CMX: FIRMWARE STATUS

Wojtek Fedorko

- Past and present focus: Hardware design feedback
 - Backplane data capture
 - Power estimation
 - CMM re-implementation in Virtex 6 (Pawel)
 - VME/TTC/ACE test card
- Current and Future effort:
 - Defining firmware modules and functionality
 - Interfaces
 - Coordination and Implementation

- Challenge:
 - 16 processor inputs
 - 400 signals, 384 data
 - 160 Mbps rate
 - Unequal line delays
- Feedback to the PCB layout
 - Provide high signal integrity
 - Limit PCB complexity
 - Fit within FPGA resources (components and routing)

Virtex 6 FPGA: input

- 18 'clock regions' in 9 rows and 2 columns
- 3 input columns:
 - 'outer left', 'inner left', 'inner right'
- 2 'Mixed Mode Clock Managers' (MMCMs) per row
- IODELAY circuits
 - Programmable delays (31 78ps 'taps')
- Dedicated DDR input registers
- Global, regional, and local clock networks
 - Restrictions on clock propagation
 - '2nd order' resource use

Clock+parity bit encoded on bit 24

- Non-standard
- May pose problems for PLL
- Requires a lot of low level work and arm twisting
- 80 MHz DDR scheme
 - Standard practice
 - Adopted, data formats modified
 - Less data
 - Requires special framing pattern to be sent
- Similar clocking network usage
 - Clock+parity uses additional resources (e.g. MMCM/processor input)

BUFR

MMCM

PCB Layout and kit tests

- Based on input from firmware side
 - FPGA input locations adjusted
 - Supports clock network distribution
 - Enables MMCM use if needed
- Data capture firmware tested in ML605 kit
 - 3 'channels', 4 bits+clock each
 - Similar clock arrangement as on target FPGA
 - Both clocking schemes tested

- Crucial for hardware design choices being made now
 - Power supply, heat dissipation, mechanical
- Estimated for CMM V6 implementation (Sam and Pawel)
- And the data capture part:
- Used ISE 14.2 XPower Analyser
- 2 methods:
 - 'By Hand' specification of clock frequencies and input switching activity
 - 'Medium' confidence level reported internal nodes activity 'guessed' by the tool
 - Simulation based:
 - Generate of post Place-and-Route simulation model
 - Perform ISIM simulation and generate a switching activity file
 - Test vectors follow the expected time structure (160 Mbps data centered around R and F edges of 80Mhz clock)
 - 'startup' pattern followed by independent random data
 - 'High' confidence level reported

 SAIF activity 	specification:
-----------------------------------	----------------

					Power (W)
Source	Voltage (V)	Total Current (A)	Dynamic (A)	Quiescent (A)	Total:
Vccint	1	3.4	0.2	3.2	7.5
Vccaux	2.5	0.6	0.0	0.6	Dynamic:
Vcco25	2.5	0.0	0.0	0.0	0.3
MGTAVcc	1	1.4	0.0	1.4	Quiescent:
MGTAVtt	1.2	1.0	0.0	1.0	7.2

+0.4 W dynamic power consumption from the CMM emulation logic (thanks to Pawel and Sam)

Dowor (\\/)

- Very small dynamic power estimated
- Large portions of the design not implemented (GTX!)
- Further studies necessary:
 - Implement 'dummy' GTX TXs inside the design
 - Test reliability of the estimate using ML605 system monitor

VME/ACE/TTC test board

- Design will be merged with the CMX design
- Currently debugging CF main FPGA configuration
- VME communication part not started yet

Planning ahead CMX (base) FPGA functional blocks

Firmware modules

- Need to define functionality and interfaces between firmware 'modules'
- Resource sharing (e.g. MMCM clock generation and buffering)
- Probably 'Take out' some functionality from the CMM emulator module
- Start work from the 'Jet' version of CMX
 - Expect that common module interfaces will work for other versions
 - Use Pawel's expertise with the CMM firmware
 - Will be able to use this or stripped down version of this firmware for board tests
 - Need complete firmware before prototype arrives early next year. Hope ready sooner.
 - Part of firmware testable in Yuri's TTC/VME/ACE test card.
 - Other firmware versions will follow after prototype tests.

Data Formats:

- Decided, need documentation.
- Need light 'protocols'
- Input framing. Once? Once per orbit?
- Output synchronization?
- Event header?
- K?
- 'unused' bits?
- Synchronization of processor input inside the FPGA logic.
 - Input module: 16 short FIFOs? Better options (same or ½ frequency unknown phase)?
- Behavior on parity error?
 - Include information in the real time data?
 - Special L1A to force readout?

۲

. . .

- Plans for firmware development need to be discussed
- Hope for common firmware architecture with L1Topo
- Test version needs to be ready for prototype testing.
 - Link tests

- Bulk of necessary work guiding hardware design complete
 - Bulk of input module:
 - Data capture
 - Data framing
 - * 160Mbps \rightarrow 40 Mbps
 - No synchronization between processor inputs
 - Need still some effort (GTX power estimate), but no 'wasted' work
 - VME/TTC/ACE card work ongoing
- Need concentrated planning soon, then a divide and conquer campaign to implement firmware modules