Status of DCS for TDAQ racks

Y. Ermoline et al.

ATLAS TDAQ Week, CERN, 27 April 2005
What will be monitored by DCS inside the racks:

- **Air temperature**
 - 3 air temperature sensors (NTC 10k), each sensor requires 1 ADC channel and permit measurements from 5°C to >100°C

- **Relative humidity**
 - 1 humidity sensor (HIH 3610) to monitor the dew point inside the rack, requires 1 ADC channel

- **Inlet water temperature**
 - 1 temperature sensors (NTC 10k) located on the inlet cooling water pipe, requires 1 ADC channel

- **Cooler’s fan operation**
 - 3 fan rotation Hall sensors from CIAT (binary and pulse output version available), each sensor requires either 1 bit of digital input port or 1 ADC

In total - 8 ADC channels per rack

- The ADC channel may be also used to readout a binary signal
- 64 ADC channels per ELMB – 4 connectors of 16 ADC channels
Sensors location and connection to ELMB

- Sensors location on the rear door of TDAQ rack
 - Temperature, Rotation, Humidity
 - All sensor signals and power lines are routed to a connector on the rear door to simplify assembly
- Flat cable connects these signals to 1 of 4 ELMB motherboard connectors
 - 3 connectors receive signals from 3 racks
 - 1 spare connector for upgrades
- 1 ELMB may be used for 3 racks
Test setup and SDX1 installation

- Foreseen SDX1 installation
 - DCS PC running PVSS - rack mounted, 4U, 3 PCI slots (minimum)
 - Kvaser PCIcan-Q (4 ports) card(s) – CANbus branches & PSU ELMB
 - 6U PSU crate ordered for SDX1
 - With 3 power modules for up to 6 CANbus branches
 - Only 1 module for Pre-Series
 - CANbus cable provisionally selected – SCEM 04.21.52.110.0 (3 pairs)
 - Conductor – 0.5 mm² (20 AWG), OD – 10 mm, linear resistance – 37.5 Ω/km
 - Maximum voltage drop: 2.0 V for 20 ELMBs on 50m cable (acceptable)
 - 90 Ω impedance – tested with 100 m cable
 - Still looking for 120 Ω cable:
 - Belden 3108A (3 pairs) – expensive (7.20 CHF/m)
 - Elettronica Conduttori MMCNT/452EC-2 (4 pairs) – used by TileCal
 - 2 ELMBs in 6 Pre-Series racks on DIN rail – SCEM: 06.01.85.260.80
 - On the rear door or rear of the rack
 - Single CANbus connector – need a daisy-chain implementation
ELMB CANbus daisy-chain implementation

- Permanent installation with “thin” CANbus cable
- Modified Phoenix SUBCON-PLUS-CAN connector

![Diagram of ELMB CANbus daisy-chain implementation]

- Cable tray
- CANbus cables
- Socket (38 €)
- To next rack
- To PSU
- Cable fixation
CANbus cables layout in SDX1

- Racks:
 - Level 1: 17 + 18 + 17 racks
 - Level 2: 8 + 17 + 15 racks

- CANbus cables:
 - 1 CANbus branch per row
 - ~200 m of CANbus cable

- 1 ELMB per 3 racks:
 - 32 ELMBs on 6 branches
 - Max cable length ~25 m

- For comparison - 1 ELMB per rack:
 - 92 ELMBs on 6 branches
 - 30% cost increase
Component and system cost (1 ELMB / 3 racks)

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost (CHF)</th>
<th>N</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCS PC</td>
<td>2000.00</td>
<td>1</td>
<td>2000.00</td>
<td>7.58%</td>
</tr>
<tr>
<td>Kvaser PCIcan-Q CARD</td>
<td>558.00</td>
<td>2</td>
<td>1116.00</td>
<td>4.23%</td>
</tr>
<tr>
<td>PSU crate</td>
<td>1500.00</td>
<td>1</td>
<td>1500.00</td>
<td>5.68%</td>
</tr>
<tr>
<td>Power module</td>
<td>700.00</td>
<td>3</td>
<td>2100.00</td>
<td>7.96%</td>
</tr>
<tr>
<td>CANbus cable</td>
<td>1.64</td>
<td>200</td>
<td>328.00</td>
<td>1.24%</td>
</tr>
<tr>
<td>Daisy-chain connector</td>
<td>50.00</td>
<td>32</td>
<td>1600.00</td>
<td>6.06%</td>
</tr>
<tr>
<td>ELMB+motherboard</td>
<td>165.00</td>
<td>32</td>
<td>5280.00</td>
<td>20.01%</td>
</tr>
<tr>
<td>DIN rail (m)</td>
<td>2.70</td>
<td>16</td>
<td>43.20</td>
<td>0.16%</td>
</tr>
<tr>
<td>Temperature sensor</td>
<td>25.00</td>
<td>368</td>
<td>9200.00</td>
<td>34.87%</td>
</tr>
<tr>
<td>Humidity sensor</td>
<td>25.00</td>
<td>92</td>
<td>2300.00</td>
<td>8.72%</td>
</tr>
<tr>
<td>Sensor cable</td>
<td>10.00</td>
<td>92</td>
<td>920.00</td>
<td>3.49%</td>
</tr>
<tr>
<td>Total</td>
<td>26387.20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Component and system cost (1 ELMB / rack)

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost (CHF)</th>
<th>N</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCS PC</td>
<td>2000.00</td>
<td>1</td>
<td>2000.00</td>
<td>5.08%</td>
</tr>
<tr>
<td>Kvaser PCIcan-Q CARD</td>
<td>558.00</td>
<td>2</td>
<td>1116.00</td>
<td>2.83%</td>
</tr>
<tr>
<td>PSU crate</td>
<td>1500.00</td>
<td>1</td>
<td>1500.00</td>
<td>3.81%</td>
</tr>
<tr>
<td>Power module</td>
<td>700.00</td>
<td>3</td>
<td>2100.00</td>
<td>5.33%</td>
</tr>
<tr>
<td>CANbus cable</td>
<td>1.64</td>
<td>200</td>
<td>328.00</td>
<td>0.83%</td>
</tr>
<tr>
<td>Daisy-chain connector</td>
<td>50.00</td>
<td>92</td>
<td>4600.00</td>
<td>11.68%</td>
</tr>
<tr>
<td>ELMB+motherboard</td>
<td>165.00</td>
<td>92</td>
<td>15180.00</td>
<td>38.56%</td>
</tr>
<tr>
<td>DIN rail (m)</td>
<td>2.70</td>
<td>46</td>
<td>124.20</td>
<td>0.32%</td>
</tr>
<tr>
<td>Temperature sensor</td>
<td>25.00</td>
<td>368</td>
<td>9200.00</td>
<td>23.37%</td>
</tr>
<tr>
<td>Humidity sensor</td>
<td>25.00</td>
<td>92</td>
<td>2300.00</td>
<td>5.84%</td>
</tr>
<tr>
<td>Sensor cable</td>
<td>10.00</td>
<td>92</td>
<td>920.00</td>
<td>2.34%</td>
</tr>
<tr>
<td>Total</td>
<td>39368.20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Further steps

- DCS PC, PSU and ELMB installation in SDX1 Pre-Series racks
 - Temporary solutions until final component delivery
 ⇒ Power supply, daisy-chain connector

- Choice of sensors and wires
 - Temperature
 ⇒ Offer for the NTC with 6m halogen free cable: 29 CHF/pc (100 pieces)
 - Humidity - TBD

- ELMB adapters design for humidity and rotation sensors
 - Humidity sensors need power

- Mechanical arrangement of sensors in the rack
 - Sensor’s fixation, connection to the ELMB