

CMX → L1 Topo Data Formats

W. Fedorko

Introduction

- Past Developments
 - TOB formats specified by Stephen Hillier
 - Discussions prior and during Brimingham 2013 meeting
 - Specific requests:
 - include CRC
 - Subtick
 - Portion of BCID
 - Agreement to prepare a document describing the CMX-> Topo protocol
 - https://twiki.cern.ch/twiki/bin/viewauth/Atlas/L1CaloUpgrade#New_data_ transfer and readout fo
 - Would like to finalize the format/protocol

TOB formats

Removed the Overflow bit from Jet and EM TOBs

8b/10b crash course

- Each of 256 data 8bit 'characters' encoded into 10 bit word
 - Two 10 bit words for each 8b character:
 - 'Running Disparity' + or
 - Five of each, or 4 and 6, or 6 and 4 of 0s and 1s
 - DC balancing, gain control
 - Maximum 'run length' of same bit value is 5
 - Clock Data Recovery
- Additional 'K' characters for control provided
 - Should send a specific agreed K character for byte alignment at beginning of operation

- In our case: send in specific 'subtick' fixing the event frame
- Also send BCID or send only on specific BCID to sync channels
- Good idea to keep sending periodically to detect and recover from errors

8b/10b 'built in' error checking

- 10b character must be in the table error flagged otherwise by RX
- RX tracks RD and flags errors
- But: 36% of single bit flips result in a valid 10b character with correct RD
- But But: in serial communication burst errors common
 - 55% of length 2 bursts, 26% length 10 bursts result in valid, correct RD characters
- Because of decoding, errors may be manifested as longer bursts in decoded data
 - **e.g.** 10b corruption: 111010011 -> 111001011 8b corruption: 01100001 -> 00001110

Burst length 5

C=correct F= flipped

CRC crash course

- Cyclic Redundancy Check:
 - a remainder from polynomial division of the 'message' by the 'generator polynomial'
- Properties:
 - Choice of generator poly important!
 - If you choose well:
 - All errors with odd number of bit flips caught
 - All error bursts up to the length of the check value caught
 - More complicated errors will be caught with high probability depending on the choice of the generator poly
 - Longer the CRC the higher the probabilities
 - To catch all single bit errors in serial data we need length 5
 - To catch all bursts confined to single word we need length 8
 - Papers written on generator poly choice
- Calculation
 - In 'old' systems performed serially on bit level
 - · Can be parallelized to operate on chunks of input data at cost of memory
 - To minimize latency on TX side attach check value after 'message'
 - One 'subtick' latency cost; small DRAM use
- CMX: in all types at least 12 bits left over on fiber use them for CRC
 - All errors with two bits flipped (in 8b data) caught
 - >99.9% of four and six arbitrary bit flips caught
 - >99.9% of burst errors of length up to 32 caught

Proposed Jet TOB packing

- Front load Jet TOBs onto fibers
 - E.g. if 3 TOBs are present TOB 0 on fiber 0,1 and 2 will be present rest->0
- Most significant words sent first 127-112 then 111-96...

Proposed EM/Tau TOB packing

Same front-loading and transmission order

Alignment information splicing

 If only Jet/EM TOBs 0 and 1 present replace bits 71 to 52 by the alignment word

Example for EM fiber:

- K28.5 provides byte alignment and flagging re-framing problem
- K28.5 placement always on byte 8 provides event-frame lock and verification
 - No subtick counter necessary
- BCID inclusion provides intra-fiber alignment and verification

Energy TOB

- 1 fiber sufficient
- Alignment word always present

Conclusions

- Format and protocol transmitting all required physics payload
- Byte alignment, event alignment and inter-fiber alignment data provided
- Robust error detection provided
- Small resource and latency cost