ± 0.002 for bond and site dilution respectively. The thresholds for the generic triangular lattice are found to be $p_{cen} = 0.66020 \pm 0.0003$ and
\(q_{cen} = 0.69755 \pm 0.0003 \) for bond and site dilution respectively. Clearly there are differences between the generic and atypical networks. Whether the critical behavior is modified is not our immediate concern but rather to fully understand the generic case. Later it should be possible to understand the differences arising from atypical configurations containing parallel bonds etc. Our focus will remain on generic networks since they prove easier to handle and more importantly they are relevant to a wide range of problems in materials science such as amorphous materials and glasses.

We have presented by far the most extensive simulation results on central-force rigidity percolation to date. This has been made possible by introducing the concept of generic networks. Recent work by Obukhov [13] involving mean field approximations suggest that the rigidity transition is first order. It has also been shown [31] that on Bethe lattices the rigidity transition is first order. As is always the case when extrapolating simulation data we cannot foresee unexpected trends. Thus we cannot rule out that the transition is weakly first order or even that somehow bond and site rigidity percolation are in different universality classes. However by making the plausible assumption that the static nature of the rigidity transition is the same for site and bond dilution (as supported by our data) we are lead to a very consistent picture. Namely that the rigidity transition is second order and is in a different universality class to connectivity percolation. We summarize our results for the static critical exponents in Table (I).

TABLE I. Summary of the static exponents for rigidity percolation, as estimated from the bond and site diluted generic triangular lattice. A comparison is made to connectivity percolation.

<table>
<thead>
<tr>
<th>Percolation</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\nu)</th>
<th>(d_J)</th>
<th>(d_{BB})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connectivity</td>
<td>(-0.667)</td>
<td>(0.138)</td>
<td>(1.333)</td>
<td>(1.896)</td>
<td>(1.62)</td>
</tr>
<tr>
<td>Rigidity</td>
<td>(-0.48 \pm 0.05)</td>
<td>(0.175 \pm 0.02)</td>
<td>(1.21 \pm 0.06)</td>
<td>(1.86 \pm 0.02)</td>
<td>(1.80 \pm 0.03)</td>
</tr>
</tbody>
</table>
In conclusion, we obtained the static critical exponents by using the usual cluster moment definitions [2] except for the specific heat exponent α which was estimated from $f^{(2)}$ as shown in Fig. 7. The usual definition in connectivity percolation that the total number of clusters correspond to the free energy [32] is not suitable because convexity requirements break down. In this respect more work is needed to find an appropriate model Hamiltonian that maps to rigidity percolation. This would also give more insight into how other physical properties relate to the rigid clusters.

More generally, we have shown how the concept of a generic graph as introduced by Laman [30] and amplified by Hendrickson [20] can greatly simplify problems concerned with the percolation of rigidity. The surprise is that networks that lack any symmetry (generic models) are easier to deal with. This concept leads to a common p_{cen} for all generic bond-diluted triangular networks and to a common q_{cen} for all generic site diluted triangular networks. Furthermore, both models share the same static critical exponents $\alpha \Gamma \beta \Gamma \gamma \Gamma \nu$ etc. It remains to be seen if the exponent f that describes the elastic response is also the same for bond and site diluted generic networks. To explore this question, relaxation methods can be used. This too can be done more efficiently on generic networks [31] than has been done on atypical networks because the pebble game can be used to identify the stress carrying part of the network before relaxing the network.

While the pebble game used in this paper is only applicable in 2d, we are currently extending the rules for the pebble game to 3d where the Laman condition is necessary but no longer sufficient [2030134]. We believe that progress can be made provided we restrict ourselves to a specific topology where it is possible to enumerate those cases where sufficiency in the Laman condition fails. This is an important first step in order to extend this powerful technique to real covalent glasses. In the meantime, it is important to more fully understand the 2d case where immediate progress can be made.
ACKNOWLEDGMENTS

We wish to thank A. R. Day, B. R. Djordjević, P. M. Duxbury, P. Leath, S. B. Lee, H. Nakanishi and J. Tersoff for useful discussions. We are particularly indebted to B. Hendrickson for his help in explaining how Laman’s theorem is relevant to this problem. This work was partially supported under NSF grant CHE-92 24102. A copy of this program for analyzing 2d generic networks is available upon request [35].

[29] The large memory requirements can be dramatically reduced by monitoring only pivot sites.
which are shared among two or more rigid clusters. We estimate system sizes of 10^8 sites are accessible by building the network up layer upon layer. This can be done by; (1) applying temporary rigid bus bar boundary conditions, (2) removal of unnecessary storage, and (3) then removing the bus bars before adding the next layer.

[35] A copy of the *Pebble Game* program can be obtained by internet from either Jacobs@pa.msu.edu or Thorpe@pa.msu.edu.