

L1 Calo Firmware Overview: Languages, Tools, Methods

- Beginners Guide to...
 - Languages
 - The Design Flow & Associated Tools
 - Version Management
- · Breakdown of Languages, Tools & Methods by Institute
- Conclusions

Languages

- HDL: Hardware Description Language
- VHDL, Verilog, System C....
- Comparable to computer languages, except for concurrent nature sig_A <= sig_B;
 sig_B = sig_B;
 - sig_B <= sig_C;</pre>
 - sequential processes can be implemented (all processes run concurrently)
- Used for:
 - Synthesizable code (RTL = Resistor Transfer Level)
 - High-level behavioural descriptions for simulation
- Logic can be functionally correct but unsynthesizable
- VHDL: many constructs and commands exist for simulation only

Graphical Design Entry

- Entirely optional
- · Converts block diagrams, state machine diagrams, truth tables, flow charts \rightarrow HDL
- Manage files, navigate design hierarchy
- · Coupled to simulator
- Documentation

Simulation

- Number of approaches to testing:
 - Input test vectors by hand, via files, or from HDL test engines...
 - Verify performance by
 - · Visual waveform inspection,
 - · Automated test benches examine data and report errors
 - · Write data to files (+ test by external software)

The Design Flow (3)

Design Tools Used in L1 Calo

	Graphical Design Entry	Simulation	Synthesis	Implementation
Mentor graphics FPGAdvantage	HDL Designer	Modelsim	Precision	
Xilinx ISE		ISE/Modelsim	XST	ISE
Altera Quartus II		Altera- Modelsim	Quartus	Quartus

Tools & Methods Spreadsheet (1)

		B'ham	H'berg	Mainz	RAL	S'holm
Main responsibilities		СРМ	PPR	JEM	CMM, ROD, CPM	JEM
Language	VHDL					
	Verilog					
Vendor	Altera					
	Xilinx					
Devices	FPGA					
	CPLD					
Entry	HDL					
	HDL Designer					
Synthesis	Precision					
	XST					
	Quartus					
Implement	Quartus					
	ISE					

26 March 2009

Tools & Methods Spreadsheet (2)

		B'ham	H'berg	Mainz	RAL	S'holm
Simulation	Modelsim					
	ISE					
	Behavioural					
	Gate-level					
	high-level models					
IP	Vendor					
	3 rd Party					
Tool Use	GUI					
	Scripting					
Embedded						
Archiving & Version Management	CVS					
	Synchronicity					
	Subversion					
	TAR/zip					
Documentation	Firmware Designs					

Conclusions

- Language: VHDL / Verilog:
 - tools can handle both in one design.
 - So can designers, if they have to....
- Front-end entry packages option
 - Many advantages for design entry, organisation, navigation
 - However, not portable
 - Don't rely on long-term availability of these tools for maintenance
 - (Suspect functionality will be incorporated into vendor tools)
- VHDL is the prime source for archiving and sharing
- Proprietary vendor firmware unavoidable
- Proprietary vendor IP desirable
- We should all review our archiving policy
- We should all review our documentation
- Many thanks to all who supplied information

Conclusions

- Language: VHDL / Verilog:
 - tools can handle both in one design.
 - So can designers, if they have to....
- Front-end entry packages option
 - Many advantages for design entry, organisation, navigation
 - However, not portable
 - Don't rely on long-term availability of these tools for maintenance
 - (Suspect functionality will be incorporated into vendor tools)
- VHDL is the prime source for archiving and sharing
- Proprietary vendor firmware unavoidable
- Proprietary vendor IP desirable
- We should all review our archiving policy
 We should all review our documentation
 ... but not right now.
- Many thanks to all who supplied information