FUN FACTS TO KNOW AND TELL

\[I_n \equiv \int_0^\infty dx \frac{x^{n-1}}{e^x - 1} = \Gamma(n)\zeta(n), \quad \int_0^\infty dx \frac{x^{n-1}}{e^x + 1} = \Gamma(n)\zeta(n) \left[1 - (1/2)^{n-1} \right], \]

\[\zeta(n) \equiv \sum_{m=1}^\infty m^{-n}, \quad \Gamma(n) \equiv (n-1)!, \]

\[\zeta(3/2) = 2.612375... , \quad \zeta(2) = \frac{\pi^2}{6} , \quad \zeta(3) = 1.20205... , \quad \zeta(4) = \frac{\pi^4}{90} , \]

\[\int_{-\infty}^\infty dx \ e^{-x^2/2} = \sqrt{2\pi} , \quad \int_0^\infty dx \ x^n e^{-x} = n! \]

LONG ANSWER SECTION

1. (10 pts) Beginning with the fundamental thermodynamic relation,

\[TdS = dE + PdV - \mu dN , \]

derive the Maxwell relation

\[\left. \frac{\partial S}{\partial P} \right|_{T,\mu} = - \left. \frac{\partial V}{\partial T} \right|_{\mu,P} . \]
2. (10 pts) Consider a non-relativistic particle in a one-dimensional potential

\[V(x) = \frac{A}{6} x^6. \]

Using some combination of the equipartition, generalized equipartition and/or virial theorems, find the thermal average \(\langle x^6 \rangle \) in terms of \(T \) and \(A \).
3. A one-dimensional gas of non-relativistic spin-1/2 fermions of mass m confined within a length L is thermalized according to a chemical potential μ and temperature T, i.e., the phase space occupancy is

$$f(p) = \frac{e^{-(E_p-\mu)/T}}{1 + e^{-(E_p-\mu)/T}}.$$

Originally, the temperature is $T = 0$ and the chemical potential is μ.

(a) (5 pts) In terms of the m, L and μ find the average number of particles N when $T = 0$.

(b) (5 pts) In terms of m and L, find the single-particle density of states D (number of states per energy) as a function of the single-particle energy ϵ.

(c) (10 pts) Assuming μ is held constant while the temperature is slightly raised, find the change in the average number of particles to second order in the temperature. Express your answer in the form,

$$N = N_0 + AT + BT^2,$$

solving for A and B in terms of D and $dD/d\epsilon$ evaluated at the Fermi surface.
SHORT ANSWER SECTION

4. (2 pts each) Consider three single particle levels, $-\epsilon$, 0, and ϵ, which are populated by two indistinguishable spin-zero bosons. Let the system be thermalized at temperature T.

(a) What is the average total energy when $T = 0$?

(b) What is the total entropy when $T = 0$?

(c) What is the average total energy when $T = \infty$?

(d) What is the total entropy when $T = \infty$?

5. (3 pts each) Consider a two-dimensional square lattice of coupled three-dimensional oscillators that supports both longitudinal and transverse modes with the same speed of sound c_s. Assume the lattice is one atom thick in the z direction and infinitely long in the x and y direction. Let C/N refer to the specific heat per oscillator.

(a) As $T \to 0$, the specific heat from phonons behaves as $C \sim T^n$. What is n?

(b) What is C/N as $T \to \infty$?

6. (2 pts each) Consider a one-dimensional Ising model at temperature $T > 0$. Label each of the following as true or false.

(a) In the exact solution there is no phase transition.

(b) In the mean-field solution there is no phase transition.

(c) In the mean-field solution, the critical exponents are the same as they would be for a two-dimensional model.

7. (1 pt each) For the following choose between maximize or minimize and between $S=entropy$, $E=energy$, $F=Helmholtz$ free energy, $P=pressure$, or $G=Gibbs$ free energy. Circle your choices.

(a) For a thermalized system at fixed energy, volume and particle number, the system would adjust any order parameter to **minimize** / **maximize** the thermodynamic quantity S, E, F, P, G.

(b) For a thermalized system at fixed volume, temperature, and particle number, the system would adjust any order parameter to **minimize** / **maximize** the thermodynamic quantity S, E, F, P, G.

(c) For a thermalized system at fixed temperature, particle number and pressure, the system would adjust any order parameter to **minimize** / **maximize** the thermodynamic quantity S, E, F, P, G.

(d) For a thermalized system at fixed volume, temperature, and chemical potential, the system would adjust any order parameter to **minimize** / **maximize** the thermodynamic quantity S, E, F, P, G.

8. (2 pts each) Pick the appropriate number of dimensions d for each of the following:

(a) For Bose condensation of a non-relativistic gas to occur, d must be greater than __________.

(b) According to the Ginzburg criteria, mean field theories will be valid near T_c for d greater than __________.
9. (1 pt each) Assume the free energy density has the form,

\[f(x, T) = \frac{A}{2} m(x)^2 + \frac{B}{4} m(x)^4 + \frac{\kappa}{2} (\nabla m)^2, \]

where \(m(x) \) is the magnetization density, and \(A, B \) and \(\kappa \) are functions of the temperature \(T \). For each of the following quantities, choose among \text{ZERO}, \text{INFINITE} and \text{FINITE} for what values these quantities approach as \(T \to T_c \) in a standard Ginzburg-Landau picture of a phase transition. Circle your answers.

(a) \(A \) [\text{ZERO}, \text{INFINITE}, \text{FINITE}].

(b) \(B \) [\text{ZERO}, \text{INFINITE}, \text{FINITE}].

(c) \(\kappa \) [\text{ZERO}, \text{INFINITE}, \text{FINITE}].

(d) \(\xi \) (the correlation length) [\text{ZERO}, \text{INFINITE}, \text{FINITE}].

(e) \(\Delta F/A \) (the surface free energy for the interface between positive and negative \(m \) domains below \(T_c \)) [\text{ZERO}, \text{INFINITE}, \text{FINITE}].

(f) \(\langle F/\mathcal{V} \rangle \) (thermal averaged free energy density) [\text{ZERO}, \text{INFINITE}, \text{FINITE}].

(g) \(C_V \) (the specific heat) [\text{ZERO}, \text{INFINITE}, \text{FINITE}].

10. (1 pt each) Graph several isotherms on a \(P \) vs. \(V \) graph illustrating the characteristics of a liquid gas phase transition. The graph should include:

(a) An isotherm with \(T > T_c \).

(b) An isotherm with \(T = T_c \).

(c) An isotherm with \(T < T_c \).

(d) Label the critical point.

(e) For the isotherm with \(T < T_c \), label the coexistence points.