FUJITSU SEMICONDUCTOR CM44-10105-4E
CONTROLLER MANUAL

F2MC-16LX

16-BIT MICROCONTROLLER

MB90590 Series
HARDWARE MANUAL

[o®)
FUJITSU

F2MC-16LX

16-BIT MICROCONTROLLER

MB90590 Series
HARDWARE MANUAL

FUJITSU LIMITED

PREFACE

B Objectives and Intended Reader

H Trademark

Thank you very much for your continued patronage of Fujitsu semiconductor products.

The MB90590 series has been developed as a general-purpose version of the F2MC-16LX
series, which is an original 16-bit single-chip microcontroller compatible with the Application
Specific IC (ASIC).

This manual explains the functions and operation of the MB90590 series for designers who
actually use the MB90590 series to design products. Read this manual first.

F2MC is the abbreviation of FUJITSU Flexible Microcontroller.

Other system and product names in this manual are trademarks of respective companies or
organizations.

The symbols ™ and ® are sometimes omitted in this manual.

M Structure of This Manual

CHAPTER 1 "OVERVIEW"

The MB90590 Series is a family member of the F2MC-16LX microcontrollers.
CHAPTER 2 "CPU"

This chapter explains the CPU.
CHAPTER 3 "INTERRUPTS"

This chapter explains the interrupt functions and operations.
CHAPTER 4 "DELAYED INTERRUPTS"

This chapter explains the functions and operations of the delayed interrupt.
CHAPTER 5 "CLOCK AND RESET"

This chapter explains the functions and operations of clocks and resets.
CHAPTER 6 "LOW-POWER CONTROL CIRCUIT"

This chapter explains the functions and operations of the low-power control circuits.
CHAPTER 7 "MEMORY ACCESS MODES"

This chapter explains the functions and operations of the memory access modes.
CHAPTER 8 "I/O PORTS"

This chapter explains the functions and operations of the 1/0 ports.
CHAPTER 9 "TIMEBASE TIMER"

This chapter explains the functions and operations of the timebase timer.
CHAPTER 10 "WATCH-DOG TIMER"

This chapter explains the functions and operations of the watch-dog timer.

CHAPTER 11 "16-BIT I/0O TIMER"
This chapter explains the functions and operations of the 16-bit I/O timer.
CHAPTER 12 "16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)"

This chapter explains the functions and operations of the 16-bit reload timer (with the event
count function).

CHAPTER 13 "WATCH TIMER"

This chapter explains the functions and operations of the Watch Timer.
CHAPTER 14 "8/16-BIT PPG"

This chapter explains the 8/16-bit PPG and explains its functions.
CHAPTER 15 "DTP/EXTERNAL INTERRUPTS"

This chapter explains the functions and operations of the DTP/external interrupts.
CHAPTER 16 "A/D CONVERTER"

This chapter explains the functions and operations of the A/D converter.
CHAPTER 17 "UARTO"

This chapter explains the UARTO functions and operations.
CHAPTER 18 "SERIAL I/O"

This chapter explains the functions and operations of the serial 1/0.
CHAPTER 19 "CAN CONTROLLER"

This chapter explains the functions and operations of the CAN controller.
CHAPTER 20 "STEPPING MOTOR CONTROLLER"

This chapter explains the functions and operations of the stepping motor controller.
CHAPTER 21 "SOUND GENERATOR"

This chapter explains the functions and operations of the sound generator.
CHAPTER 22 "ADDRESS MATCH DETECTION FUNCTION"

This chapter explains the address match detection function and operation.
CHAPTER 23 "ROM MIRRORING MODULE"

This chapter explains the ROM mirroring module.
CHAPTER 24 "2M/3M-BIT FLASH MEMORY"

This chapter explains the functions and operation of the 2M/3M-bit flash memory.

CHAPTER 25 "EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G
SERIAL PROGRAMMING CONNECTION"

This chapter provides examples of F?MC-16LX MB90F594A/MB90F594G/MB90F591A/
MB90F591G serial programming connection.

APPENDIX

The appendixes provide I/O maps, instructions, and other information.

The contents of this document are subject to change without notice. Customers are advised to consult
with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor
device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is
unable to assume responsibility for infringement of any patent rights or other rights of third parties
arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated
for general use, including without limitation, ordinary industrial use, general office use, personal use, and
household use, but are not designed, developed and manufactured as contemplated (1) for use
accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious
effect to the public, and could lead directly to death, personal injury, severe physical damage or other
loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass
transport control, medical life support system, missile launch control in weapon system), or (2) for use
requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages
arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage
or loss from such failures by incorporating safety design measures into your facility and equipment such
as redundancy, fire protection, and prevention of over-current levels and other abnormal operating
conditions.

If any products described in this document represent goods or technologies subject to certain
restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for export of those products from Japan.

©2002 FUJITSU LIMITED Printed in Japan

CONTENTS

CHAPTER 1 OVERVIEW ... iiiiiisssscccccmmmms s s s s s s sssssssmssmmssss s s s s ss s s s snnssnnnsnss 1
LIPS T o o T [0 T @ A=Y o T S PRTRURRR 2
1.2 FRAIUIES ettt et e e e oo e e et e e e e e e e e e nr e e re e e e e e aa e e e reeeae s 3
LRGN = (o Te] (g B I = o = o KA PP T TP PPPPPPP 5
1.4 PN ASSIGNMENT ..ttt e e e e bt e e s e aa b e et e e e aa b be e e e e e aabe e e e e e anbbeee e e anreeeeeaanrereeena 6
1.5 Package DIMENSIONScoiiiiiiiiiiiiiie ettt ettt e e e e e e e e e e e e e e e e e e e an s e ere e e e e eeeeessannnnrnreeeeeeaneas 7
1.6 PiN FUNCHONS ...ttt ettt e e e e e e s e n e e et e e eeeeea e eannnnreenrneeee s 8
1.7 INPUE-OULPUL CIFCUILSeeiiiiii ittt ettt e bt e bt e e e be e e e sae e e e rnee e e smbe e e snbeeeenbeeeanneas 12
1.8 HANAING DEVICE ...ttt e e e e e e e et e e e e e e e e e e aaa b b r e e et e e e e e e e aesannneerneeas 14

L0 o 7N o I) = S O o U 19
P2 B O 10 111 T= N) 1 U PO UPRPPPR 20
2.2 MEIMOIY SPACE .ueeiiiiutiieiee e iee ettt e ettt e e eatee e be e e e aaee e e aaee e e aaee e e aabee e aabeeeeabeeeaabee s e beeeanbeeaabeeesaneeasnnreennaeans 21
P2 T |V (=10 Vo S o= Vot V- T o RSP 22
P2 W [g 1= Y- Lo [0 [=S o [P O PP PPO PR OPPPPPPPPP 23
2.5 Bank AddreSSiNG TYPESeeeiiiiiieiieeiiiiiee ettt ettt e e st e e e st b e e e e sbe e e e e e sbbe e e e e s abeeeee e abeneeeesaanreeeeean 24
2.6 Multi-byte Data in MEmMOIY SPACEcuuiiiiiieiiii i eee e e st e e e e e e e e s e s eeeeeaaeeeeessnanrrnneeeeees 26
P2 A o 1T 1] (=] £ TP PP PP PPPPPPPRP 27

2.7 ACCUMUIBTON () ettt ettt e e e e b e e e e e e b e e e e e e e b e e e e e e aab b e e e e e e anbe e e e e e annnreeeeannnes 30
2.7.2 User Stack Pointer (USP) and System Stack Pointer (SSP) ..o 31
2.7.3 ProCeSSOr STAtUS (PS) ...uueiiiiiiiii oottt e e e e e e s e e e e e s e e e e araaaeaaeeenannnn 32
2.7.4 Program COUNTET (PC) ..ttt ettt ettt st e st e e st e e s s bt e e e be e e e be e e saseeesmneeesabeeans 35
2.8 ReGISIEr BANK ... e e e e e e e e e s e e rrrreeaeeaeean 36
P2 B (=Y {1 Q7o L= PP 38
2.10 Interrupt Disable INSIFUCIONSuiiiiiiiiiie e e e e s e e e snreeee e 40
2.11 Precautions for Use of "DIV A, Ri" and "DIVW A, RWi" INStructionsccccoceeiiiiiieiiiiiiiee e 41

CHAPTER 3 INTERRUPTS ... ssssss s s s s s s s 43
G T T O 10 1 1 T= 0 [0 =T ¢ 10 €SS 44
2 [01 (=11 U o] AV A=Te] (o] ST PPPPPPPTRPPPPRRNt 47
3.3 Interrupt Control REGISIErS (ICR) ...eeiiiiiiiieieieiee e et e e s e e e s e snreeeeeeans 48
R 2R 101 (=15 1 o S [) 51
3.5 HArdware INTEITUPESooiiiiiiiii e e ettt e e e ea e e e e s s aab e e e e e snrre e e e s eanreeeeeaans 53

3.5.1 Hardware Interrupt OPerationccuuiiiiiiiieii e e e s e e e e e e e s e s s s e e e e aaeeeeeenenannes 54
3.5.2 Occurrence and Release of Hardware INterruptccovviieiiieiii i 55
3.5.3 MUHIPIE INTEITUDPLS ...ttt e e e e e e e e e ab e e e e e e anb e e e e e e annneee e e nnees 57
G J T 1o 1T T (=38) (=T (0] o] SRR 58
3.7 Extended Intelligent I/O Service (EIZOS) ... 60
3.7.1 Extended Intelligent I/O Service Descriptor (ISD)cceiiiiiiiiiiiiiiee et 62
3.7.2 EIPOS Status REGISIEr (ISCS)vveeeeeeeeeeeeeeeeeeeeeseeeee e e seee s eee e seeeesese s e s e s 64
3.8 Operation Flow of and Procedure for Using the Extended Intelligent I/O Service (EIQOS) 65
S (o7 =T o] (1] o 1= O PP PRSP PPPPPPTOPPPPRRN 68

CHAPTER 4 DELAYED INTERRUPT ... nnssssnsss s sss s ssssssssnssnns 69

4.1 Outline of Delayed INterrupt MOAUIEccooiiiee e e e e e e e e e s rr e eeaaeee s 70
4.2 Delayed INterrupt REGISTENcooo it e e e e e e e eas 71
4.3 Delayed INterrupt OPErationeceieieiiiiiiiiiieiiiee e ees e e e e e e s e e s st eeeeeeaaeesesaaanneannrnaneeeaaaees 72
CHAPTER 5 CLOCK AND RESETccciiiiisisssnnnnnmmmmnnnnssees 73
S N O [o o2 [1= a 1= = (o] SRR 74
5.2 RESEL CAUSE OCCUITENCEeeiiiiiuiiieeeiiiiiieeeiiteeeeeeauteteeeaasstaeeeeaastaaeaeaassseeaesaassaeeessassseeessaasseeeeesassseeansans 75
5.3 RESEE CAUSES ..oiiiiiiiii ettt ettt ettt e e e e e e e b e e e e e e b e e e e e e bt e e e e e abre e e e e aneeeeeennaes 78
CHAPTER 6 LOW-POWER CONTROL CIRCUITmmrerrrrrrrnsssssssssssssssssssssnsssnnes 81
6.1 Outline of LOW-Power CONtrol CIrCUILc.uuiiiiiiiiiee ettt e e e 82
A =T 1) (=] £ U PP P UPPPRPR 84
6.2.1 Low-Power Mode Control Register (LPMCR)ocuuiiiiiiiieee et 85
6.2.2 Clock Selection Register (CKSCR)uuiiiiiiiiiie ettt sbbee e s e bee e e e e e 87

6.3 LOW-PoWer MOde OPErationooiiiiiiiiiiiiiii ettt ettt ettt et e e be e e e be e e e sase e e saee e e sneeaesaneeans 89
LSS T I 1 1= 7= o N 1/ o Yo [P EEEER SR 91
B.3.2 WaALCN MOAE ...ttt e e e e e e e e e e e e e e e et e e e e e e e e e 92

L TS T (o] o I /[To [TR 93
6.3.4 Hardware Standby MOEuuiiiiiiiiiei e e e e e e e e rr e e e e e e e e e e 95

6.4 Intermittent CPU OPErationociiiiiiiiiiiiiiiiiiee e e e e e et e e e e e e e e e st e e e e aaaeesesassnnrnaeeeeeaeeeesanannns 96
6.5 SWitching MacChing CIOCKScoiuiiiiiiii ettt ettt ettt e e e sate e e sate e e sabee e sabeeseneeeans 97
6.6 Status Transition of ClOCK SEIECHONooiiiiiii e et 98
CHAPTER7 MEMORY ACCESS MODESccoootmmmmmmrrrrrrsssssssssssssssssssssssssssssssssnnees 101
7.1 Outline of MemMOry ACCESS IMOUEScoeeiiiiiieiee ettt e e e e e e e e et r e e e e e e e e s e snaeaaeeeaeaaeeens 102
= |V (oo [= o 1 1= TSR 103
S T |V (oo [N I - | - E PP PPPPRPPPP 104
CHAPTER 8 1/O PORTS ...cooiiiiiiiiiiiiisssssssssssssmsms s s s s s sn s s mmmssnsmnsssnnn s s s 107
S 0 I V@ I oo T (= SR PRRTURRR 108
S 1O B oo g g 2 (=T | (T £ PR URR 109
8.2.1 Port Data ReQISIErcooiiiiiiiiiie ettt e e e e e e e e e e e 110
8.2.2 Port DireCtion REQISIEN ...cociiiiiiie ettt e e e e e e e e e 111
8.2.3 Analog Input Enable RegiStErooo i 112
CHAPTER 9 TIMEBASE TIMERcooiiiiiiiiiiissssssssssssmmmmmsssssss s s s ssssssssssssssssssssmssssees 113
9.1 Outline of TIMEDASE TIMEN ..o e et e e e s s b e e e e s snnaeeeesaneeeeeeas 114
9.2 Timebase Timer CoNtrol REGISIETooiiiiiiiiiie e e e e sbee e e 115
9.3 Operations of TIMEDASE TIMETcoiiiiiiiiiieii ettt rae et e e e rbee e e saee e s aaee e e sabeesaareesenbeaas 117
CHAPTER 10 WATCH-DOG TIMERccoiiiiiiiemmemmsns s sssssssssss s s s s 119
10.1 Outline of WatCh-DOg TIMETcoiuiiiiiiiieiie ettt e e e e e s be e e e e s nreee e e s beee e e e snnees 120
10.2 Watch-dog Timer OPErationc...eeiiiiiiiiiieiiiiiee e ree ettt e s e e s e e e ee e e e e sbeeeeeesnneeeeeeannees 123
CHAPTER 11 16-BIT /O TIMER ... r s s sss s s sssssmmmsmsssnss s s ss s s s s 125
11,1 Outling of 16-Bit I/O TIMEI . ..eiiii it et e e e e ate e e e e e nre e e e e ennreeeeaenneeas 126
11.2 16-Bit I/O TIMEr REQISTEISeiiiiiiiiiie ettt e et e e s et e e e e s snnre e e e e snneeas 128

vi

11.3 16-bit Free-running TIMEEooo e e s e e e e e eabee e e e e eannes 129

T1.3.1 Data REGISTEN ..o e et e e e e e e e e e e et e e e e e e e s e nnreeeeeeaeas 130
11.3.2 Control STatus REGISTEL ...ccoiiiiiiiii et st e s et e e e et te e e e e annaeeees 131
11.3.3 16-bit Free-running Timer OPErationcccoocuiiiiiiiiiiii et 134
11.4 OUIPUL COMPAIEeeieiiiieiiiiee et e e e e e e e e st e e e e e e eeeesaaaaatesteeeeeeeaaeseeaaassnstsananeeaaneeeaaaaansnnnnnns 136
11.4.1 Output ComPare REQISTENueiiiiiiiiii ittt e st e e e st e e snnae e e e e e anneeeas 137
11.4.2 Control Status Register of Qutput COMPAIEcocuiiiiiiiiiiii e 138
11.4.3 16-bit OQutput Compare OPErationcccuiiiiiiiie e r e e e e e e e s renaereeaaeas 141
L P T 0] 10 QT o] (1 (-SSP 144
11.5.1 Input Capture Register DEtalScccueiiiiiiiiiaiiiee et 146
11.5.2 16-bit Input Capture OPEratioNcccoceiiiiiiie e e e e e e e e e e s e snre e e ereeeeeeeeean 148
CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION) 151
12.1 Outline of 16-Bit Reload Timer (with Event Count FUNCLION)cccvviiiiiieiiiiecceeeeeee e 152
12.2 16-Bit Reload Timer (with Event Count FUNCHION)ciiiiiiiiiiieiieeiee et 154
12.2.1 Timer Control Status Register (TMCSR)coiiiiiiiiiiiiee e 155
12.2.2 Register Layout of 16-bit Timer Register (TMR)/16-bit Reload Register (TMRLR)ccccccuveeee. 158
12.3 Internal Clock and External Clock Operations of 16-bit Reload Timerccccccoeiviiiiieniiiee e, 159
12.4 Underflow Operation of 16-bit Reload Timercc.uuviiiiiiiiii e 161
12.5 Output Pin Functions of 16-bit Reload TIMEruuiiiiiiiiiii e 162
12.6 Counter Operation STAEoiiiiiiiii ettt e st e e e sbe e e e re e s e ne e e ees 163
CHAPTER 13 WATCH TIMERcoo oo icieesemcmcmnr s s s s mmsssmssss s s s s s s s s ns s s 165
13.1 Outline Of WACh TIMET ..ot e e e sre e e s e s ene e nes 166
13.2 Watch TImer REQISIErScooiiiiiiiie et e e e e e e s e e e e e e e e e e e annnreeeees 167
13.2.1 Timer Control REGISErii ittt ettt et e e st e e e s be e e ebee e sbe e e e abeeeeees 168
13.2.2 SUD-SECONA REGISIEIS ..eiiiiiiiiiiie et e ettt e st e e s e st et e e e sasbteeaeeennneeeens 170
13.2.3 Second/MinUte/HOUr REGISTEIS ...ooineiiiiieiitie et e e e e snneeee s 171
CHAPTER 14 8/16-BIT PPGcoociiciiiiiinnnnsmmssmsmmmn s s s s s ssssssssss s s sssssssssssssssssssss s s nnes 173
141 OUtliNg Of 8/16-Dit PPGi ...ttt ettt e et e e e bee e e e e st e ee e esnnseeeeeeanseeeeeeansnees 174
14.2 Block Diagram of 8/16-Dit PP Gcoiiiiiiiiie e e e e snees 175
14.3 8/16-Dit PPG REGISIEIS ...ooiiiieiiei ittt et s e e e ettt e e e s bee e e s e nnbeeeeeeansnes 177
14.3.1 PPGO Operation Mode Control Register (PPGCO)c.coiiiiiiiiiieieieie e 178
14.3.2 PPG1 Operation Mode Control Register (PPGCT)ocuuiiiiiiiiieeieee e e 180
14.3.3 PPGO, 1 Output Control Register (PPGOT)cccuiiiiiiiiiee ettt 182
14.3.4 Reload Register (PRLL/PRLH)ooiiiiiee ittt st s sb e s e ne e 184
14.4 Operations Of 8/16-Dit PPG ...t e e e e e e e e s e e e e e e e e ae s e snnnnreeeeees 185
14.5 Selecting a Count Clock for 8/16-bit PP Guuiiiiiii e e 187
14.6 Controlling Pin Output of 8/16-bit PPG PUISEScoiiuiiiiiieiiie et e 188
L A T LT o Q8 o o T [(=1 U] o) S 189
14.8 Initial Values of 8/16-bit PPG HardWarecccoceiiiimieiieeieie e 190
CHAPTER 15 DTP/EXTERNAL INTERRUPTS ... snssssssssssssssssmmmm s sss s s s 193
15.1 Outline of DTP/EXIErNal INTEITUPES ...coeeiiiiiiiiee ettt st ae e 194
15.2 DTP/External INterrupt REQISIEISoiiiiiiiiiiiiiii e e e e ennes 196
15.3 Operations of DTP/EXternal INteIrUPLS ...ccccviiiio it a e e e 198
15.4 Switching between External Interrupt and DTP ReqUESEScciiiiiiiiiiiiiiiie e 200

Vii

15.5 Notes on Using DTP/EXternal INErruPESoccueii it 201

CHAPTER 16 A/D CONVEIEIccciiiiiiisiisssssssssssmmmmmssnsssssss s s ssssssssssssssssssssnmnsmssnsssssssssssnns 203
16.1 Features Of A/D CONVEIETooi ittt e e e e e s e e e e st e e e s e sabee e e e e sannreae e e snreeas 204
16.2 Block Diagram Of A/D CONVEIETccoiiiiiiieiiieieeeseeieee e ettt e e s bee e e s abe e e e essabeee s e ssabeeeeessnnreeeeeeannes 206
16.3 A/D COoNVEEr REGISTEISiiiieiiiiiiii ettt ettt ettt be e s s sbe e st e e sabe e e sabee e easeeeeneeeennes 207

16.3.1 Control Status RegiSters (ADCS0)coiuuuiiiiiiiiie e eieiee et e ettt e st e e e e sbee e e e s sbbeeee s e sbeeeeeeeans 208
16.3.2 Control Status Register (ADCST) ...cciiiiiiiiei ittt et e s rnte e e e s raaee e e e e s sneeeeeeeaes 211
16.3.3 Data Registers (ADCR1 and ADCRO)coiiuiiiiiiiaiiieeeiieeetieeesieee et st eesee e e sbee e sse e s ssneeassneeas 214
16.4 Operations Of A/D CONVEIETuueeieiiieiiee e e e e ettt e e e e e e e e e s s e re e e e e aaeeeessasasareeeeeeaaeeeeesaaaasnsssnnnees 216
16.5 CONVErSION USING EIPOS ... ee e n e, 218
16.5.1 Starting EIPOS in SINGIE MOGE veceeeeeeeeeieeeeeeeee e eeeeeseeeseeesneeees s s s e sneesne e 219
16.5.2 Starting EIOS in CONtINUOUS MOTEeeeeieeeeeeeeeeeeeeeeeeeeeeeeee e eee s seene s, 221
16.5.3 Starting EIPOS iN SIOP MOUEouveeeeeeeeeeeeeeeeeee e eeeseee e eee s eeeeeeee e eene e en s s 223
16.6 Conversion Data ProteCHONc..uiiiiiiiii et e s s e e e e e nrre e e e e ennes 225

CHAPTER 17 UARTO ...eeeeeeeeeeersrssss s sessssss s sssssssssmsssssssss s s s s ss s s s snssnssssssssssnnnnnmmmmsnsnnnnns 227
17.1 Feature Of UARTO ...ttt ettt e e e st e e e e e s bt e e e e anb e e e e e sabreeeeeennneeeeeeannes 228
17.2 UART BIOCK DIBGIAM ...eeiiiiiiiiiii ittt ettt e e e e e e e s et et e e e e e e e e e ana b e e e e eeeeeeeeeesaaannnennneeas 229
17.3 UART REJISIEIS ..eiiiiiiiiiiiiiiit ettt e e s e e e e s et e e e b e e e e e e e abre e e e e annneee e e e aaneis 230

17.3.1 Serial Mode Control Register (UMC)ooi ittt sbeee e e 231
17.3.2 Status RegiSter (USR) ...ooiiiiiiiii ettt ettt e e ettt e e st e e e e s ante e e e s snneeee e e ssnreeeeesans 233
17.3.3 Input Data Register (UIDR) and Output Data Register (UODR)cccooviiiiiiiinnieee e 235
17.3.4 Rate and Data Register (URD)cooiiiiiiiiiiiiiie ettt e et e e st e e e st beee e s e snbeeeeeeeaes 236
LI S Y o 0 IO oY - o) o S 238
LIRS J == U0 Lo I o -1 (= PR R 239
17.6 Internal and EXIErNal CIOCKcooeuiiiiiiiiii et et e e e e ee e e e e enneas 242
17.7 Transfer Data FOrMAL ... e e e e ee e e e e saneas 243
T7.8 Parily Bil ..o e e e e e e e e e e e ee e e e e anes 244
17.9 Interrupt Generation and Flag Set TimMiNgSc..eueiiiiiiiie e 245
17.9.1 Flag Set Timings for a Receive Operation (in Mode 0, 1, 0r 3)eeeiiiiiiiiiiiiiiee e 246
17.9.2 Flag Set Timings for a Receive Operation (in MOde 2)cocoiiiiiiiiiiii e 247
17.9.83 Flag Set Timings for a Transmit Operationooouiiiiiiiiiiiii e 248
17.9.4 Status Flag During Transmit and Receive Operationccccccoiiiiieiiiiiiiiieeneiee e 249
17.10 UARTO Application EXAMPIEcooueeiiiiiiiiii ettt e e e e e 250

CHAPTER 18 SERIAL /Ocoooiiiiiicisiissssssssssssmmmmsssss s ss s s s sssssssssss s sssssssmssssssssssss s s s nnnes 253
L= T B O 10 {1 T= o S T= Y = 1 SRR 254
18.2 Serial I/O REQISIEISeeiiiiiiiiiii ettt s et e e e st e e s e ettt e e e e aabe e e s e e abeeeeesnanneeeeeennnes 255

18.2.1 Serial Mode Control Status Register (SMCS)cc.ciiiiiiiiiiiiie e 256
18.2.2 Serial Shift Data RegiSter (SDR)cccoiiiiiiiiiiiiie et e e e sraaae e e e e s rneeeeeeeaes 260
18.3 Serial /0O Prescaler (CDCR)uiiiiiiiieeieiiiecceteeee e e e e e e e s s ssee e e e e aaaeeeeessanansaseeeaeeeaeeeeeaasaasnnssnnnees 261
LR T S =Y o= T @ I @] o T=T = o] o SRR 262
18.4.1 Shift CIOCK .eeeeeeieeiiie ettt e st e s r e e e r e e e st e e e e ane e e e re e e e aneeeennneas 263
18.4.2 Serial I/O OPEIAtIONuuveiiiiiieee i ittt e e e e e e e s ee e e e e e e e e s e s s s aaeeaeeaaeeeessansnnenaeneeeeaeeeanaannnes 264
18.4.3 Shift Operation Start/STOP TIMINGcceii i et e e e e saee e e eneeas 266
18.4.4 Interrupt Function of the Extended Serial I/O Interfaceoooocciiiiiiiei i 269
18.5 Negative ClOCK OPErationooieiiiiiiiiiii et e s e e e e ee e s e e b eeeesennnreeeeeeannes 270

viii

CHAPTER 19 CAN CONTROLLERccocciiimmrisnmimnssssisssnsssssss s s ssssssssssssssssnssans 271

19.1 Features of CAN CONIOIETcoooiiiieieie et sne e e re e s e s 272
19.2 Block Diagram of CAN CONIOIEToueiiiiie ettt s sae e e e e be e 273
19.3 List of Overall Control REGISIEISciiiiiiiiiie e e enees 274
19.4 List of Message Buffers (ID REQISLEIS)ciiiiiiiiiiiiiiiii et et 276
19.5 List of Message Buffers (DLC Registers and Data Registers)ccoceeiiiiiiii e 279
19.6 Classifying the CAN Controller REQISIEISc.uuiiiiiiiiiie e 283
19.6.1 Control Status Register (CSR)iiciiiiiiiiiiie e e e e e ae e e s e snneeee s 284
19.6.2 Bus Operation Stop Bit (HALT = 1) oottt ettt et s be e 287
19.6.3 Last Event Indicator Register (LEIR)c.euiiiiiie et 288
19.6.4 Receive and Transmit Error Counters (RTEC)ccoociiiiiiiiieeee et ee e ee e e e 290
19.6.5 Bit Timing Register (BTR)c.ueiiiiiiiei e e e e e e anneeeas 291
19.6.6 Message Buffer Valid Register (BVALR)ooo it nnaee e 294
19.6.7 IDE regiSter (IDER)ueiiiiiiiiiiiie ettt e e e ettt e e s s bt e e s e aabe et e e e aasete e e e e anaeeeens 295
19.6.8 Transmission Request Register (TREQR)coiiiiiiiiiii e 296
19.6.9 Transmission RTR Register (TRTRR)cooiiiiiiiii e 297
19.6.10 Remote Frame Receiving Wait Register (RFWTR)c.eueiiiiiiiieiee e 298
19.6.11 Transmission Cancel Register (TCANR)coiiiiiiiiie et e 299
19.6.12 Transmission Complete RegiSter (TCR)iiiiiiiiieiiiiee e 300
19.6.13 Transmission Interrupt Enable Register (TIER)coooiiiiiii e 301
19.6.14 Reception Complete Register (RCR)cociiiiiiiiiiiii ettt be e 302
19.6.15 Remote Request Receiving Register (RRTRR) ...ooooiiiiiiiiie e 303
19.6.16 Receive Overrun Register (ROVRR) ...t 304
19.6.17 Reception Interrupt Enable Register (RIER)ccuoiiiiiiiiiiiie e e 305
19.6.18 Acceptance Mask Select Register (AMSR)viiiiiiiiiie e 306
19.6.19 Acceptance Mask Registers 0 and 1 (AMRO and AMBRT) ... 308
19.6.20 MESSAGE BUFFEIS ...eeiiiiiiieie e e et e s s e e e e e e s e anneeee s 310
19.6.21 ID Register X (X = 010 15) (IDRX) ..veeeiieieiiiieiiee e 311
19.6.22 DLC Register X (X = 010 15) (DLCRX) ...eviiueiiiieieiriee e ee e e enee e s 313
19.6.23 Data Register X (X = 010 15) (DTRX)eeiiiuiiiiiiie ittt ee ettt rae e s sare e s s ne e e 314
19.7 Transmission Of CAN CONIOIETccuiiiiiii e e 316
19.8 Reception 0f CAN CONIOIIET ...t e e e e e e e e s e s er e e e e aaeeeeeeasnnrnnnees 319
19.9 Reception Flowchart of CAN CONIOIETcoiiiiiiiiiiiiiii et 322
19.10 How t0 Use the CAN CONIONEYcoiiiiiiieeecee et e 323
19.11 Procedure for Transmission by Message BUffer (X) ... 325
19.12 Procedure for Reception by Message BUFfer (X)oooueioiiiiiiiiiiieeec e 327
19.13 Setting Configuration of Multi-level Message BUfer ... 329
19.14 Precautions when Using CAN CONIOIETooueiiiiiiiiie et 331
CHAPTER 20 STEPPING MOTOR CONTROLLERcooiiiiiiiiiinnsssssssmmmemsn s 333
20.1 Outline of Stepping MOtOr CONIOIETeiiiiiie ittt e e sne e seaeas 334
20.2 Stepping Motor Controller REGQISTEISciiiiiiiiiie ettt reaae e e snneeeens 335
20.2.1 PWM CONIrol O FEOISTEIeeiieeiiitiiee ettt e et e e s st e e e e sabe et e e s sanbe e e e e eaateeeeesnnnteeeesenns 336
20.2.2 PWM1&2 COmMPAre REQISIEISuiiiiiiiiiiieeiiie et ee et ee ettt ettt rabe e st e e s sate e s smbeeenbe e s e neeesneeas 337
20.2.3 PWM1&2 SeleCt REGISIEIS ...ooiiiiiiiiiiie ittt ettt e st e e e s rat e e e e snneeeeesean 338
CHAPTER 21 SOUND GENERATORcccciiiiiiimemeemsnnnss s snssssssssssssssssssssssssssss s s s s s s 341
21.1 Outline Of SOUN GENEIATONcooiiiiiiieie et e e e nnneas 342

21.2 Sound GEeNerator REJISIEISccuiii ittt st sie e et e e e s b e e e sabe e e sabe e e eaneeeeaaeeas 343
21.2.1 Sound Control REGISIETcoiiiiiiiie ittt e e st e e e e ebte e e e s e nree e e e nnnees 344
21.2.2 Frequency Data regiSIer ... a e 346
21.2.3 Amplitude Data REegISIErcooiiiiiiiii e 347
21.2.4 Decrement Grade REGISIErcouuiiiiiiiiii e e 348
21.2.5 TONE COUNE REGISTEN .ottt e e ettt e e et e e e e e abeeee e ennree e e eanneas 349

CHAPTER 22 ADDRESS MATCH DETECTION FUNCTIONccooiiiiiiinnnnmmemeennnnnnnneens 351

22.1 Outline of the Address Match Detection FUNCHONccuiiiiiiiiiiieiee e s 352

22.2 Registers of the Address Match Detection FUNCHONc..ueeiiiiiiiiiiiie e 353

22.3 Operation of the Address Match Detection FUNCHONc..ovviiiiiieiei e 355

22.4 Example of the Address Match Detection FUNCHONccooiiiiiiiiiii e 356

CHAPTER 23 ROM MIRRORING MODULLEcccooimmmmmmmmnrnnrssssssssssssssssssssssmssmmsssssssnsnes 359
23.1 Outline of ROM Mirroring MOAUIEeeiiiiiiiiiiie ettt e s e s s e e s annneeens 360
23.2 ROM Mirroring Register (ROMM)uuiiiiiiiiiiiie ettt e et e e s s e e s s ene e e e e annnneeens 361

CHAPTER 24 2M/3M-BIT FLASH MEMORY ... s sssssssssssssssssssssssssnnnns 363

24.1 Overview of 2M/3M-bit FIash MEMOIYcoiiiiiiiiet ettt ae e e saeeas 364

24.2 Block Diagram of the Entire Flash Memory and Sector Configuration of the Flash Memory 366

24.3 WIEE/EraSE MOUESoeoiiieiiiiiie ettt ettt ettt e st e s e e sn et e e e e e sne e e e re e e e anneeennneas 368

24.4 Flash Memory Control Status Register (FIMCS)coociiiiiiiiie e 370

24.5 Starting the Flash Memory Automatic AlGOrithmeeiii i 372

24.6 Confirming the Automatic Algorithm Execution Statecccoiiiiiiiii e, 374
24.6.1 Data Polling Flag (DQY7)ueeiieiiiiee e etieee e ettee s etet e e e ettt e e e s s este e e e e snsteee e s nreeeeesnsaeeaeesnnseeeeeennnees 376
24.6.2 Toggle Bit FIag (DQB)ceeeiieeeiiriieiiee ettt e s e s e s sne e e e anne e s enne e s anreennreeea 378
24.6.3 Timing Limit Exceeded Flag (DQ5)cccciviiieiiieeiireii e e e e 379
24.6.4 Sector Erase Timer Flag (DQ3)cooiiiiiiiiieiiiieeie ettt e e e rae e e smte e e sabee e snee e e ennee s 380
24.6.5 Toggle Bit-2 FIag (DQ2)ccoieeeiiriieiiieieie et sre e e s s e 382

24.7 Detailed Explanation of Writing to and Erasing Flash Memorycccoociviiiiiiiin e, 384
24.7.1 Setting The Read/ReSet STAteccc.eiiiiiiiiiiie et 385
24.7.2 WIHING DATA ... e e e e e e e e e e s bbb e e e e e e e e e e e e nnne e 386
24.7.3 Erasing All Data (Erasing ChiPS) ...ccoooiiiiiiiiiiiie ettt e e e e e e s bee e e e 388
24.7.4 Erasing Optional Data (Erasing SECIOIS)coicuuiiiiieiiiiieiieee et e ettt ee e sae e 389
P2y S U o Y=Y alo [T o[RS 1= o1 (o] gl = = =] N PR 391
24.7.6 Restarting SECIOr ErASecoviiiiiiiii ittt e 392

24.8 Notes on using 2M-bit FIash MEMOIYcooiiiiiiiii e 393

24.9 Reset Vector Address in FIash MemOry ... e e e e e e e e e e e e e e e e eennenes 395

24.10 Example of Programming 2M/3M-bit Flash MemOrycccoiiiiiiiiiii e 396

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G

25.1

25.2
25.3
25.4

SERIAL PROGRAMMING CONNECTION......cceemmeeesssssssssssssssssnsnsnsnnes 401
Basic Configuration of MB90F594A/MB90F594G/MB90F591A/MB90F591G Serial Programming
L070] 1 =Y o (o] o SRR 402
Example of Serial Programming Connection (User Power Supply Used)cccoiiiniiniiiennieennne. 406
Example of Serial Programming Connection (Power Supplied from the Programmer) 408
Example of Minimum Connection to the Flash Microcomputer Programmer (User Power Supply Used)
.. 410

25.5 Example of Minimum Connection to the Flash Microcomputer Programmer (Power Supplied from the

e geTe [£=1001 1 11=T o F TP PO PPPPPPPRPPRPN 412

N o o A0 415
F N e o = VB D G N 1@ I 1 =T o 1= TR 416
APPENDIX B INSIIUCLIONSeeiiiiiiiiiieiiitte ettt ettt et e e et e e e e e e e e s e e e e e e e e e e e eaeeannnnnnrneeees 426
B.T INSTUCHON TYPES .ttt e e e e e e e e e e e e e s e ne e e e e e anbee e e e e aannes 427

= 2 L ¥o [0 [1511] o o [PPSO PT PP PPPPP 428

= R I B 1T =Yoo [[(=TS o o PP PT PP PP PPPPP 430

= | T [= Ter AN (o [1= T]= g o PP PP PP 435

S = Tol 1T o TN @Yo 1= 0 o | O 441

B.6 Effective AAAress FIld ...t e s s e e e e ee e e e nannes 444

B.7 How to Read the INSTrUCLION LIStooiiiiiie e 445

B.8 FPMC-16LX INSITUCHON LISt ...t ee e ees e s e eee s ene s een e eeneneans 448

0 T [1= 4 0T« [0 T Y/ =T o PSSP 462
APPENDIX C Timing Diagrams in Flash Memory MoOdec.cooiiiiiiiiiiiiii e e 484
APPENDIX D List of MB90590 INterrupt VECIOISuvvuiiiiiiiieiii ettt e e e et ee e e e e e e 489
219 493

Xi

Xii

CHAPTER1 OVERVIEW

The MB90590 Series is a family member of the F2MC-16LX microcontrollers.

1.1 "Product Overview"
1.2 "Features"

1.3 "Block Diagram"

1.4 "Pin Assignment"

1.5 "Package Dimensions"
1.6 "Pin Functions"

1.7 "Input-Output Circuits"
1.8 "Handling Device"

CHAPTER 1 OVERVIEW

1.1 Product Overview

Table 1.1-1 "Product Overview" provides a quick outlook of the MB90590 Series.

H Product Overview

Table 1.1-1 Product Overview

Features MB90V590G MB90F594A/F594G/F591A/ MB90594G/591/591G
F591G
Product type Evaluation sample Flash version Mask ROM version
CPU F2MC-16LX CPU

System clock

On-chip PLL clock multiplier (x1, x2, x3, x4, 1/2 when PLL stop)
Minimum instruction execution time: 62.5 ns (4 MHz osc. PLL x4)

Emulator- spegific
power supply (')

ROM/Flash External Boot-block Mask ROM 256K/384K bytes
memory Flash memory 256K/384K
bytes with Hard-wired reset
vector
RAM 8Kbytes 6K/8K bytes
Package PGA-256 QFP100
None -

*1: It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.
Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

Note:

With the product with G-suffix at the end of part numbers, functionality the CAN controller is enhanced.
Please refer to the description of the Bit Timing Register in the CAN chapter.

CHAPTER 1 OVERVIEW

1.2 Features

Table 1.2-1 "MB90590 Features" lists the features of the MB90590 series.

B Features

Table 1.2-1 MB90590 Features

Function

Feature

UART
(8 channels)

Full duplex double buffer

Supports asynchronous/synchronous (with start/stop bit) transfer

Baud rate: 4808/5208/9615/10417/19230/38460/62500/500000 bps (asynchronous)
500k/1M/2M bps (synchronous) at System clock = 16 MHz

Serial I/0

Transfer can be started from MSB or LSB

Supports internal clock synchronized transfer and external clock synchronized
transfer

Supports positive-edge and negative-edge clock synchronization

Baud rate: 31.25k/62.5k/125k/500k/1M/2M bps at System clock = 16 MHz

A/D
Converter

10 or 8-bit resolution
8 input channels
Conversion time: 26.3 us (per one channel)

16-bit Reload Timer
(2 channels)

Operation clock frequency: fsys/2', fsys/23, fsys/2 (fsys = System clock frequency)
Supports External Event Count function

Watch Timer

Directly operates with the oscillation clock

Facility to correct oscillation deviation

Read/Write accessible Second/Minute/Hour registers
Signals interrupts

16-bit
/O Timer

Signals an interrupt when overflow

Supports Timer Clear when a match with Output Compare (Channel 0)
Operation clock frequency: fsys/22, fsys/2* fsys/28, fsys/28 (fsys = System clock
frequency)

16-bit
Output Compare
(6 channels)

Signals an interrupt when a match with 16-bit /0O Timer
Six 16-bit compare registers
A pair of compare registers can be used to generate an output signal

16-bit
Input Capture
(6 channels)

Rising edge, falling edge or rising & falling edge sensitive
Six 16-bit Capture registers
Signals an interrupt upon external event

CHAPTER 1 OVERVIEW

Table 1.2-1 MB90590 Features (Continued)

Function Feature
8/16-bit Supports 8-bit and 16-bit operation modes
Programmable Pulse | Twelve 8-bit reload counters
Generator Twelve 8-bit reload registers for L pulse width
(6 channels) Twelve 8-bit reload registers for H pulse width

A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as
8-bit prescaler plus 8-bit reload counter

6 output pins

Operation clock frequency: fsys, fsys/2', fsys/2?, fsys/23, fsys/2* or

128 us@fosc = 4 MHz

(fsys = System clock frequency, fosc = Oscillation clock frequency)

CAN Interface Conforms to CAN Specification Version 2.0 Part A and B
(2 channels) Automatic re-transmission in case of error

Automatic transmission responding to Remote Frame
Prioritized 16 message buffers for data and ID’s
Supports multiple messages

Flexible acceptance filter

Full bit compare / Full bit mask / Two partial bit masks
Supports up to 1M bps

Stepping Motor Four high current outputs for each channel
Controller Synchronized two 8-bit PWM's for each channel
(4 channels) Succeeds to MB89940 design resource
External Either edge detection or level detection can be specified.
Interrupt The MB90V590G supports only four of the eight input channels.

(8 channels)

Sound Generator 8-bit PWM signal is mixed with tone frequency from 8-bit reload counter
PWM frequency: 62.5k, 31.2k, 15.6k, 7.8kHz at System clock = 16 MHz
Tone frequency: PWM frequency / 2 / (reload value + 1)

I/0 Ports Virtually all external pins can be used as general purpose 1/O
All push-pull outputs and schmitt trigger inputs
Bit-wise programmable as input/output or peripheral signal

Flash Memory Supports automatic programming, Embedded Algorithm™ (1)
Write/Erase/Erase-Suspend/Resume commands

A flag indicating completion of the algorithm

Hard-wired reset vector available in order to point to a fixed boot sector in Flash
Memory

Boot block configuration

Erase can be performed on each block

*1: Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.

CHAPTER 1 OVERVIEW

1.3 Block Diagram

Figure 1.3-1 "Block Diagram" shows a block diagram of the MB90590 series.

B Block Diagram

Figure 1.3-1 Block Diagram

X0.x1 I Clock ——— - 16LX
RST ’ Controller | ag—— CPU
HST —>
RAM 6K/8K [—P ~<@—P 0 Timer
Input
<§——P| Capture |[@— IN[5:0]
ROM/Flash < > 6ch
256K/384K
Qutput
~@§—P» Compare — OUT[5:0]
bch
soTz0]] 8/16-bit
SCK[2:0] <@ UART3ch [E—> §—P PPG — PPG[5:0]
SIN[2:0] —> 6ch
*<—>
< > CAN - RX[1:0]
2 2h — TX[1:0
SOT3 -— a [1:0]
©
SCK3 P scrialli0 [P 5
SIN3 — Z — PWM1M[3:0]
— PWM1P[3:0]
AVce —> < > SMC — PWM2M([3:0]
AVss — 4ch — PWM2P[3:0]
AN[7:0] —{ 10-bit ADC —— BVeo
AVRH —® 8ch -—— DVss
AVRL —
ADTG External
< > Interrupt <+ INT[7:0]
8ch
TIN —{16-bit Reload
P
TOT/WOT Timer 2ch
< > Sound [— P SGO
Generator ——p SGA
Watch
P
Timer

CHAPTER 1 OVERVIEW

1.4 Pin Assignment

Figure 1.4-1 "Pin Assignment"” shows the pin assignments for the MB90590 series.

B Pin Assignment

Figure 1.4-1 Pin Assignment

©
) S
= B <t ™
Eztgesx 2dgz2 e
sgERE=IXST SxEz42zg20¢8
SEypryggeedereeezzzzo RN
OO0 mrrim
O OO O NN O OO T O AN ™ O 00NN O U S O A
ND_\/__H_‘mS < v T T T T TSI TT OO0 O O™ 3Om”H_Nmun_n_\Nmm
1sH s 62 [19dd/ISd
ss\Q &9 82 [09dd/0Sd
0dHNMd/0Ld] 7S 29
OWNENMd/+Ld]9 92 [£10S/.¥d
0deWMd/eLd []99 g2 [eM0S/avd
OWZNMd/ELd] 45 2 [ENIS/Std
2opQ 89 — £2 [199A
FdHAMd/PLd [65 O 22 [eNIS/id
HALNMA/GLd []09 O o +2 [2)0S/evd
LdgNMd/9Ld [+) € o 02 [1 210S/evd
LWSNMd/ZLd]9 JC\ = 61 [J 110S/1d
ss\q []€9 O S 0o 81 [10s/0vd
2dHNMd/08d []79 — oo L1 [T INIS/LEd
ZNLAMd/18d 99 ! © o 9L [C1 ONIS/9ed
2deNMd/z8d [99 Dl o v St [0M0s/sed
2NTNMIESd []£9 LL SH 71 [0108/ved
90AQ []89 Q ~ ek [eed
£dLNMd/P8d []69 3 21 [zed
EINLNMd/S8d []04 o LL [SSA
£deNMd/98d [+ oL [1ed
EINGNMd/L8d [8L 6 []0ed
SSA\Q []€L 8 [LINl/Zed
0X1/06d []7L /[91NI/9¢d
OXH/16d []SL 9 [SLNI/Szd
0LNI/26d []9L S [vLINIved
LsH 42 v [€ed
LINI/E6d []8L € []eed
ZINI/v6d 6L . Zz [ted
€1NI/S6d []08 o L [0zd
A MO < 1D OO O O~ AN M T O O NN OO O
O 0O 00O 00O 00O 00O 0O GO €O O» O» OO OO OO OO O» O» OO O +
Loy oo i
ExX>x2zz=zzz=z555555%Xag
Ss533380000003w58¢R
£fEfaaaa o o

CHAPTER 1 OVERVIEW

1.5 Package Dimensions

Figure 1.5-1 "Package Dimensions" shows the package dimensions of the MB90590
series.

Note that the dimensions show below are reference dimensions. For formal
dimensions of each package, contact us.

B Package Dimensions

Figure 1.5-1 Package Dimensions

100-pin plastic QFP Lead pitch 0.65 mm
Package width x 14 % 20 mm
package length
Lead shape Gullwing
Sealing method Plastic mold
Length of flgt 0.80 mm
por tion of pins
(FPT-100P-MO06)
100-pin plastic QFP
(FPT-100P-MO06)
23.90+0.40(.941+.016) 3.35(.132)MAX
(Mounting height)
20.00+0.20(.787+.008) @ (()'S%'E)A'lggzowély)
A8 B A AR AR AR RARA _® e
% % 14.00£0.20 17.90+0.40 12.35(:486) 16.30£0.40
E= O O = (.551+.008) (.705+.016) REF (.642+.016)
== INDEX =5

TESTARRE AT e — -
0.65(.0256)TYP 0802010 (57073005 @ 0.1520.05(.006:.002)

(012+.004)

LEAD No.

[
[

[

\

| ﬁ —

| —

r [0.30(.012
[

[‘

\

\

,,,,,,,,,,,,,

o L

0.80+0.20

e

(.031=.008)

R
I

18.85(.742)REF ‘
22.30£0.40(.878+.016)

© 2000 FUJITSU LIMITED F100008-3C-3 Dimensions in mm (inches).

CHAPTER 1 OVERVIEW

1.6 Pin Functions

Table 1.6-1 "Pin Functions" describes the pin functions of the MB90590 series.

H Pin Functions

Table 1.6-1 Pin Functions

No. Pin name Circuit type Function
82 X0 Oscillation input
A
83 X1 Oscillation output
77 RST Reset input
52 HST C Hardware standby input
P00 to P05 General purpose 1/0O
85 to 90 D
INO to IN5 Inputs for the Input Captures
P06 to P07 General purpose 1/O
P10 to P13
9110 96 OUTO to D Outputs for the Output Compares.
ouT5 To enable the signal outputs, the corresponding bits of the
Port Direction registers should be set to "1".
P14 General purpose I/0
97 D
RX1 RX input for CAN Interface 1
P15 General purpose I/0
98 D TX output for CAN Interface 1.
X1 To enable the signal output, the corresponding bit of the Port
Direction register should be set to "1".
P16 General purpose 1/O
99 D SGO output for the Sound Generator.
SGO To enable the signal output, the corresponding bit of the Port
Direction register should be set to "1".
P17 General purpose I/0
100 D SGA output for the Sound Generator.
SGA To enable the signal output, the corresponding bit of the Port
Direction register should be set to "1".
1to4 P20 to P23 D General purpose I/0
P24 to P27 General purpose I/0
510 8 D i i
INT4 to INT7 External interrupt input for INT4 to INT7

These pin functions are not supported by MB90V590G

Table 1.6-1 Pin Functions (Continued)

CHAPTER 1 OVERVIEW

No. Pin name Circuit type Function
9t0 10 P30 to P31 D General purpose 1/0
121013 P32 to P33 D General purpose I/0
P34 General purpose I/0
14 D SOT output for UART 0.
SOTO To enable the signal output, the corresponding bit of the Port
Direction register should be set to "1".
P35 General purpose I/0
15 D SCK input/output for UART 0.
SCKO To enable the signal output, the corresponding bit of the Port
Direction register should be set to "1".
P36 General purpose 1/0
16 D
SINO SIN input for UART 0
P37 General purpose I/0
17 D
SIN1 SIN input for UART 1
P40 General purpose I/0
18 D
SCK1 SCK input/output for UART 1
P41 General purpose 1/0O
19 D
SOTH1 SOT output for UART 1
P42 General purpose I/0
20 D
SOT2 SOT output for UART 2
P43 General purpose I/0
21 D
SCK2 SCK input/output for UART 2
P44 General purpose 1/0
22 D
SIN2 SIN input for UART 2
P45 General purpose I/0
24 D
SIN3 SIN input for the Serial 1/0
P46 General purpose I/0
25 D
SCK3 SCK input/output for the Serial /0
P47 General purpose 1/0
26 D
SOT3 SOT output for the Serial I/0
P50 to P55 General purpose I/0
28 to 33 PPGO to D Outputs for the Programmable Pulse Generators.
PPG5, Pin number 33 is also shared with ADTG input for the
ADTG external trigger of the A/D Converter.

CHAPTER 1 OVERVIEW

Table 1.6-1 Pin Functions (Continued)

No. Pin name Circuit type Function
P60 to P63 General purpose 1/0
38 to 41 E
ANO to AN3 Inputs for the A/D Converter
P64 to P67 General purpose I/0
43 to 46 E
AN4 to AN7 Inputs for the A/D Converter
P56 General purpose I/0
47 D
TIN TIN input for the 16-bit Reload Timer
P57 General purpose 1/O
TOT output for the 16-bit Reload Timer and WOT output for
48 TOT/WOT D the Watch Timer. Only one of three output enable flags in
these peripheral blocks can be set at a time. Otherwise the
output signal has no meaning.
P70 to P73 General purpose I/0
PWM1PO Output for Stepping Motor Controller channel 0.
PWM2PO
PWM2MO
P74 to P77 General purpose I/0
PWM1P1 Output for Stepping Motor Controller channel 1.
591062 PWM1M1 F
PWM2P1
PWM2M1
P80 to P83 General purpose 1/0O
PWM1P2 Output for Stepping Motor Controller channel 2.
PWM2P2
PWM2M2
P84 to P87 F, GGeneral purpose I/0
PWM1P3 Output for Stepping Motor Controller channel 3.
PWM2P3
PWM2M3
P90 General purpose I/0
74 D
TX0 TX output for CAN Interface 0
P91 General purpose 1/O
75 D
RX0 RX input for CAN Interface 0
P92 General purpose I/0
76 D
INTO External interrupt input for INTO

10

CHAPTER 1 OVERVIEW

Table 1.6-1 Pin Functions (Continued)

No. Pin name Circuit type Function

P93 General purpose 1/0
78 D

INTH External interrupt input for INT1

P94 General purpose I/0
79 D

INT2 External interrupt input for INT2

P95 General purpose I/0
80 D

INT3 External interrupt input for INT3
58 DV) Dedicated power supply pins for the high current output
68 cc buffers (Pin No. 54 to 72)
53 Dedicated ground pins for the high current output buffers
63 DVgg - (Pin No. 54 to 72)
73
34 AV - Dedicated power supply pin for the A/D Converter
37 AVgg - Dedicated ground pin for the A/D Converter
35 AVRH - Upper reference voltage input for the A/D Converter
36 AVRL - Lower reference voltage input for the A/D Converter
49 MDO c Test mode inputs. These pins should be connected to V¢
50 MD1
51 MD2 G Test mode input. This pin should be connected to Vgg

External capacitor pin. A capacitor of 0.1uF should be
27 C - .
connected to this pin and Vgg.

23 Power supply pins

Vee -
84
11 Ground pins
42 Vss -
81

11

CHAPTER 1 OVERVIEW

1.7 Input-Output Circuits

Table 1.7-1 "Input-output Circuits" lists the input-output circuits.

H Input-output Circuits

Table 1.7-1 Input-output Circuits

| P-ch

N-ch

R
R
R

[HYS

Hysteresis input

Class Circuit Remarks
A * Oscillation feedback resistor:
1 1 MQ approx.
D Oscillation feedback resistor. M%}o&k pulse
| L
| B
X0
D |
Hard, soft standby control
B » Hysteresis input with pull-up Resistor
Pull-up resistor: 50 kQ approx.
R (pull-up)
HYS
C e Hysteresis input
HYS
D e CMOS output

12

CHAPTER 1 OVERVIEW

Table 1.7-1 Input-output Circuits (Continued)

Class Circuit Remarks
E ¢ CMOS output
e Hysteresis input
* Analog input

E P-ch
j N-ch

M
L]

CMOS high current output
Hysteresis input

High current

R [HYS
G e Hysteresis input with pull-down resistor
HYS Pull-down resistor: 50 kQ approx.
R Flash version does not have pull-down
resistor.
R (pull-down)

13

CHAPTER 1 OVERVIEW

1.8 Handling Device

Special care is required for the following when handling the device:

Preventing latch-up

Treatment of unused pins

Using external clock

Power supply pins (Vcc/Vss)

Pull-up/down resistors

Crystal Oscillator Circuit

Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs
Connection of Unused Pins of A/D Converter

N.C. Pin

Precautions at power on

Initialization

Indeterminate outputs from ports 0 and 1

Using the "DIV A, Ri" and "DIVW A, RWi" instructions
Using REALOS

14

Handling the Device

O Preventing latch-up
CMOS IC chips may suffer latch-up under the following conditions:

* A voltage higher than V¢ or lower than Vgg is applied to an input or output pin.
* A voltage higher than the rated voltage is applied between V¢ and Vgg.

* The AV power supply is applied before the V¢ voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the

device.

O Treatment of unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent
damage of the device. Therefore they must be pulled up or pulled down through resistors. In this

case those resistors should be more than 2 KQ.

Unused bidirectional pins should be set to the output state and can be left open, or the input

state with the above described connection.

CHAPTER 1 OVERVIEW

O Using external clock

To use external clock, drive the X0 pin and leave X1 pin open.

Figure 1.8-1 "Using External Clock" is a diagram of how to use external clock.

Figure 1.8-1 Using External Clock

I_ MB90590 Series
(>C X0

Open X1

O Power supply pins (Vcc/Vss)

Ensure that all Vgc-level power supply pins are at the same potential. In addition, ensure the
same for all Vgg-level power supply pins. (See the Figure 1.8-2 "Power Supply Pins (Vcc/
Vgg)".) If there are more than one V¢ or Vgg system, the device may operate incorrectly even
within the guaranteed operating range.

Figure 1.8-2 Power Supply Pins (V¢c/Vss)

oVce
©Vss

1finnd

MB90590
Vce Series Vce

Vss

?uuﬁu

WTTH-T

HJLJM

O Pull-up/down resistors

The MB90590 Series does not support internal pull-up/down resistors. Use external
components where needed.

Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to
provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic
resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit
not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins
with a ground area for stabilizing the operation.

15

CHAPTER 1 OVERVIEW

16

O Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs
(ANO to AN7) after turning-on the digital power supply (V).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this
case, make sure that the voltage not exceed AVRH or AV (turning on/off the analog and

digital power supplies simultaneously is acceptable).
Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AV = Vg, AVgs = AVRH = Vgg.

N.C. Pin

The N.C. (internally connected) pin must be opened for use.

Precautions at power on

To prevent a malfunction of the internal step-down circuit, the voltage rise time at power-on
should be 50 ps or more (between 0.2 V and 2.7 V).

Initialization

In the device, there are internal registers which is initialized only by a power-on reset. To
initialize these registers turning on the power again.

CHAPTER 1 OVERVIEW

O Indeterminate outputs from ports 0 and 1 (Except MB90F594G, MB90F591G, and
MB90591G)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is

turned on, the outputs from ports 0 and 1 become following state.

e If RST pinis "H", the outputs become indeterminate.

« IfRST pinis "L", the outputs become high-impedance .

*: Other than P06, P07, P10 to P13, P16, P17. (The output of these pin become indeterminate

only.)
Pay attention to the port output timing shown as follow

Figure 1.8-3 Indeterminate output from ports 0 and 1 (RST pin is "H")

Oscillation setting time *2

' Power-on reset *! |

Vcc (Power-supply pin)

PONR (power-on reset) signal

RST (external asynchronous reset) signal

RST (internal reset) signal

N

Oscillation clock signal

KA (internal operation clock A) signal ' :| | | | | | | | I | ' |
KB (internal operation clock B) signal E | I | I | | | | | | | |

PORT (port output) signal Period of indeterminated E/

*1: Power-on reset time: Period of "clock frequency X 217 " (Clock frequency of 16 MHz: 8.19 ms)

*2: Oscillation setting time: Period of "clock frequency X 2'8 " (Clock frequency of 16 MHz: 16.38ms)

Figure 1.8-4 High-impedance output from ports 0 and 1 (RST pin is "L")

Oscillation setting time *2

' Power-on reset *!

Vcc (Power-supply pin)

PONR (power-on reset) signal : l

RST (external asynchronous reset) signal ! ' |

RST (internal reset) signal

KA (internal operation clock A) signal

KB (internal operation clock B) signal : ' I_l_l_l_l_l_l_l_l_l—l_l_

PORT (port output) signal

High-impedance
*1: Power-on reset time: Period of "clock frequency X 217 " (Clock frequency of 16 MHz: 8.19 ms)

*2: Oscillation setting time: Period of "clock frequency X 218 " (Clock frequency of 16 MHz: 16.38ms)

17

CHAPTER 1 OVERVIEW

O Using the "DIV A, Ri" and "DIVW A, RWi" instructions

Before using the multiplication and division instructions using signs ("DIV A, Ri" and "DIVW A,
RWi"), set "004" in the corresponding bank registers (DTB, ADB, USB, and SSB). If the
corresponding bank registers (DTB, ADB, USB, and SSB) are set to other than "004", the

remainder in the execution results of the instruction is not stored in the register of the instruction
operand. For more information, see Section 2.11 "Precautions for Use of "DIV A, Ri" and "DIVW
A, RWi" Instructions".

O Using REALOS

The use of EI?OS is not possible with the REALOS real time operating system.

O Notes on during operation of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-
oscillating circuit even when there is no external oscillator or external clock input is stopped.
Performance of this operation, however, cannot be guaranteed.

18

CHAPTER2 CPU

This chapter explains the CPU.

2.1 "Outline of CPU"

2.2 "Memory Space"

2.3 "Memory Space Map"

2.4 "Linear Addressing"

2.5 "Bank Addressing Types"

2.6 "Multi-byte Data in Memory Space"
2.7 "Registers"

2.8 "Register Bank"

2.9 "Prefix Codes"

2.10 "Interrupt Disable Instructions”
2.11 "Precautions for Use of "DIV A, Ri" and "DIVW A, RWi"

Instructions”

19

CHAPTER 2 CPU

2.1

Outline of CPU

The F2MC-16LX CPU core is a 16-bit CPU designed for applications that require high-
speed real-time processing, such as home-use or vehicle-mounted electronic

appliances. The F2MC-16LX instruction set is designed for controller applications, and
is capable of high-speed, highly efficient control processing.

H Outline of CPU

20

In addition to 16-bit data, the FMC-16LX CPU core can process 32-bit data by using an internal
32-bit accumulator. (32-bit data can be processed with some instructions.) Up to 16 Mbytes of
memory space (expandable) can be used, which can be accessed by either the linear pointer or

bank method. The instruction system, based on the F2MC-8 A-T architecture, has been
reinforced by adding instructions compatible with high-level languages, expanding addressing
modes, reinforcing multiplication and division instructions, and enhancing bit processing. The

features of the FPMC-16LX CPU are explained below.

O Minimum instruction execution time: 62.5 ns (at 4-MHz oscillation, 4 times clock
multiplication)

O Maximum memory space: 16 Mbytes, accessed in linear or bank mode

O Instruction set optimized for controller applications
* Rich data types: Bit, byte, word, long word
* Extended addressing modes: 23 types

» High-precision operation (32-bit length) based on 32-bit accumulator

O Powerful interrupt functions

Eight priority levels (programmable)

O CPU-independent automatic transfer

Up to 16 channels of the extended intelligent 1/O service

O Instruction set compatible with high-level language (C)/multitasking

System stack pointer/instruction set symmetry/barrel-shift instructions

O Improved execution speed: 4-byte queue

CHAPTER 2 CPU

2.2 Memory Space

An F2MC-16LX CPU has a 16-Mbyte memory space. All data program input and output

managed by the F2MC-16LX CPU are located in this 16-Mbyte memory space. The CPU
accesses the resources by indicating their addresses using a 24-bit address bus.

H Outline of CPU Memory Space

Figure 2.2-1 "Sample Relationship between F2MC-16LX System and Memory Map" shows a
sample relationship between the F2MC-16LX system and memory map.

Figure 2.2-1 Sample Relationship between F2MC-16LX System and Memory Map

77777777777777777777777777 /_)> { FFFFFFY Program area
— Program FF80004
F2MC-16LX —
= - ata
CPU _)> [BT
| Data area
= Interrupt [800000
_> [0000COH
| Peripheral L { Interrupt controller
circuits _> 0000BO0H
‘ { Peripheral circuits
|| General- x 000020H
[Device] —|purpose portsf > { General-purpose ports
——————————————————————————— 0000004

B Address Generation Types
The F?MC-16LX has the following two addressing:

O Linear addressing

An entire 24-bit address is specified by an instruction.

O Bank addressing

The eight high-order bits of an address are specified by an appropriate bank register, and the
remaining 16 low-order bits are specified by an instruction.

21

CHAPTER 2 CPU

2.3 Memory Space Map

The memory space of the MB90590 Series is shown in Figure 2.3-1 "Memory Space
Map".

B Memory Space Map

22

The high-order portion of bank 00 gives the image of the FF bank ROM to make the small
model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM

can be referenced without using the far specification in the pointer declaration.

For example, an attempt to access 00C000y accesses the value at FFC000y in ROM.

The ROM area in bank FF exceeds 48 Kbytes, and its entire image cannot be shown in bank

00.

The image between FF40004 and FFFFFFy is visible in bank 00, while the image between

FF0000y and FF3FFF is visible only in bank FF.

MB90V590G
FFFFFFy

ROM (FF bank)
FF0000y
FEFFFFy

ROM (FE bank
FE0000y ()
FDFFFFy

ROM (FD bank
FD0O00O (FD bank)
FCFFFFy

ROM (FC bank
FC0000y ()
FBFFFFy

ROM (FB bank)
FB0000y
FAFFFFy

ROM (FA bank)
FA0000y
FOFFFFy

ROM (F9 bank)
F90000y
00FFFFH | Rom (Image of
004000 FF bank)
0028FF
002100y RAM 2K
0020FFy
001FFFy

Peripheral
001900y
0018FFy
RAM 6K

000100y
0000BF -
000000: Perlpheral

Figure 2.3-1 Memory Space Map

MB90F594A/MB90F594G/MB90594G

FFFFFFy

FFO000y
FEFFFFy

FE0000H
FDFFFFy

FDO00Oy
FCFFFFy

FC0000

OOFFFFy
004000y

001FFFy

001900y,
0018FFy

000100y,

0000BFy
000000y

ROM (FF bank)

ROM (FE bank)

ROM (FD bank)

ROM (FC bank)

ROM (Image of
FF bank)

Peripheral

RAM 6K

Peripheral

MB90F591A/MB90591
MB90F591G/MB90591G

FFFFFFH

ROM (FF bank)
FFO000
FEFFFFy

ROM (FE bank
FE0000y ()
FDFFFF

ROM (FD bank
FD0O00O, (FD bank)
FCFFFFy
FC0000y
FBFFFFy

ROM (FB bank)
FB0000}
FAFFFFy

ROM (FA bank)
FA0000
FOFFFFy

ROM (F9 bank)
F90000y
00FFFFH | Rom (Image of
004000, FF bank)
0028FFy
002100y RAM 2K
0020FFy,
001FFFy

Peripheral
0019004
0018FFy
RAM 6K

0001004
O000BF, .
000000: Perlphel‘al

2.4 Linear Addressing

CHAPTER 2 CPU

There are two types of linear addressing:

e 24-bit operand specification: Directly specifies a 24-bit address using operands.
e 32-bit register indirect specification: Indirectly specifies the 24 low-order bits of a

32-bit general-purpose register value as the address.

B 24-bit Operand Specification

Figure 2.4-1 "Example of Linear Method (24-bit Register Operand Specification)" shows an
example of 24-bit operand specification. Figure 2.4-2 "Example of Linear Method (32-bit

Register Indirect Specification") shows an example of 32-bit register indirect specification.

Figure 2.4-1 Example of Linear Method (24-bit Register Operand Specification)

Old program counter

+ program bank 17

ﬁ 17452D
452D

New program counter

———> 123456 4

+ program bank 12

3456

Figure 2.4-2 Example of Linear Method (32-bit Register Indirect Specification)

MOV_ A_ @RL1+7

Old AL

XXXX

090700

RL1
(The high-order eight bits are ignored.)

New AL

003A

JMPP 123456 4

Next instruction

3A

240906F9

23

CHAPTER 2 CPU

2.5 Bank Addressing Types

In the bank method, the 16-Mbyte space is divided into 256 64-Kbyte banks. The
following five bank registers are used to specify the banks corresponding to each
space:

¢ Program bank register (PCB)

e Data bank register (DTB)

e User stack bank register (USB)

e System stack bank register (SSB)

¢ Additional bank register (ADB)

H Bank Addressing Types

O Program bank register (PCB)

The 64-Kbyte bank specified by the PCB is called a program (PC) space. The PC space
contains instruction codes, vector tables, and immediate value data, for example.

O Data bank register (DTB)
The 64-Kbyte bank specified by the DTB is called a data (DT) space. The DT space contains
readable/writable data, and control/data registers for internal and external resources.

O User stack bank register (USB)/system stack bank register (SSB)

The 64-Kbyte bank specified by the USP or SSP is called a stack (SP) space. The SP space is
accessed when a stack access occurs during a push/pop instruction or interrupt register saving.
The S flag in the condition code register determines the stack space to be accessed.

24

O Additional bank register (ADB)

The 64-Kbyte bank specified by the ADB is called an additional (AD) space. The AD space, for
example, contains data that cannot fit into the DT space.

CHAPTER 2 CPU

Table 2.5-1 "Default Space" lists the default spaces used in each addressing mode, which are
pre-determined to improve instruction coding efficiency. To use a non-default space for an
addressing mode, specify a prefix code corresponding to a bank before the instruction. This
enables access to the bank space corresponding to the specified prefix code.

After reset, the DTB, USB, SSB, and ADB are initialized to 004. The PCB is initialized to a value
specified by the reset vector. After reset, the DT, SP, and AD spaces are allocated in bank 004
(0000004 to OOFFFFy), and the PC space is allocated in the bank specified by the reset vector.

Table 2.5-1 Default Space

Default space

Addressing mode

Program space

PC indirect, program access, branch

Data space

Addressing mode using @RW0, @RW1, @RW4, or @RW5, @A, addr16,

and dir

Stack space

Addressing mode using PUSHW, POPW, @RW3, or @ RW7

Additional space

Addressing mode using @ RW2 or @ RW6

Figure 2.5-1 "Physical Addresses of Each Space" is an example of a memory space divided into
register banks.

FFFFFF 4
T Program space
FFOOOO | f------------- - FFy
B3FFFF f-------------
Additional space
B30000 f-------------+ - B3
@
© 92FFFFy [~ ~-""""""""""-
3 User stack space
S 920000 Hf-""""""-"-----1 - 92 H
[
Q
@ B68FFFFH }-------------
T Data space
680000 |- ------------- - 68
ABFFFFy | ... _|

4B0000W |- _ By

AL 000000

Figure 2.5-1 Physical Addresses of Each Space

PCB (Program bank register)

: ADB (Additional bank register)

: USB (User stack bank register)

: DTB (Data bank register)

: SSB (System stack bank register)

25

CHAPTER 2 CPU

2.6 Multi-byte Data in Memory Space

Data is written to memory from the low-order addresses. Therefore, for a 32-bit data
item, the low-order 16 bits are transferred before the high-order 16 bits.
If a reset signal is input immediately after the low-order bits are written, the high-order

bits might not be written.

B Multi-byte Data Allocation in Memory Space

Figure 2.6-1 "Sample Allocation of Multi-byte Data in Memory" is a diagram of multi-byte data
configuration in memory. The low-order eight bits of a data item are stored at address n, then

address n+1, address n+2, address n+3, etc.

Figure 2.6-1 Sample Allocation of Multi-byte Data in Memory

MSB

LSB

| 01010101 | 11001100

11111111

00010100

—= T

eeeeeeeeeee |

01010101
11001100
7 717171;1717171 o
saossn | - 201010
L

B Accessing Multi-byte Data

Fundamentally, accesses are made within a bank. For an instruction accessing a multi-byte
data item, address FFFFy is followed by address 0000y of the same bank. Figure 2.6-2

"Execution of MOVW A, 080FFFFy" is an example of an instruction accessing multi-byte data.

Figure 2.6-2 Execution of MOVW A, 080FFFFH

H
? AL before execution ?? ??
80FFFF 01H J—
800000 23 AL after execution 23 01H
L

26

CHAPTER 2 CPU

2.7 Registers

The F2MC-16LX registers are largely classified into two types: special registers in the
CPU and general-purpose registers in memory. The special registers are dedicated
internal hardware of the CPU, and they have specific use defined by the CPU
architecture. The general-purpose registers share the CPU address space with RAM.
The general-purpose registers are the same as the special registers in that they can be
accessed without using an address. The applications of the general-purpose registers
can be specified by the user however, as is ordinary memory space.

B Special Registers

The F2MC-16LX CPU core has the following 13 special registers:

Accumulator (A=AH:AL): Two 16-bit accumulators (Can be used as a single 32-bit
accumulator.)

User stack pointer (USP): 16-bit pointer indicating the user stack area

System stack pointer (SSP): 16-bit pointer indicating the system stack area
Processor status (PS): 16-bit register indicating the system status

Program counter (PC): 16-bit register holding the address of the program
Program bank register (PCB): 8-bit register indicating the PC space

Data bank register (DTB): 8-bit register indicating the DT space

User stack bank register (USB): 8-bit register indicating the user stack space
System stack bank register (SSB): 8-bit register indicating the system stack space
Additional bank register (ADB): 8-bit register indicating the AD space

Direct page register (DPR): 8-bit register indicating a direct page

Figure 2.7-1 "Special Registers" is a diagram of the special registers.

27

CHAPTER 2 CPU

Figure 2.7-1 Special Registers

AH 1 AL

usp

SSP

PS

PC

32 bit }

28

Accumulator

User stack pointer
System stack pointer
Processor status

Program counter

Direct page register

Program bank register
Data bank register

User stack bank register
System stack bank register

Additional data bank register

CHAPTER 2 CPU

B General-purpose Registers

The FPMC-16LX general-purpose registers are located from addresses 0001804 to 00037F

(maximum configuration) of main storage. The register bank pointer (RP) indicates which of the
above addresses are currently being used as a register bank. Each bank has the following three
types of registers. These registers are mutually dependent as described in Figure 2.7-2
"General-purpose Registers".

* RO to R7: 8-bit general-purpose register
¢ RWO to RW7: 16-bit general-purpose register
¢ RLO to RL3: 32-bit general-purpose register

Figure 2.7-2 General-purpose Registers

MSB LSB
16 bit
_——=
000180 +RP*10y [----------- — \
Low-order RWO
First address of RLO
general-purpose register AWt {
RW2
RL1
RW3
- | - \
R1 } RO RW4
" - - RL2
R3 1 R2 RW5
T \
R5 } R4 RW6
‘ - RAL3
R7 } R6 RW?7
High-order [| 7~

The relationship between the high-order and low-order bytes of a byte or word register is
expressed as follows:

RW (i+4) = R (i*2+1)*256+R (i*2) [i=0 to 3]

The relationship between the high-order and low-order bytes of RLi and RW can be expressed
as follows:

29

CHAPTER 2 CPU

2.7.1

Accumulator (A)

The accumulator (A) register consists of two 16-bit arithmetic operation registers (AH
and AL), and is used as a temporary storage for operation results and transfer data.

H Accumulator (A)

30

Old A | XXXX 4+ XXXX H | AB1540 H 8FH 74

NeWA| 8F74y ' 2B52 | (. RW1 15y 38

Old A | XXXX H | 12344 | AB1540 1 8F 74y

New A | 1234 ' 12344 | (i RW1 154 38

The A register consists of two 16-bit arithmetic operation registers (AH and AL). The A register
is used as a temporary storage for operation results and transfer data. During 32-bit data
processing, AH and AL are used together. Only AL is used for word processing in 16-bit data
processing mode or for byte processing in 8-bit data processing mode (see Figure 2.7-3 "32-bit
Data Transfer" and Figure 2.7-4 "AL-AH Transfer"). The data stored in the A register can be
operated upon with the data in memory or registers (Ri, Rwi, or Rli). In the same manner as with

the F?MC-8L, when a word or shorter data item is transferred to AL, the previous data item in
AL is automatically sent to AH (data preservation function). The data preservation function and
operation between AL and AH help improve processing efficiency.

When a byte or shorter data item is transferred to AL, the data is sign-extended or zero-
extended and stored as a 16-bit data item in AL. The data in AL can be handled either as word
or byte long.

When a byte-processing arithmetic operation instruction is executed on AL, the high-order eight
bits of AL before operation are ignored. The high-order eight bits of the operation result all
become zeroes.

The A register is not initialized by a reset. The A register holds an undefined value immediately
after a reset.
Figure 2.7-3 32-bit Data Transfer
MO VLA,@R_ W1+6 MSB LSB

+i

AH AL

Figure 2.7-4 AL-AH Transfer

MO VW A.@R_ W1+6 MSB LSB

A6153E 2B H 52H
L ow At
+6

CHAPTER 2 CPU

2.7.2 User Stack Pointer (USP) and System Stack Pointer (SSP)

USP and SSP are 16-bit registers that indicate the memory addresses for saving and
restoring data when a push/pop instruction or subroutine is executed.

B User Stack Pointer (USP) and System Stack Pointer (SSP)

USP and SSP are 16-bit registers that indicate the memory addresses for saving and restoring
data in the event of a push/pop instruction or subroutine execution. The USP and SSP registers
are used by stack instructions. The USP register is enabled when the S flag in the processor
status register is '0,' and the SSP register is enabled when the S flag is '1' (see Figure 2.7-5
"Stack Manipulation Instruction and Stack Pointer"). Since the S flag is set when an interrupt is
accepted, register values are always saved in the memory area indicated by SSP during
interrupt processing. SSP is used for stack processing in an interrupt routine, while USP is used
for stack processing outside an interrupt routine. If the stack space is not divided, use only the
SSP.

During stack processing, the high-order eight bits of an address are indicated by SSB (for SSP)
or USB (for USP). USP and SSP are not initialized by a reset. Instead, they hold undefined
values.

Figure 2.7-5 Stack Manipulation Instruction and Stack Pointer

Example 1 PUSHW A when the S flag is '0' MSB LSB

Before exeoution = AL | A624y | USB | Céy | USP | Fazsy |CeFaze | xx XX

S flag III SSB| 56 | SSP| 1234 4 |

. User stack is used because
After execution => AL A624 4 uUsB | CéH | USP | F326 4 |<):| the S flag is '0."

III SSB| 56 | SSP| 1234 4 |C6F326H A6 H ‘ 24

Example 2 PUSHW A when the S flag is '1'

=> AL | Ae24y | USB | Cey | USP | Fazsy | se1282 x| xx
SSB| 56 | ssp| 1234 1y |

—> AL A624 usB | CéH | USP | F328 | 561232 A6 244

SSB | 56 | SSP | 1232 4 | <= System stack is used because
the S flagis '1.'

Note:

Specify an even-numbered address in the stack pointer whenever possible.

31

CHAPTER 2 CPU

2.7.3 Processor Status (PS)

The PS register consists of the bits controlling the CPU Operation and the bits
indicating the CPU status.

B Processor Status (PS)

As shown in Figure 2.7-6 "Processor Status (PS) Structure", the high-order byte of the PS
register consists of a register bank pointer (RP) and an interrupt level mask register (ILM). The
RP indicates the start address of a register bank. The low-order byte of the PS register is a
condition code register (CCR), containing the flags to be set or reset depending on the results of
instruction execution or interrupt occurrences.

Figure 2.7-6 Processor Status (PS) Structure

16 =—= 1312 =——= 87 0

PS ILM RP CCR

B Condition Code Register (CCR)

32

Figure 2.7-7 "Condition Code Register (CCR) Configuration" is a diagram of condition code
register configuration.

Figure 2.7-7 Condition Code Register (CCR) Configuration
7 6 5 4 3 2 A 0

Il | S| T| N| Z]|V |cCc | :CCR

*: Undefined

*

Initial value R 0 1 * * * *

I: Interrupt enable flag:

Interrupts other than software interrupts are enabled when the | flag is 1 and are masked when
the | flag is 0. The | flag is cleared by a reset.

S: Stack flag:

When the S flag is 0, USP is enabled as the stack manipulation pointer.

When the S flag is 1, SSP is enabled as the stack manipulation pointer.

The S flag is set by an interrupt reception or a reset.

T: Sticky bit flag:

1 is set in the T flag when there is at least one '1' in the data shifted out from the carry after
execution of a logical right/arithmetic right shift instruction. Otherwise, 0 is set in the T flag. In
addition, '0' is set in the T flag when the shift amount is zero.

N: Negative flag:

The N flag is set when the MSB of the operation result is '1,' and is otherwise cleared.

CHAPTER 2 CPU

O Z: Zero flag:

The Z flag is set when the operation result is all zeroes, and is otherwise cleared.

O V: Overflow flag:

The V flag is set when an overflow of a signed value occurs as a result of operation execution
and is otherwise cleared.

O C: Carry flag:

The C flag is set when a carry-up or carry-down from the MSB occurs as a result of operation
execution, and is otherwise cleared.

B Register Bank Pointer (RP)

The RP register indicates the relationship between the general-purpose registers of the F2MC-
16LX and the internal RAM addresses. Specifically, the RP register indicates the first memory
address of the currently used register bank in the following conversion expression: [00180y +
(RP)*104] (see Figure 2.7-8 "Register Bank Pointer (RP)"). The RP register consists of five bits,

and can take a value between 00H and 1FH. Register banks can be allocated at addresses
from 000180y to 00037, in memory.

Even within that range, however, the register banks cannot be used as general-purpose
registers if the banks are not in internal RAM. The RP register is initialized to all zeroes by a
reset. An instruction may transfer an eight-bit immediate value to the RP register; however, only
the low-order five bits of that data are used.

Figure 2.7-8 Register Bank Pointer (RP)

B4 B3 B2 B 1 BO : RP

Initial value 0 0 0 0 0

33

CHAPTER 2 CPU

B Interrupt Level Mask Register (ILM)

The ILM register consists of three bits, indicating the CPU interrupt masking level. An interrupt
request is accepted only when the level of the interrupt is higher than that indicated by these
three bits. Level 0 is the highest priority interrupt, and level 7 is the lowest priority interrupt (see
Table 2.7-1 "Levels Indicated by the Interrupt Level Mask (ILM) Register"). Therefore, for an
interrupt to be accepted, its level value must be smaller than the current ILM value. When an
interrupt is accepted, the level value of that interrupt is set in ILM. Thus, an interrupt of the same
or lower level cannot be accepted subsequently. ILM is initialized to all zeroes by a reset. An
instruction may transfer an eight-bit immediate value to the ILM register, but only the low-order
three bits of that data are used.

Figure 2.7-9 Interrupt Level Register (ILM)

ILM2 | ILM1 [ILMO tILM

Initial value 0 0 0

Table 2.7-1 Levels Indicated by the Interrupt Level Mask (ILM) Register

ILM2 ILMA1 ILMO Level value Acceptable interrupt level
0 0 0 0 Interrupt disabled
0 0 1 1 0 only
0 1 0 2 Level value smaller than 1
0 1 1 3 Level value smaller than 2
1 0 0 4 Level value smaller than 3
1 0 1 5 Level value smaller than 4
1 1 0 6 Level value smaller than 5
1 1 1 7 Level value smaller than 6

34

CHAPTER 2 CPU

2.7.4 Program Counter (PC)

The PC register is a 16-bit counter that indicates the low-order 16 bits of the memory
address of an instruction code to be executed by the CPU. The high-order eight bits of
the address are indicated by the PCB. The PC register is updated by a conditional
branch instruction, subroutine call instruction, interrupt, or reset.

The PC register can also be used as a base pointer for operand access.

H Program Counter (PC)

Figure 2.7-10 "Program Counter" shows the program counter.

Figure 2.7-10 Program Counter

PCB FEH PC ABCD H
< % Next instruction to be executed
‘ FEABCD 4

35

CHAPTER 2 CPU

2.8 Register Bank

A register bank consists of eight words. The register bank can be used as the
following general-purpose registers for arithmetic operations: byte registers RO to R7,
word registers RWO0 to RW7, and long word registers RLO to RL3. In addition, the
register bank can be used as instruction pointers.

B Register Bank

Table 2.8-1 "Register Functions" lists the functions of the registers. Table 2.8-2 "Relationship
between Registers" indicates the relationship between the registers.

In the same manner as for an ordinary RAM area, the register bank values are not initialized by
a reset. The status before a reset is maintained. When the power is turned on, however, the
register bank will have an undefined value.

Table 2.8-1 Register Functions

RO to R7 Used as operands of instructions.
Note: RO is also used as a counter for barrel shift or normalization
instructions.

RWO0 to RW7 Used as pointers.
Used as operands of instructions.
Note: RWO is used as a counter for string instructions.

RLO to RL3 Used as long pointers.
Used as operands of instructions.

Table 2.8-2 Relationship between Registers

RWO
RLO
RWi1
Rw2
RL1
RW3
RO
RwW4
R1
RL2
R2
RW5
R3
R4
RW6
R5
RL3
R6
RW7
R7

36

CHAPTER 2 CPU

O Direct page register (DPR) <Initial value: 01>

DPR specifies addr8 to addr15 of the instruction operands in direct addressing mode as shown
in Figure 2.8-1 "Generating a Physical address in Direct Addressing Mode". DPR is eight bits
long, and is initialized to 01 by a reset. DPR can be read or written to by an instruction.

Figure 2.8-1 Generating a Physical address in Direct Addressing Mode

DTB register DPR register Direct address during instruction
0L 0L 0L 0L 0L 0L 0L O PBBBBBRBB YYYYYYYY
MSB l LSBl

24-bit physical
address

aoaoooooBBRRRRRRYYYYYYYY

O Program counter bank register (PCB) <Initial value: Value in reset vector>

O Data bank register(DTB) <Initial value: 00>

O User stack bank register(USB) <Initial value: 00>

O System stack bank register(SSB) <Initial value: 00>

O Additional data bank register(ADB) <Initial value: 00>

Each bank register indicates the memory bank where the PC, DT, SP (user), SP (system), or
AD space is allocated. All bank registers are one byte long. PCB is initialized to 00y by a reset.

Bank registers other than PCB can be read or written to. PCB can be read but cannot be written
to.

PCB is updated when the JMPP, CALLP, RETP, RETIQ, or RETF instruction branching to the
entire 16-Mbyte space is executed or when an interrupt occurs. For operation of each register,
see Section 2.2 "Memory space".

37

CHAPTER 2 CPU

2.9 Prefix Codes

Placing a prefix code before an instruction partially changes the operation of the
instruction. Three types of prefix codes can be used: bank select prefix, common
register bank prefix, and flag change disable prefix.

B Bank Select Prefix
The memory space used for accessing data is determined for each addressing mode.

When a bank select prefix is placed before an instruction, the memory space used for accessing
data by that instruction can be selected regardless of the addressing mode.

Table 2.9-1 "Bank Select Prefix" lists the bank select prefixes and the corresponding memory
spaces.

Table 2.9-1 Bank Select Prefix

Bank select prefix Space selected
PCB PC space
DTB Data space
ADB AD space
SPB 5;22 the SSP or USP space is used according to the stack flag

Use the following instructions with care:

O String instructions (MOVS, MOVSW, SCEQ, SCWEQ, FILS, FILSW)

The bank register specified by an operand is used regardless of the prefix.

O Stack manipulation instructions (PUSHW, POPW)
SSB or USB is used according to the S flag regardless of the prefix.

O 1/0 access instructions
MOV A, io / MOV io, A /MOVX A, io / MOVW A, io /MOVW io, A / MOV io, #imm8

MOQV io, #imm16 / MOVB A, io:bp / MOB io:bp, A /SETB io:bp / CLRB io:bp
v BBC io:bp, rel / BBS io:bp, rel WBTC, WBTS

The 10 space of the bank is used regardless of the prefix.

O Flag change instructions (AND CCR,#imm8, OR CCR,#imm8)

The instruction is executed normally, but the prefix affects the next instruction.

O POPW PS

SSB or USB is used according to the S flag regardless of the prefix. The prefix affects the next
instruction.

38

CHAPTER 2 CPU

O MOV ILM,#imm8

The instruction is executed normally, but the prefix affects the next instruction.

O RETI
SSB is used regardless of the prefix.
B Common Register Bank Prefix (CMR)

To simplify data exchange between multiple tasks, the same register bank must be accessed
relatively easily regardless of the RP value. When CMR is placed before an instruction that
accesses a register bank, that instruction accesses the common bank (the register bank
selected when RP=0) at addresses from 0001804 to 00018Fy regardless of the current RP

value. Use the following instructions with care:

O String instructions (MOVS, MOVSW, SCEQ, SCWEQ, FILS, FILSW)

If an interrupt request occurs during execution of a string instruction with a prefix code, the
prefix code becomes invalid when the string instruction is resumed after the interrupt is
processed. Thus, the string instruction is executed falsely after the interrupt is processed. Do
not prefix any of the above string instructions with CMR.

O Flag change instructions (AND CCR,#imm8, OR CCR,#imm8, POPW PS)

The instruction is executed normally, but the prefix affects the next instruction.

O MOV ILM,#imm8

The instruction is executed normally, but the prefix affects the next instruction.

B Flag Change Disable Prefix (NCC)

To disable flag changes, use the flag change disable prefix code (NCC). Placing NCC before an
instruction disables flag changes associated with that instruction. Use the following instructions
with care:

O String instructions (MOVS, MOVSW, SCEQ, SCWEQ, FILS, FILSW)

If an interrupt request occurs during execution of a string instruction with a prefix code, the
prefix code becomes invalid when the string instruction is resumed after the interrupt is
processed. Thus, the string instruction is executed incorrectly after the interrupt is processed.
Do not prefix any of the above string instructions with NCC.

O Flag change instructions (AND CCR,#imm8, OR CCR,#imm8, POPW PS)

The instruction is executed normally, but the prefix affects the next instruction.

O Interrupt instructions (INT #vct8, INT9, INT addri6, INTP addr24, RETI)

CCR changes according to the instruction specifications regardless of the prefix.

O JCTX @A

CCR changes according to the instruction specifications regardless of the prefix.

O MOV ILM,#imm8

The instruction is executed normally, but the prefix affects the next instruction.

39

CHAPTER 2 CPU

2.10 Interrupt Disable Instructions

Interrupt requests are not sampled for the following ten instructions:
- MOV ILM,#imm8 - PCB - SPB -OR CCR,#imm8 -NCC
- AND CCR,#imm8 - ADB - CMR - POPW PS -DTB

H Interrupt Disable Instructions

If a valid interrupt request occurs during execution of any of the above instructions, the interrupt
can be processed only when an instruction other than the above is executed. For details, see
Figure 2.10-1 "Interrupt Disable Instruction".

Figure 2.10-1 Interrupt Disable Instruction

Interrupt disable instruction

|: [XN NN NN :| (a) |:ooo
(a) Ordinary

/P ﬁ instruction

Interrupt request Interrupt acceptance

B Restrictions on Interrupt Disable Instructions and Prefix Instructions

When a prefix code is placed before an interrupt disable instruction, the prefix code affects the
first instruction after the code other than the interrupt disable instruction. For details, see Figure
2.10-2 "Interrupt Disable Instructions and Prefix Codes".

Figure 2.10-2 Interrupt Disable Instructions and Prefix Codes

Interrupt disable instruction

MOV A, FF 4 NCC MOV ILM,#imm8 eoee ADD A01 4
CCR:XXX10XX ¢ CCR:XXX10XX
CCR does not change with NCC.

Bl Consecutive Prefix Codes
When competitive prefix codes are placed consecutively, the latter becomes valid.
In the figure below, competitive prefix codes are PCB, ADB, DTB, and SPB. For details, see
Figure 2.10-3 "Consecutive Prefix Codes".
Figure 2.10-3 Consecutive Prefix Codes

Prefix code

ecece °] ADB DTB PCB ADD A,014 [A

¢ PCB is valid as the prefix code

40

CHAPTER 2 CPU

2.11 Precautions for Use of "DIV A, Ri" and "DIVW A, RWi"
Instructions

Set "00y" in

the bank register before using the "DIV A, Ri" and "DIVW A, RWi"

Instructions.

H Precautions for Use of "DIV A, Ri" and "DIVW A, RWi" Instructions

Table 2.11-1 Precautions for Use of "DIV A, Ri" and "DIVW A, RWi" Instructions (i = 0 to 7)
Bank register
affected by the
Instruction execution of the Address that stores the remainder
instructions listed
on the left
DIV A, RO DTB (DTB: Upper 8 bits) + (0180 + RP x 10y + 8y : Lower 16 bits)
DIV A, R1 (DTB: Upper 8 bits) + (0180 + RP x 10y + 9y : Lower 16 bits)
DIV A, R4 (DTB: Upper 8 bits) + (0180 + RP x 104 + Cy : Lower 16 bits)
DIV A, R5 (DTB: Upper 8 bits) + (0180 + RP x 10y + Dy : Lower 16 bits)
DIVW A, RWO (DTB: Upper 8 bits) + (0180 + RP x 10y + Oy : Lower 16 bits)
DIVW A, RW1 (DTB: Upper 8 bits) + (0180 + RP x 104 + 24 : Lower 16 bits)
DIVW A, RW4 (DTB: Upper 8 bits) + (0180 + RP x 10y + 8y : Lower 16 bits)
DIVW A, RW5 (DTB: Upper 8 bits) + (0180 + RP x 10 + Ay : Lower 16 bits)
DIV A, R2 ADB (ADB: Upper 8 bits) + (01804 + RP x 10y + Ay : Lower 16 bits)
DIV A, R6 (ADB: Upper 8 bits) + (01804 + RP x 10y + Ep : Lower 16 bits)
DIVW A, RW2 (ADB: Upper 8 bits) + (01804 + RP x 10y + 4y : Lower 16 bits)
DIVW A, RW6 (ADB: Upper 8 bits) + (01804 + RP x 10y + Ep : Lower 16 bits)
DIV A, R3 uUSB (USB *2: Upper 8 bits) + (0180 + RP x 104 + By : Lower 16 bits)
DIV A, R7 SsBH (USB *2: Upper 8 bits) + (0180 + RP x 10y + Fy : Lower 16 bits)
DIVW A, RW3 (USB *2: Upper 8 bits) + (0180 + RP x 104 + 6 : Lower 16 bits)
DIVW A, RW7 (USB *2: Upper 8 bits) + (01804 + RP x 104 + Ey : Lower 16 bits)

*1 Depends on the S bit of the CCR register.
*2 In the event that the S bit of the CCR register is zero

If the value of the bank registers (DTB, ADB, USB, and SSB) is "004", the remainder after

division is stored in the register of the instruction operands. Otherwise, the upper eight bits is
specified by the bank register corresponding to the register of the instruction operand, and the
lower 16 bits is the same as the address of the register of the instruction operand. The
remainder is stored in the bank register specified by the upper eight bits.

41

CHAPTER 2 CPU

Example:

If "DIV A,R0" is executed with DTB = "0534" and RP = "03y", the address of RO is "01804" +
RP ("034") x "104" + "084" (RO corresponding address) = "0001B8y". Since the data bank

register (DTB) is specified by "DIV A,R0" as the bank register, the remainder is stored in
address "05301B8y", which was obtained by adding the bank address "053y".

Note:

For information about the bank register and Ri and RWi registers, see Section 2.7
"Registers".

H Use of the "DIV A, Ri" and "DIVW A, RWi" Instructions without Precautions

42

To enable users to develop programs without having to take precautions for using the "DIV
ARi" and "DIVW A,RWi" instructions, special compilers and assemblers are available. The
special compiler does not generate the instructions in Table 2.11-1 "Precautions for Use of "DIV
ARi" and "DIVW A,RWi" Instructions (i = 0 to 7)". The special assemblers have a function that
replaces the instructions in Table 2.11-1 "Precautions for Use of "DIV A,Ri" and "DIVW A,RWi"
Instructions (i = 0 to 7)" with equivalent instruction strings. For the MB90590 series, use the
following types of compilers and assemblers:

O Compiler

cc907 V02L06 or later, or fcc907s V30L02 or later

O Assembler

asm907a VO3L04 or later, or fasm907s V30L04 (Rev. 300004) or later

CHAPTER 3 INTERRUPTS

This chapter explains the interrupt functions and operations.

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8

3.9

"Outline of Interrupts"”

“Interrupt Vector"

“Interrupt Control Registers (ICR)"
“Interrupt Flow"

"Hardware Interrupts"

"Software Interrupts"”

"Extended Intelligent I/O Service (EIQOS)"

"Operation Flow of and Procedure for Using the Extended Intelligent 1/0
Service (EI20S)"

"Exceptions”

43

CHAPTER 3 INTERRUPTS

3.1 Outline of Interrupts

The F2MC-16LX has interrupt functions that terminate the currently executing

processing and transfer control to another specified program when a specified event

occurs. There are four types of interrupt functions:

e Hardware interrupt: Interrupt processing due to an internal resource event

e Software interrupt: Interrupt processing due to a software event occurrence
instruction

e Extended intelligent I/O service (EI20$): Transfer processing due to an internal
resource event
e Exception: Termination due to an operation exception

B Hardware Interrupts

A hardware interrupt is activated by an interrupt request from an internal resource. A hardware
interrupt request occurs when both the interrupt request flag and the interrupt enable flag in an
internal resource are set. Therefore, an internal resource must have an interrupt request flag
and interrupt enable flag to issue a hardware interrupt request.

O Specifying an interrupt level
An interrupt level can be specified for the hardware interrupt. To specify an interrupt level, use
the level setting bits (ILO, IL1, and IL2) of the interrupt controller.

O Masking a hardware interrupt request

A hardware interrupt request can be masked by using the | flag of the processor status register
(PS) in the CPU and the ILM bits (ILO, IL1, and IL2). When an unmasked interrupt request
occurs, the CPU saves 12 bytes of data that consists of registers PS, PC, PCB, DTB, ADB,
DPR, and A in the memory area indicated by the SSB and SSP registers.

Figure 3.1-1 Overview of Hardware Interrupts

Register file PS I ILM PS : Processor status
| . Interrupt enable flag
[\ ILM . Interrupt level mask register
. . ! g
o Microcode IR L < Check‘iComparatorJ IR . Instruction register
E: ® ® @.
© F2MC-16LX - CPU | J@
&) ———
& Peripheral |
L § u
© —_
sl 3
Enable FF— AND 11 &%
o >
11| 5| Interrupt
(]
o[Cause FF@; @ 7% | £ controlier
e | £

44

CHAPTER 3 INTERRUPTS

B Software Interrupts

F2MC-16 bus

Interrupts requested by executing the INT instruction are software interrupts. An interrupt
request by the INT instruction does not have an interrupt request or enable flag. An interrupt
request is issued always by executing the INT instruction.

No interrupt level is assigned to the INT instruction. Therefore, ILM is not updated when the INT
instruction is used. Instead, the | flag is cleared and the continuing interrupt requests are
suspended.

Figure 3.1-2 Overview of Software Interrupts

@
. . PS . Processor status
Register file PS | S I . Interrupt enable flag
© . ILM . Interrupt level mask register
. proo oo Bunit -5 | IR :Instruction register
‘ Microcode| | |R Bunit : Bus interface unit
— Queue— Fetch| !
FZMC-16LX-CPU \ |
I
Save /p
rL Instruction bus
RAM

B Extended Intelligent /O Service (EI?0S)

The extended intelligent 1/O service automatically transfers data between an internal resource
and memory. This processing is traditionally performed by an interrupt processing program, but

the EI20S enables data to be transferred in a manner similar to a DMA (direct memory access)
operation.

To activate the extended intelligent I/O service function from an internal resource, the interrupt
control register (ICR) of the interrupt controller must have an extended intelligent I/O service
enable flag (ISE).

The extended intelligent 1/O service is started when an interrupt request occurs with 1 specified
in the ISE flag. To generate a normal interrupt using a hardware interrupt request, set the ISE
flag to O.

45

CHAPTER 3 INTERRUPTS

Figure 3.1-3 Overview of the Extended Intelligent I/O Service (EIZOS)

Memory space

by IOA ;
~ [Vowegeter| : Peripheral
CPU Interrupt request | @
® by ICS
ISD y ® |
® | Interrupt control register
Interrupt controller
@ I/O requests transfer.
by BAP @ The interrupt controller selects the
descriptor.
® The transfer source and destination
@ L= by DCT are read from the descriptor.
Buffer @ Data is transferred between 1/0 and

memory.

Bl Exceptions

Exception processing is basically the same as interrupt processing. When an exception is
detected between instructions, exception processing is performed. In general, exception
processing occurs as a result of an unexpected operation. Therefore, use exception processing
only for debugging programs or for activating recovery software in an emergency.

46

3.2

Interrupt Vector

CHAPTER 3 INTERRUPTS

An interrupt vector uses the same area for both hardware and software interrupts. For
example, interrupt request number INT42 is used for a delayed hardware interrupt and
for software interrupt INT #42. Therefore, the delayed interrupt and INT #42 call the
same interrupt processing routine. Interrupt vectors are allocated between addresses
FFFCO00y4 and FFFFFFy as shown in Table 3.2-1 "Interrupt Vectors".

B Interrupt Vector

Table 3.2-1 Interrupt Vectors

Interrupt request

Vector address L

Vector address H

Vector address

Mode register

bank
INT 0 (') FFFFFCy FFFFFDy FFFFFEL Unused
INT 1 (1) FFFFF8y FFFFF9, FFFFFA4 Unused
INT7 (1) FFFFEOy FFFFE1y FFFFE2y Unused
INT 8 (2 FFFFDCy FFFFDDy FFFFDEL FFFFDFy
INT 9 FFFFD8, FFFFD9y FFFFDA Unused
INT 10 ("3 FFFFD4y FFFFD5 FFFFD6 Unused
INT 11 FFFFDO, FFFFD14 FFFFD2, Unused
INT 254 FFFCO4y, FFFCO5 FFFCO6 Unused
INT 255 FFFCOO FFFCO1y FFFC02y Unused

*1: When PCB is FF, the vector area for the CALLYV instruction is the same as that for INT #vct8 (#0 to #7).

Care must be taken when using the vector for the CALLV instruction.
*2: The vector is a reset vector.
*3: The vector is an exception processing vector.

B Listing of Interrupt Vectors
See Table D-1 "MB90590 Interrupt Vectors" in APPENDIX D "List of MB90590 Interrupt

Vectors" for a list of the MB90590 interrupt vectors.

47

CHAPTER 3 INTERRUPTS

3.3 Interrupt Control Registers (ICR)

The interrupt control registers are in the interrupt controller. Each interrupt control

register has a corresponding I/O that has an interrupt function. The interrupt control

registers have the following three functions:

e Setting an interrupt level for corresponding peripherals

¢ Selecting whether to use an ordinary interrupt or extended intelligent I/O service for
the corresponding peripherals

¢ Selecting the extended intelligent I/O service channel

Do not access an interrupt control register by using a read-modify-write instruction, as

doing so causes a malfunction.

B Interrupt Control Register (ICR)

Figure 3.3-1 "Interrupt Control Register (ICR)" is a diagram of the bit configuration of an
interrupt control register.

Figure 3.3-1 Interrupt Control Register (ICR)

15/7 14/6 13/5 12/4 11/3 10/2 91 8/0
ICS3 |ICS2 ICSH ICSO ISE L2 LA ILO Interrupt control register
or or 000001115 when reset
S SO
W w * * R/W R/W R/W R/W
Note:

ICS3 to ICSO0 are valid only when EI?OS is activated. Set '1' in ISE to activate EI°0S, and set

'0' in ISE not to activate it. When EI2OS is not to be activated, any value can be set in ICS3
to ICSO0. * '1' is read always.

ICS1 and ICSO0 are valid for write only. S1 and SO0 are valid for read only.
[bits 10 to 8] [bits 2 to 0]: ILO, IL1, and IL2 (interrupt level setting bits)

These bits are readable and writable, and specify the interrupt level of the corresponding
internal resources. Upon a reset, these bits are initialized to level 7 (no interrupt). Table 3.3-1
"Interrupt Level Setting Bits and Interrupt Levels" describes the relationship between the
interrupt level setting bits and interrupt levels.

48

CHAPTER 3 INTERRUPTS

Table 3.3-1 Interrupt Level Setting Bits and Interrupt Levels

(No interrupt)

ILM2 ILM1 ILMO Level
0 0 0 0 (Strongest)
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6 (Weakest)
7

[bit 11] [bit 3]: ISE (extended intelligent I/O service enable bits)

The ISE bit is readable and writable. In response to an interrupt request, EI2OS is activated
when '1' is set in the ISE bit and an interrupt sequence is activated when '0' is set in the ISE

bit. Upon completion of EI’OS, the ISE bit is cleared to a zero. If the corresponding
peripheral does not have the EI20S function, the ISE bit must be set to '0' on the software

side.

Upon a reset, the ISE bit is initialized to '0'.
[bits 15 to 12] [bits 7 to 4]: ICS 3 to 0 (extended intelligent I/0O service channel select bits)

ICS3 to ICSO are write-only bits. These bits specify the EI’OS channel. The values set in
these bits determined the intelligent 1/O service descriptor addresses in memory, which is
explained later. The ICS bits are initialized by a reset.

Table 3.3-2 "ICS bits, Channel Numbers, and Descriptor Addresses" describes the

correspondence between the ICS bits, channel numbers, and descriptor addresses.

49

CHAPTER 3 INTERRUPTS

Table 3.3-2 ICS bits, Channel Numbers, and Descriptor Addresses

ICS3 ICS2 ICS1 ICS0 Selected channel Descriptor address
0 0 0 0 0 0001004
0 0 0 1 1 0001084
0 0 1 0 2 0001104
0 0 1 1 3 000118y
0 1 0 0 4 0001204
0 1 0 1 5 0001284
0 1 1 0 6 0001304
0 1 1 1 7 0001384
1 0 0 0 8 0001404
1 0 0 1 9 000148y
1 0 1 0 10 0001504
1 0 1 1 11 0001584
1 1 0 0 12 0001604
1 1 0 1 13 0001684
1 1 1 0 14 0001704
1 1 1 1 15 000178y

[bits 13 and 12] [bits 5 and 4]: SO0 and S1 (extended intelligent I/O service status)

S0 and S1 are read-only bits. The values set in these bits indicate the end condition of
EI20S. These bits are initialized to '00' upon a reset.

Table 3.3-3 "S Bits and End Conditions" shows the relationship between the S bits and the
end conditions.

Table 3.3-3 S Bits and End Conditions

S1 S0 End condition
0 0 EI20S running or not activated

0 1 Termination by count

1 0 Reserved

1 1 Termination by request from resource

50

CHAPTER 3 INTERRUPTS

3.4 Interrupt Flow

Figure 3.4-1 "Interrupt Flow" shows the interrupt flow.

B Interrupt Flow

Figure 3.4-1 Interrupt Flow
! | : Flagin CCR 1
1 ILM : Level register in CPU !
' IF : Internal resource interrupt request !
1 IE : Internal resource interrupt enable flag |

ISE : EI20S enable flag
IL : Internal resource interruptrequest level
S : Flagin CCR

I1&IF&IE=1 YES
AND
ILM > IL
NO
NO YES
Fetching and decoding
the next instruction
Saving PS, PC, PCB, DTB, Executing the extended
ADB, DPR, and A into the intelligent 1/0 service
stack of SSP, and setting ILM=IL

YES
INT instruction
NO
Executing an ordinary ‘ Saving PS, PC, PCB, DTB, ADB,
instruction .
DPR, and A into the stack of SSP,
and setting I=0 and ILM=IL

Completion of
string instruction
repetition

S< 1
Fetching the interrupt vector

Updating PC

51

CHAPTER 3 INTERRUPTS

52

Figure 3.4-2 Register Saving during Interrupt Processing

Word (16 bits)

MSB LSB
AH
AL
DPR ADB
DPB PCB
PC
PS

SSP (SSP value before interrupt)

SSP (SSP value after interrupt)

CHAPTER 3 INTERRUPTS

3.5 Hardware Interrupts

In response to an interrupt request signal from an internal resource, the CPU pauses
current program execution and transfers control to the interrupt processing program
defined by the user. This function is called the hardware interrupt function.

B Hardware Interrupts

A hardware interrupt occurs when the relevant conditions are satisfied as a result of two
operations: comparison between the interrupt request level and the value in the interrupt level
mask register (ILM) of PS in the CPU, and hardware reference to the | flag value of PS.

The CPU performs the following processing when a hardware interrupt occurs:

e Saves the values in the PC, PS, AH, AL, PCB, DTB, ADB, and DPR registers of the CPU to
the system stack.

e Sets ILM in the PS register. The currently requested interrupt level is automatically set.

* Fetches the corresponding interrupt vector value and branches to the processing indicated
by that value.

B Structure of Hardware Interrupt

Hardware interrupts are handled by the following three sections:

O Internal resources

Interrupt enable and request bits: Used to control interrupt requests from resources.

O Interrupt controller
ICR: Assigns interrupt levels and determines the priority levels of simultaneously requested
interrupts.

O CPU

| and ILM: Used to compare the requested and current interrupt levelsand to identify the
interrupt enable status.

Microcode: Interrupt processing step

The status of these sections are indicated by the resource control registers for internal
resources, the ICR for the interrupt controller, and the CCR value for the CPU. To use a
hardware interrupt, set the three sections beforehand by using software.

The interrupt vector table referenced during interrupt processing is assigned to addresses
FFFCO0y to FFFFFFy in memory. These addresses are shared with software interrupts.

Table D-2 "Interrupt Causes, Interrupt Vectors, and Interrupt Control Registers" in Appendix D
lists the assignments for the MB90590 Series.

53

CHAPTER 3 INTERRUPTS

3.5.1 Hardware Interrupt Operation

An internal resource that has the hardware interrupt request function has an interrupt
request flag and interrupt enable flag. The interrupt request flag indicates whether an
interrupt request exists, and the interrupt enable flag indicates whether the relevant
internal resource requests an interrupt to the CPU. The interrupt request flag is set
when an event occurs that is unique to the internal resource. When the interrupt
enable flag indicates "enable", the resource issues an interrupt request to the interrupt

controller.

B Hardware Interrupt Operation

54

When two or more interrupt requests are received at the same time, the interrupt controller
compares the interrupt levels (IL) in ICR, selects the request at the highest level (the smallest IL
value), then reports that request to the CPU. If multiple requests are at the same level, the
interrupt controller selects the request with the lowest interrupt number. The relationship
between the interrupt requests and ICRs is determined by the hardware.

The CPU compares the received interrupt level and the ILM in the PS register. If the interrupt
level is smaller than the ILM value and the | bit of the PS register is set to 1, the CPU activates
the interrupt processing microcode after the currently executing instruction is completed. The
CPU references the ISE bit of the ICR of the interrupt controller at the beginning of the interrupt
processing microcode, checks that the ISE bit is 0 (interrupt), and activates the interrupt
processing body.

The interrupt processing body saves 12 bytes (PS, PC, PCB, DTB, ADB, DPR, and A) to the
memory area indicated by SSB and SSP, fetches three bytes of interrupt vector and loads them
onto PC and PCB, updates the ILM of PS to a level value of the received interrupt, sets the S
flag, then performs branch processing. As a result, the interrupt processing program defined by
the user is executed next.

Figure 3.5-1 "Occurrence and Release of Hardware Interrupt" illustrates the flow from the
occurrence of a hardware interrupt until there is no interrupt request in the interrupt processing
program.

CHAPTER 3 INTERRUPTS

3.5.2 Occurrence and Release of Hardware Interrupt

Figure 3.5-1 "Occurrence and Release of Hardware Interrupt" shows the processing
flow from occurrence of a hardware interrupt to release of the interrupt request in an
interrupt processing program.

Bl Occurrence and Release of Hardware Interrupt

F2MC-16 bus

Figure 3.5-1 Occurrence and Release of Hardware Interrupt

Register file PS I ILM PS . Processor status
| . Interrupt enable flag
[\ ILM : Interrupt level mask register
Microcode IR £ — CheCkLComparatorJ IR . Instruction register
® ® @
FAMC-16LX-CPU |
—s 10
Peripheral
p] 5]
© —
s)
S sl 3
Enable FF AND N <
(&) >
11w | & | Interrupt
[
Cause FF@— ® 18| €| controller
o | £

. An interrupt cause occurs in a peripheral.

. The interrupt enable bit in the peripheral is referenced. If interrupts are enabled, the

peripheral issues an interrupt request to the interrupt controller.

. Upon reception of the interrupt request, the interrupt controller determines the priority levels

of simultaneously requested interrupts. Then, the interrupt controller transfers the interrupt
level of the corresponding interrupt to the CPU.

. The CPU compares the interrupt level requested by the interrupt controller with the ILM bit of

the processor status register.

. If the comparison shows that the requested level is higher than the current interrupt

processing level, the | flag value of the same processor status register is checked.

. If the check in step 5. shows that the | flag indicates interrupt enable status, the requested

level is written to the ILM bit. Interrupt processing is performed as soon as the currently
executing instruction is completed, then control is transferred to the interrupt processing
routine.

. When the interrupt cause of step 1. is cleared by software in the user interrupt processing

routine, the interrupt request is completed.

55

CHAPTER 3 INTERRUPTS
The time required for the CPU to execute the interrupt processing in steps 6. and 7. is shown
below.

Interrupt start: 24 + 6 X (Table 3.3-2 "ICS bits, Channel Numbers, and Descriptor Addresses"
machine cycles)

Interrupt return: 15 + 6 x (Table 3.3-2 "ICS bits, Channel Numbers, and Descriptor Addresses"
machine cycles) RETI instruction

Table 3.5-1 Compensation Values for Interrupt Processing Cycle Count

Address indicated by the stack pointer Cycle count compensation value
Internal area, even-numbered address 0
Internal area, odd-numbered address +2

56

CHAPTER 3 INTERRUPTS

3.5.3 Multiple interrupts

As a special case, no hardware interrupt request can be accepted while data is being
written to the I/O area. This is intended to prevent the CPU from operating falsely
because of an interrupt request issued while an interrupt control register for a
resource is being updated.

If an interrupt occurs during interrupt processing, a higher-level interrupt is processed
first.

H Multiple Interrupts

The F2MC-16LX CPU supports multiple interrupts. If an interrupt of a higher level occurs while
another interrupt is being processed, control is transferred to the high-level interrupt after the
currently executing instruction is completed. After processing of the high-level interrupt is
completed, the original interrupt processing is resumed. An interrupt of the same or lower level
may be generated while another interrupt is being processed. If this happens, the new interrupt
request is suspended until the current interrupt processing is completed, unless the ILM value or
| flag is changed by an instruction. The extended intelligent 1/0 service cannot be activated from
multiple sources; while an extended intelligent I/O service is being processed, all other interrupt
requests or extended intelligent 1/0 service requests are suspended.

Figure 3.5-2 "Registers Saved in Stack" shows the order of the registers saved in the stack.

Figure 3.5-2 Registers Saved in Stack

‘ Word (16 bits) ‘
. MSB LSB |

H
? <— SSP (SSP value before interrupt)
AH
AL
DPR ADB
DPB PCB
PC
¢ PS <— SSP (SSP value after interrupt)
L

57

CHAPTER 3 INTERRUPTS

3.6 Software Interrupts

In response to execution of a special instruction, control is transferred from the
program currently executed by the CPU to the interrupt processing program defined by
the user. This is called the software interrupt function. A software interrupt occurs
always when the software interrupt instruction is executed.

B Software Interrupts

The CPU performs the following processing when a software interrupt occurs:

e Saves the values in the PC, PS, AH, AL, PCB, DTB, ADB, and DPR registers of the CPU to
the system stack.

e Sets | in the PS register. Interrupts are automatically disabled.

* Fetches the corresponding interrupt vector value, then branches to the processing indicated
by that value.

A software interrupt request issued by the INT instruction has no interrupt request or enable
flag. A software interrupt request is always issued by executing the INT instruction.

The INT instruction does not have an interrupt level. Therefore, the INT instruction does not
update ILM. The INT instruction clears the | flag to suspend subsequent interrupt requests.

B Structure of Software Interrupts

Software interrupts are handled within the CPU:

CPU.....Microcode: Interrupt processing step

B List of MB90590 Interrupt Vectors

Table D-1 "MB90590 Interrupt Vectors" lists the interrupt vectors of the MB90590 series.

As shown in Table D-1 "MB90590 Interrupt Vectors", software interrupts share the same
interrupt vector area with hardware interrupts.

For example, interrupt request number INT 12 is used for external interrupt #0 to #7 of a
hardware interrupt as well as for INT #12 of a software interrupt. Therefore, external interrupt #0
and INT #12 call the same interrupt processing routine.

B Software Interrupt Operation

58

When the CPU fetches and executes the software interrupt instruction, the software interrupt
processing microcode is activated. The software interrupt processing microcode saves 12 bytes
(PS, PC, PCB, DTB, ADB, DPR, and A) to the memory area indicated by SSB and SSP. The
microcode then fetches three bytes of interrupt vector and loads them onto PC and PCB, resets
the | flag, and sets the S flag. Then, the microcode performs branch processing. As a result, the
interrupt processing program defined by the user application program is executed next.

Figure 3.6-1 "Occurrence and Release of Software Interrupt" illustrates the flow from the
occurrence of a software interrupt until there is no interrupt request in the interrupt processing
program.

CHAPTER 3 INTERRUPTS

Figure 3.6-1 Occurrence and Release of Software Interrupt

)
.) PS : Processor status
Register file PS]S I . Interrupt enable flag
©] ILM : Interrupt level mask registe
. Tt Bunit -- | IR : Instruction register
‘ Microcode (— |R ‘ .| B unit: Bus interface unit
F2MC-16LX-CPU ‘ | ‘

Instruction bus

RAM

()]

>

o]

©

)

=

N

L

Save
]

Ml Others

1. The software interrupt instruction is executed.

2. Special CPU registers in the register file are saved according to the microcode
corresponding to the software interrupt instruction.

3. The interrupt processing is completed with the RETI instruction in the user interrupt
processing routine.

When the program bank register (PCB) is FFH, the CALLV instruction vector area overlaps the
table of the INT #vct8 instruction. When designing software, ensure that the CALLV instruction
does not use the same address as that of the #vct8 instruction.

Table D-2 "Interrupt Causes, Interrupt Vectors, and Interrupt Control Registers" shows the
relationship of interrupt cause, interrupt vector, and interrupt control register in the MB90590

series.

59

CHAPTER 3 INTERRUPTS

3.7 Extended Intelligent I/O Service (EI?0S)

The EI20S function automatically transfers data between input and output and
memory. An interrupt processing program was conventionally used for such

processing, but EI20S enables data transfer to be performed like DMA (direct memory

access).

B Extended Intelligent I/O Service (EI?0S)

60

EI%0S has the following advantages over the conventional method:
* The program size can be small because it is not necessary to write a transfer program.

* No internal register is used for transfer, eliminating the need for register saving and
increasing the transfer speed.

e Transfer can be terminated from I/O, preventing unnecessary data from being transferred.
* The buffer address may either be incremented or left unupdated.

* The I/O register address may either be incremented or left unupdated.

At the end of EI?0OS, processing automatically branches to an interrupt processing routine after
the end condition is set. Thus, the user can identify the end condition.

To implement EI?0S, the hardware is distributed in two blocks. Each block has the following
registers and descriptors.

* Interrupt control register: Exists in the interrupt controller and indicates the ISD address.

* Extended intelligent 1/O service descriptor (ISD): Exists in RAM and holds the transfer mode,
I/O address, number of transfers, and buffer address.

Note:

The use of EI0S is not possible with the REALOS real time operating system.

Figure 3.7-1 "Outline of Extended Intelligent 1/0 Service" outlines the extended intelligent 1/O
service.

H Structure

CHAPTER 3 INTERRUPTS

Figure 3.7-1 Outline of Extended Intelligent I/O Service

Memory space

by 10A ! . Peripheral
— 1/0 register ees sseseesessses | |/O reg|Ster P

CPU |

Interrupt request | ®

by ICS
ISD)

I Interrupt control register|

Interrupt controller

@ 1/O requests transfer.

@ The interrupt controller selects the

descriptor.

The transfer source and destination

Buffer DCT are read from the descriptor.

@ Data is transferred between 1/0 and
memory.

by BAP

Note:
The area that can be specified by I0A is between 000000 and 00FFFF,.
The area that can be specified by BAP is between 000000y and FFFFFFy.

The maximum transfer count that can be specified by DCT is 65,536.

EI%0S is handled by the following four sections:
Internal resources

Interrupt enable and request bits: Used to control interrupt requests from resources.
Interrupt controller

ICR: Assigns interrupt levels, determines the priority levels of simultaneously requested
interrupts, and selects the EIOS operation.

CPU

| and ILM: Used to compare the requested and current interrupt levels and to identify the
interrupt enable status

Microcode: EI?OS processing step
RAM

Descriptor: Describes the EI20S transfer information.

61

CHAPTER 3 INTERRUPTS

3.7.1

Extended Intelligent I/O Service Descriptor (ISD)

The extended intelligent I/O service descriptor exists between 000100 and 00017F in
internal RAM, and consists of the following items:

Data transfer control data
Status data

e Buffer address pointer

B Extended Intelligent I/O Service Descriptor (ISD)

Figure 3.7-2 "Extended Intelligent I/O Service Descriptor Configuration" shows the configuration
of the extended intelligent I/O service descriptor.

Figure 3.7-2 Extended Intelligent I/O Service Descriptor Configuration

High-order 8 bits of data counter (DCTH) H
Low-order 8 bits of data counter (DCTL)
High-order 8 bits of I/O address pointer (IOAH)
Low-order 8 bits of 1/0 address pointer (IOAL)

EI20S status (ISCS)

High-order 8 bits of buffer address pointer (BAPH)
000100+ 8% ICS Medium-order 8 bits of buffer address pointer (BAPM)
ISD start address—— || gw-order 8 bits of buffer address pointer (BAPL) L

B Data Counter (DCT)

62

15

This is a 16-bit register that works as a counter corresponding to the number of data items

transferred. This counter is decremented by one before data transfer. EI20S is terminated when
this counter reaches 0. Figure 3.7-3 "Data Counter Configuration" is a diagram of the data
counter configuration.

Figure 3.7-3 Data Counter Configuration

B15

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DCT
B14/B13| B12| B11|B10| B09|B08 | B07 | BO6 | BO5 | B04|B03 |B0O2 |BO1 |BOO (Undefined when reset)

CHAPTER 3 INTERRUPTS

B /O Register Address Pointer (I0OA)

This is a 16-bit register that indicates the low-order address (A15 to A0O) of the buffer and I/O
register used for data transfer. The high-order address (A23 to A16) are all zeroes, and any I/O
between addresses 000000y and OOFFFFy can be specified. Figure 3.7-4 "I/O Register

Address Pointer Configuration" is a diagram of the IOA configuration.

Figure 3.7-4 1/O Register Address Pointer Configuration
i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IOA

A15| A14/{A13| A12/| A11|A10| A09|A08 | AO7|A06 | AO5| A0O4|A03 |A02 |A01 |AOO (Undefined when reset)

B Buffer Address Pointer (BAP)

This 24-bit register holds the address used for the next EI0S transfer. BAP exists for each

EI20S channel. Therefore, each EIOS channel can be used for transfer with anywhere in the

16-Mbyte space. If the BF bit of ISCS is set to '0' (update enabled), only the low-order 16 bits of
BAP changes and BAPH does not change.

63

CHAPTER 3 INTERRUPTS

3.7.2 EI?0S Status Register (ISCS)

This eight-bit register indicates the update direction (increment/decrement), transfer
data format (byte/word), and transfer direction of the buffer address pointer and the I/O
register address pointer. This register also indicates whether the buffer address
pointer or I/O register address pointer is updated or fixed.

B EI?0S Status Register (ISCS)

7

Figure 3.7-5 "ISCS Configuration" is a diagram of the ISCS configuration.

Figure 3.7-5 ISCS Configuration
6 5 4 3 2 1 0

Reserved

ISCS
(Undefined when reset)

Reserved | Reserved IF BW BF DIR SE

* Always write 0 to bits 7 to 5 of ISCS.

64

Each bit is described below.
[bit 4] IF : Specify whether the I/O register address pointer is updated or fixed.
0: The I/O register address pointer is updated after data transfer.
1: The /O register address pointer is not updated after data transfer.
Note:
Only increment is allowed.
[bit 3] BW : Specify the transfer data length.
0: Byte
1: Word
[bit 2] BF : Specify whether the buffer address pointer is updated or fixed.
0 : The buffer address pointer is updated after data transfer.
1: The buffer address pointer is not updated after data transfer.
Note:
Only the low-order 16 bits of the buffer address are updated. Only increment is allowed.
[bit 1] DIR : Specify the data transfer direction.
0: I/O --> Buffer
1: Buffer --> 1/0

[bit 0] SE : Control the termination of the extended intelligent I/O service based on resource
requests.

0 : The extended intelligent I/O service is not terminated by a resource request.

1: The extended intelligent I/O service is terminated by a resource request.

CHAPTER 3 INTERRUPTS

3.8 Operation Flow of and Procedure for Using the Extended
Intelligent I/0O Service (EI?0S)

Figure 3.8-1 "EI20S Operation Flow" is a diagram of the EI20S operation flow. Figure
3.8-2 "EI?0S Use Flow" is a diagram of the EI?0S use procedure.

B EI20S Operation Flow

Figure 3.8-1 EI20OS Operation Flow

Interrupt request issued
from internal resource

NO

BAP . Buffer address pointer
I/0A : 1/O address pointer
ISD : EI?O0S descriptor
ISCS . EI20S status
DCT . Data counter
ISE : EPOS enable bit

! S1and SO : EIPOS end status

Interrupt sequence

ISE =1

Reading ISD/ISCS

YES

End request from resource

41/

Data indicated by I0A Data indicated by BAP
(Data transfer) || (Data transfer)
Memory |nd|cated by BAP Memory indicated by IOA

<\YES
IF=0 ‘
NO

Update value -
depends on BW. Updatln‘g 10A ‘
YES
ﬁ: 0 ‘
NO
Update value :
depends on BW. Updatm‘g BAP ‘

Decrementing DCT ‘

DCT = 00 ‘
Setting S1 and S0 to '01' Setting S1 and SO to '11"

Setting S1 and SO to '00' $ i

Clearing resource] N
interrupt request Clearing ISE to '0

CPU operation return Interrupt sequence

65

CHAPTER 3 INTERRUPTS

Figure 3.8-2 EI20S Use Flow

Processing by CPU Processing by EI20S

EIP0OS initialization

Normal |
termination

ISE =1)

Interrupt request
(P qA:ND) (

JOB execution

‘ Data transfer

Re-setting of extended intelligent
I/O service
(Switching channels)

Processing data in buffer

The extended EI2OS execution time for each flow is described below.

O When data transfer continues (when the stop condition is not satisfied)

(Table 3.8-1 "Execution Time when the Extended EI0S Continues" + Table 3.8-2 "Data
Transfer Compensation Values for Extended EI20S Execution Time") machine cycles

O When a stop request is issued from a resource

(36 + 6 X Table 3.D-2) machine cycles

O When the counting is completed

(Table 3.8-1 "Execution Time when the Extended EI0S Continues" + Table 3.8-2 "Data

Transfer Compensation Values for Extended EI?0S Execution Time" + (21 + 6 X Table 3.D-2))
machine cycles

Table 3.8-1 Execution Time when the Extended EI20S Continues

66

ISCS SE bit Setto '0' Set to '1'
I/O address pointer Fixed Updated Fixed Updated
Fixed 32 34 33 35
Buffer address pointer
Updated 34 36 35 37

Table 3.8-2 Data Transfer Compensation Values for Extended EI20S Execution Time

CHAPTER 3 INTERRUPTS

I/O address pointer

Internal access

B/E e}
B/E 0 +2

Buffer address pointer Internal
access o » ”

B: Byte data transfer

E: Even address word transfer
O: Odd address word transfer

67

CHAPTER 3 INTERRUPTS

3.9 Exceptions

The F2MC-16LX performs exception processing when the following event occurs:

H Execution of an Undefined Instruction

Exception processing is fundamentally the same as interrupt processing. When an exception is
detected between instructions, exception processing is performed separately from ordinary
processing. In general, exception processing is performed as a result of an unexpected
operation. Fujitsu recommends using exception processing only for debugging or for activating
emergency recovery software.

H Exception due to Execution of an Undefined Instruction

68

The F2MC-16LX handles all codes that are not defined in the instruction map as undefined
instructions. When an undefined instruction is executed, processing equivalent to the INT 10
software interrupt instruction is performed. Specifically, the AL, AH, DPR, DTB, ADB, PCB, PC,
and PS values are saved into the system stack, and processing branches to the routine
indicated by the interrupt number 10 vector. In addition, the | flag is cleared and the S flag is set.
The PC value saved in the stack is the address at which the undefined instruction is stored.
Processing can be restored by the RETI instruction, but is of no use, however, because the
same exception occurs again.

CHAPTER 4 DELAYED INTERRUPT

This chapter explains the functions and operations of the delayed interrupt.

4.1 "Outline of Delayed Interrupt Module"
4.2 "Delayed Interrupt Register"
4.3 "Delayed Interrupt Operation”

69

CHAPTER 4 DELAYED INTERRUPT

4.1 Outline of Delayed Interrupt Module

The delayed interrupt source module is used to generate interrupts for switching

tasks. Using this module, interrupt requests to the F2MC-16LX CPU can be issued and
canceled by software.

B Block Diagram of Delayed Interrupt

Figure 4.1-1 "Block Diagram" is a block diagram of the delayed interrupt source module.
Figure 4.1-1 Block Diagram

F2MC-16 bus

Delayed interrupt cause issuance/cancellation decoder

Cause latch

H Notes on Operation

This lock is set by writing '1' to the corresponding bit of DIRR, and is cleared by writing '0' to the
same bit. Therefore, interrupt processing is reactivated immediately after control returns from
interrupt processing, unless the software is designed so that the cause of the interrupt is cleared
within the interrupt processing routine.

70

CHAPTER 4 DELAYED INTERRUPT

4.2 Delayed Interrupt Register

DIRR controls issuance and cancellation of delayed interrupt requests. Writing “1" to
this register issues a delayed interrupt request, and writing "0" cancels the delayed
interrupt request. Upon a reset, the request is canceled.

B Delayed Interrupt Cause Issuance/Cancellation Register (DIRR: Delayed Interrupt Request Register)

In DIRR, either "0" or "1" can be written to the reserved bit area. However, it is recommended
that a set bit or clear bit instruction be used to access this register for future expansions.

15 14 13 12 11 10 9 8
DIRR .-
Address: 00009F H - - - - _ _ _ RO | 0 B
R/W

71

CHAPTER 4 DELAYED INTERRUPT

4.3 Delayed Interrupt Operation

When the CPU writes "1" to the relevant bit of DIRR by software, the request latch in
the delayed interrupt source module is set and an interrupt request is issued to the
interrupt controller.

B Delayed Interrupt Occurrence

When the CPU writes '1' to the relevant bit of DIRR by software, the request latch in the delayed
interrupt source module is set and an interrupt request is issued to the interrupt controller. If this
interrupt has the highest priority or if there is no other interrupt request, the interrupt controller
issues an interrupt request to the F2MC-16LX CPU. The F2MC-16LX CPU compares the ILM bit
of its internal CCR register and the interrupt request, and starts the hardware interrupt
processing microprogram as soon as the current instruction is completed if the interrupt level of
the request is higher than that of the ILM bit. The interrupt processing routine for this interrupt is
thus executed.

Figure 4.3-1 Delayed Interrupt Issuance

Delayed interrupt source module Interrupt controller F2MC-16LX CPU
WRITE

Other requests

I

ILM

DIRR j
S INTA

72

CHAPTER 5 CLOCK AND RESET

This chapter explains the functions and operations of clocks and resets.

5.1 "Clock Generator"
5.2 "Reset Cause Occurrence"

5.3 "Reset Causes"

73

CHAPTER 5 CLOCK AND RESET

5.1 Clock Generator

The clock generator controls internal clock operation, including such functions as
sleep, timer, stop, and PLL multiplication. This internal clock is called the machine
clock, and one cycle of the machine clock is called a machine cycle. A clock based on
the source oscillation is called the main clock, and a clock based on the internal VCO
oscillation is called the PLL clock.

H Notes on Clock Generator

When the operating voltage is 5V, the OSC source oscillation can be between 3MHz and 5MHz.
When an external clock source is used, its frequency can be between 3MHz and 16MHz. The
highest operating frequency for the CPU and peripheral resource circuits is 16 MHz, however.
Normal operation is not guaranteed if a multiplication factor resulting in a higher frequency than
16 MHz is specified. For example, if the external clock frequency is 16 MHz, only 1 can be
specified as the multiplication factor.

The lowest operating frequency of the VCO oscillation is 4 MHz, and an oscillation below 4 MHz
must not be specified.

Figure 5.1-1 "Clock Generator Circuit Block Diagram" is a block diagram of the clock generator

circuit.
Figure 5.1-1 Clock Generator Circuit Block Diagram
S Q i
Reset T N e >7 Machine clock
ﬁ)L S Q' Transition to
Interrupt timeror | Selecting the machine clock
— sleep mode
HST R T .
Transition to —i)>—S Q-
stop mode
R 11 2 \ 3 4
| PLL multiplication |

Selecting the oscillation
stabilization wait time

oT
O
O
O

Timebase timer

—B } 1/2 } }1/2048}4 1/4 F# 1/4 }4 1/8F

X0 XL

O
Selecting the watch-dog
interval

timer

Watch-dog reset

74

CHAPTER 5 CLOCK AND RESET

5.2 Reset Cause Occurrence

When a reset cause occurs, F2MC-16LX terminates the currently executing processing
and waits for reset release. A reset is caused by the following factors:

B Reset Cause Occurrence
A reset is caused by the following factors:
* Power-on reset
¢ Hardware standby release
¢ Watch-dog timer overflow
» External reset request via RST pin

* Reset request by software

B Operation after Reset Release

When a reset cause is removed, the FMC-16LX immediately outputs the address in which the
reset vector is stored, then fetches the reset vector and mode data. The reset vector and mode
data are assigned to the four bytes between FFFFDCy and FFFFDFy. After reset is released,

the reset vector and mode data are transferred to the registers by the hardware as described in
Figure 5.2-1 "Source and Destination of Reset Vector and Mode Data".

The bus mode after the reset vector and mode data are read is specified by the mode data.

Figure 5.2-1 Source and Destination of Reset Vector and Mode Data

—® F2MC-16LX CPU ~ @—

 Mode
® Memory space @

Register
FFFFDF Mode data }7
'
Micro ROM
FFFFDEQ Reset vector bits 23 to 16
FFFFDDyY Reset vector bits 15to 8 Reset sequence

FFFFDCH Reset vector bits 7 to 0

E
PC}

Note:

For MB90F594A, MB90F594G, MB90F591A and MB90F591G, the reset vector and mode
data have predetermined values by the hard-wired logic.

For more information, refer to Section 24.9 "Reset Vector Address in Flash Memory".

75

CHAPTER 5 CLOCK AND RESET

B Registers not Initialized by Reset Input

This microcontroller contains registers initialized only by a power-on reset.

Table 5.2-1 "Registers not Initialized by Reset Input" lists registers not initialized by each reset
cause.

Table 5.2-1 Registers not Initialized by Reset Input

CKSCR LPMCR
Type of reset
WS1 wSso MCS CS1 CSo0 CG1 CGo
Software reset
(Only RST is used.) N N N N N N N
Watchdog reset N N Y N
Power-on reset Y Y Y Y Y
Hardware standby N N Y N

WS1 and WSO0: Set the oscillation stabilization time for the main clock.
MCS: Specifies the machine clock (0 = PLL clock or 1 = main clock).
CS1 and CS0: Set the multiplication factor for the PLL clock.
CG1,CGO0: Set the intermittent CPU operation.

Y: Initialized

N: Not initialized (previous status maintained)

In particular, handle the MCS bit carefully because it sets the machine clock. For example, if
power-on does not satisfy the power-on reset specification, no power-on reset occurs. For this
reason, the internal operating frequency may become outside the valid operation range,
because MCS is not initialized, and the microcontroller may not operate normally.

If the CPU crashes for some reason and MCS, CS1, or CSO0 is rewritten, the internal operating
frequency may also become outside the valid operation range. The microcontroller may not be
able to recover normally from this status by RST input only (however, if the internal watchdog
state occurs, MCS is initialized and the microcontroller operates normally).

When either of the above cases occurs, use of HST plus RST (connecting HST and RST with a
jumper) is recommended.

Table 5.2-2 "Registers not Initialized by Reset Input" lists registers that are not initialized by
reset input using HST plus RST. Note that the operation status after the reset is released differs
depending on the reset input type, HST plus RST reset input, or only RST input, as listed in
Table 5.2-2 "Registers not Initialized by Reset Input".

Table 5.2-2 Registers not Initialized by Reset Input

CKSCR LPMCR
Type of reset
ws1 WSo0 MCS Cs1 Cso CG1 CGo
HST + RST N N N N N Y Y
Y: Initialized

N: Not initialized (previous status maintained)

76

CHAPTER 5 CLOCK AND RESET

Figure 5.2-2 Operation Transition by Reset Input

[Operation Transition by Reset Input]

Reset input >
(RST, HST+RST) A\ /
A. Oscillation status
Status |
Only RST used (HST ="H") § ‘Oscillating!
HST + RST used Oscillating] ~ Stopped |tack Saaiiaton | Main clock operation enabled
stabilization
B. Execution timing (L: Stop, H: Start) .
-Only RST used (HST ="H") / >
* HST plus RST used Oscillation stabilization I >
. time set before reset input
Main clock mode ;
- Power-on reset
: é >
Vcc (power supply) 0\ i/
Status
P Waiting for main . .
Power-on reset Oscillating Stopped clgrtngti)lisgtl%;]on Main clock operation enabled
Oscillation stabilization time
of 2'®main clock cycles / >
Main mode : :

77

CHAPTER 5 CLOCK AND RESET

5.3 Reset Causes

Table 5.3-1 "Reset Causes" lists the five reset causes. The machine clock and watch-
dog function are initialized differently for each reset cause.
The reset cause register indicates the reset cause.

H Reset Causes

Table 5.3-1 Reset Causes

Reset Cause Machine clock Watch-dog timer O_s_cﬂlgtlon .
stabilization wait
Power-on When the power is Main clock Stop Yes
turned on
Hardware standby | "L" level input to HST Main clock Stop Yes
pin
Watch-dog timer Watch-dog timer Main clock Stop Yes
overflow
External pin "L" level input to RST Previous status Previous status No
pin maintained maintained
Software "0" written to RST bit Previous status Previous status No
of LPMCR maintained maintained

* In stop or hardware standby mode, a reset input allows for oscillation stabilization time regardless of the

reset cause.

* The oscillation stabilization time for a power-on reset is fixed to 218 cycles of source oscillation. For other
types of reset, the oscillation stabilization wait time is determined by CS1 and CS0 of the clock selection

register.

As shown in Figure 5.3-1
corresponding flip-flop. The contents of the flip-flop can be obtained by reading the watch-dog
timer control register. If identifying the reset cause is required after the reset is released, ensure
that the value read from the watch-dog timer control register is processed by software and

processing branches to an appropriate program. Figure 5.3-2 "WDTC (Watch-Dog Timer

Control) Register" is a diagram of the watch-dog timer control register.

78

"Reset Cause bit Block Diagram" each reset cause has a

,,,,,,

Figure 5.3-1 Reset Cause bit Block Diagram

———————————

CHAPTER 5 CLOCK AND RESET

HST pin RST pin
HST=L - H RST=L Without periodic clear
Power on RST bit set
Power-on Hardware standby External reset Watch-dog timer LPMCR.RST bit

detection circuit

release detection

request detection

reset detection circuit

write detection circuit

iT

%

iT

circuit circuit
] | |
v ! v v |
S R S S R S R S R WTC register
F/F F/F F/F F/F F/F | |Delay
Q Q Q Q Q circuit

WTC register read

F2MC-16L internal bus

Figure 5.3-2 WDTC (Watch-Dog Timer Control) Register

Address: 0000A8

Read/write =
Initial value =

7 6 5 4 3 2 1 0 <= BitNo.
PONR| STBR| WRST| ERST| SRST| WTE | WT1 | WTO WDTC
R ® ® ® B W W (W
x)y X X x) X M (1) (1)

When there are multiple reset causes, the corresponding reset cause bits in the watch-dog timer
control register are set. Therefore, if an external reset request and a watch-dog reset occur at
the same time, both the ERST and WRST bits are set to 1.

A power-on reset is an exception; while the PONR bit is 1, the values of other bits do not
indicate the correct reset causes. Therefore, design software so that the other reset cause bit
values are ignored while the PONR bit is set to 1.

Table 5.3-2 Reset Cause Bits

Reset cause PONR STBR WRST ERST SRST
Power-on 1 - - - .
Hardware standby * 1 * * *

Watch-dog timer

*

External pin

*

RST bit

*

(An asterisk (*) in the table means that the previous value is maintained.)

79

CHAPTER 5 CLOCK AND RESET

80

CHAPTER6 LOW-POWER CONTROL CIRCUIT

This chapter explains the functions and operations of the low-power control circuits.

6.1 "Outline of Low-Power Control Circuit"
6.2 "Registers"

6.3 "Low-Power Mode Operation"

6.4 "Intermittent CPU Operation”

6.5 "Switching Machine Clocks"

6.6 "Status Transition of Clock Selection"

81

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

6.1 Outline of Low-Power Control Circuit

The MB90590 Series supports various operation modes to help reduce the power

dissipation.

The operation modes include PLL clock mode, PLL sleep mode, watch mode, main

clock mode,

main sleep mode, stop mode, and hardware standby mode. Modes other

than PLL clock mode are classified as low-power modes.

B Outline of Lower-power Control Circuit

82

In main clock mode or main sleep mode, the main clock (OSC oscillation clock) is used. The
operation clock is generated by dividing the main clock by two, and the PLL clock (VCO
oscillation clock) is stopped.

In PLL sleep mode or main sleep mode, only the CPU operation clock is stopped. All other
clocks are in operation.

In watch mode, only the timebase timer is in operation.In stop mode or hardware standby mode,
oscillation is stopped. The data can be maintained at the lowest power consumption possible.

The intermittent CPU operation function is used to intermittently enable the clock supplied to the
CPU when a register, internal memory, or internal resource is accessed. CPU execution is
slowed while high-speed clock is supplied to the internal resources, enabling processing at low-
power consumption.

The PLL clock multiplication factor can be selected from 1, 2, 3, and 4 by setting the CS1 and
CSO bits.

The oscillation stabilization wait time for the main clock upon release of stop or hardware
standby mode can be set by the WS1 and WSO bits.

Note:

In attempting to switch the clock mode, do not attempt to switch to another clock mode or
low-power consumption mode until the first switching is completed. The MCM bit of the clock
selection register (CKSCR) indicates that switching is completed.

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

B Block Diagram
Figure 6.1-1 Low-power Control Circuit and Clock Generator

CKSCR Main clock
S ain cloc
MCM PLL multiplication (OSC oscillation)
MCS 1 2 3 4 1/2
CPU clock CPU dlock
CKSCR generation H cloe
CSst T
CPU clock selector
CSo 0/9/17/33 intermittent
cycle selection
3
o LPMCR
5? Intermittent CPU
O CG1 operation function
= Cycle count selection
W CGO circuit
LPMCR Peripheral plock Peripheral
generation clock
SLP Standby control circuit
STP
RSTRelease gic?i-\l,—ation
. HSTpin
Interrupt
request or RST
CKSCR ;
Oscillation 210 Clock input
WS1 stabilization 213 Timebase timer |~ Timebase
wait time 215 clock
W80 selector 17 212 514 516 19
LPMCR
SPL Pin high-impedance control Pin HI-Z
circuit
LPMCR Internal reset . RSTpin_;
RST generation circuit Internal RST
To watch-dog
timer
WDGRST

*: 218 at power-on

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

6.2 Registers

A low-power control circuit has the following two registers:
¢ Low-power mode control register (LPMCR)
* Clock selection register (CKSCR)

B Low-Power Mode Control Register

Address: 7 6 5 4 3 2 1 0 <= Bit No.
0000AOH STP SLP SPL RST |Reserved| CG1 CGOo Reserved| LPMCR
Read/write = (W) (W) (R/W) (W) () (RW) (RW) (-

Initial value == (g (0) (0) M (0) (0) ((o))
Clock selection register
0000A1 Reserved| MCM WSH WSO |Reserved| MCS CSt CSo CKSCR
Read/write— () (R) (R'W) (R/W) (-) (RW) (RW) (RW)

Initial value= (1) (1) (1) (1) (1) (1)

84

(0)

(0)

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

6.2.1 Low-Power Mode Control Register (LPMCR)

In association with the clock selection register, the low-power mode control register
sets various operation modes to reduce power consumption.

B Low-Power Mode Control Register (LPMCR)

Address: 7 6 5 4 3 2 1 0 <= Bit No.
0000A0 H STP SLP SPL RST |Reserved| CGt CGO |Reserved| LPMCR
peadwrite z; (W) W) RW) W) () RW) (RW) ()
0 0 0 (M (M 0 0 (0)
[bit 7] STP

Writing "1" to this bit starts the watch mode (CKSCR.MCS=0) or stop mode
(CKSCR.MCS=1). Writing "0" performs no operation. This bit is cleared to "0" upon a reset,
watch mode release, or stop mode release. This is a write-only bit. "0" is always read from
this bit.

[bit 6] SLP

Writing "1" to this bit starts sleep mode. Writing "0" performs no operation. This bit is cleared
to "0" upon a reset, clock release, or stop release.

Writing "1" to the STP and SLP bits simultaneously starts clock or stop mode. This is a write-
only bit. "0" is always read from this bit.

[bit 5] SPL

When "0" is written to this bit, the external pin level in watch mode or stop mode is
maintained. When "1" is written to this bit, the external pin in clock or stop mode is set to high
impedance. This bit is cleared to "0" upon a reset. This bit is readable and writable.

It is important to note that when SPL is set to 0 and the microcontroller is in the stop mode or
the watch mode (STP=1), all inputs must be provided with stable digital values. Otherwise it
results in current consumption at the input buffers. (A/D analog inputs are exception)

Generally it is recommended to set the SPL bit to 1 when the microcontroller is in the stop
mode or the watch mode in order to disable all input buffers.

[bit 4] RST

Writing "0" to this bit generates internal reset signals for three machine cycles. Writing "1"
performs no operation. "1" is always read from this bit.

[bit 3] Reserved

This bit must be set to "1".

85

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

86

[bits 2 and 1] CG1 and CGO

These bits are used to set the clock pause cycle count during intermittent CPU operation.

These bits are initialized to "00" upon a reset by power-on, hardware standby, or watch-dog.
These bits are not initialized by any other type of reset. These bits are readable and writable.

The intermittent CPU operation function pauses the clock to the CPU when a register,
internal memory, or internal resource is accessed, thus delaying the activation of the internal
bus cycle. CPU execution is slowed while high-speed clock is supplied to an internal
resource, enabling processing at low-power consumption.

Table 6.2-1 CG Bit Setting

CG1 CcGo CPU clock pause cycle count
0 0 0 cycle (CPU clock = Resource clock)
0 1 9 cycles (CPU clock: Resource clock = 1:3 to 4 approx.)
1 0 17 cycles (CPU clock: Resource clock = 1:5 to 6 approx.)
1 1 33 cycles (CPU clock: Resource clock = 1:9 to 10 approx.)

[bit 0] Reserved

This bit must be set to "0".

Note:

To set a pin to high impedance when the pin is shared by a peripheral function and a port in
stop mode or watch mode, disable the output of peripheral functions, and set the STP bit of
the low-power mode control register (LPMCR) to 1.

This applies to the following pins:

P06/OUTO, PO7/OUT1, P10/OUT2, P11/0OUT3, P12/0UT4, P13/0OUT5, P15/TX1, P16/SGO,
P17/SGA, P34/SOTO, and P35/SCKO

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

6.2.2 Clock Selection Register (CKSCR)

The clock selection register sets and controls the CPU machine clock, and sets the
oscillation stabilization wait time when power is turned on or oscillation is restored.

B Clock Selection Register (CKSCR)

Address: 15 14 13 12 11 10 9 8 <= Bit No.
0000A1 H Reserved| MCM WSH WSO |Reserved] MCS CS1 CSo B CKSCR
Read/write — () R RW) (RW) 0 BW) RW) RW)
Initial value == (1) (1) (1) (1) (1) (1) 0) (0)
[bit 14] MCM

This bit indicates whether the main clock or PLL clock is selected as the machine clock. "0"
indicates that the PLL clock is selected, and "1" indicates that the main clock is selected.
When MCS=0 and MCM=1, the system is waiting for the PLL clock oscillation to stabilize.

The PLL clock oscillation stabilization wait time is fixed to 23 main clock cycles.
[bits 13 and 12] WS1 and WSO

These bits are used to set the main clock oscillation stabilization wait time upon release of
stop or hardware standby mode.

These bits are initialized to "11" upon a power-on reset. These bits are not initialized by any
other type of reset. These bits are readable and writable.

Table 6.2-2 WS Bit Setting

wSs1 WSO0 Oscillation stabilization wait time (at 4 MHz source oscillation)
0 0 Approx. 256us (219 counts of source oscillation)
0 1 Approx. 2.05 ms (2'3 counts of source oscillation)
1 0 Approx. 8.19 ms (215 counts of source oscillation)
1 1 Approx. 32.77 ms (217 counts of source oscillation)

*: Approx. 65.54ms (218 counts of source oscillation) at power-on.

More stabilization time of 217 is added to the default duration only upon with the power-on
reset. Therefor, after power-on there will be about 65.54ms of the stabilization time.

[bit 11] Reserved
This bit must be set to "1".

87

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

88

[bit 10] MCS

This bit is used to select the main clock or PLL clock as the machine clock. Writing "0"
selects the PLL clock and writing "1" selects the main clock. When this bit is updated from
"1" to "0", the PLL clock oscillation stabilization wait period is created by automatically
clearing the timebase timer. The oscillation stabilization wait time for the PLL clock is fixed to

2'3 main clock cycles. (The oscillation wait time is about 2 ms at 4 MHz source oscillation.)

When the main clock is selected, the operation clock is generated by dividing the main clock
by two. (The operation clock is 2 MHz at 4 MHz source oscillation.)

This bit is initialized to "1" by the power-on reset, hardware standby, or watch-dog reset. But
it is not initialized by the external reset from the RST pin or by the software reset (the RST bit
in the LPMCR register).

Note:

When updating the MCS bit from "1" to "0", ensure that the timebase timer interrupt is
masked by the TBIE bit or the ILM bit of the CPU.

[bits 9 and 8] CS1 and CS0

These bits are used to select the multiplication factor of the PLL clock.

These bits are initialized to "00" upon a power-on reset. These bits are not initialized by any
other type of reset.

Write is disabled when "0" is written to the MCS bit. To update the CS bit, set "1" in the MCS
bit (to start main clock mode).

These bits are readable and writable.

Table 6.2-3 CS Bit Setting

Cs1 CSo0 Machine clock (at 4 MHz source oscillation)
0 0 4 MHz (Operation frequency = OSC oscillation frequency)
0 1 8 MHz (Operation frequency = OSC oscillation frequency *2)
1 0 12 MHz (Operation frequency = OSC oscillation frequency *3)
1 1 16 MHz (Operation frequency = OSC oscillation frequency *4)
Note:

When the operating voltage is 5 V, the OSC source oscillation can be between 3 MHz and 5
MHz. When an external clock source is used, its frequency can be between 3MHz and
16MHz. Since the highest operating frequency for the CPU and peripheral resource circuits
is 16 MHz, however, normal operation is not guaranteed if a multiplication factor resulting in
a higher frequency than 16 MHz is specified. For example, if the external clock frequency is
16 MHz, only 1 can be specified as the multiplication factor.

The lowest operating frequency of the VCO oscillation is 4 MHz, and an oscillation below 4
MHz must not be specified.

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

6.3 Low-Power Mode Operation

Table 6.3-1 "Low-power mode status” lists the chip status in each operation mode.

B Low-power Mode Operation

Table 6.3-1 Low-power mode status

Transition Oscillation & PLL CPU Watch Timer Other Pin Release method
condition T.B.T Peripheral
Main sleep MCS=1 Operating Stopped Stopped Operating Operating Operating External Reset
SLP=1 Interrupt
PLL sleep MCS=0 Operating Operating Stopped Operating Operating Operating External Reset
SLP=1 Interrupt
Watch MCS=0 Operating Stopped Stopped Operating Stopped Held (1) External Reset
(SPL=0) STP=1 External Interrupt
Watch MCS=0 Operating Stopped Stopped Operating Stopped HI-Z External Reset
(SPL=1) STP=1 External Interrupt
Stop MCS=1 Stopped Stopped Stopped Stopped Stopped Held (M External Reset
(SPL=0) STP=1 External Interrupt
Stop MCS=1 Stopped Stopped Stopped Stopped Stopped HI-Z External Reset
(SPL=1) STP=1 External Interrupt
Hardware HST=L Stopped Stopped Stopped Stopped Stopped HI-Z HST=H
standby

*1: When the SPL is set to 0 in the stop mode or the watch mode, all inputs must be provided with stable digital values. Otherwise it results in current
consumption at the input buffers. (A/D analog inputs are exception)

Note:

To set a pin to high impedance when the pin is shared by a peripheral function and a port in
stop mode or watch mode, disable the output of peripheral functions, and set the STP bit of
the low-power mode control register (LPMCR) to 1.

This applies to the following pins:

P06/0OUTO, PO7/0UT1, P10/0OUT2, P11/0OUT3, P12/0UT4, P13/0UT5, P15/TX1, P16/SGO,
P17/SGA, P34/SOTO0, and P35/SCKO

89

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

H Note: Low-power Mode Control Register Access

Writing data to the low-power mode control register starts low-power mode (stop or sleep
mode). In this case, use an instruction shown in Table 6.3-2 "List of Instructions Used for
Transition to Low-power Mode". If any other instruction is used to start low-power mode,
malfunction may result. Any instruction can be used to control functions other than transition of
the low-power mode control register to low-power mode.

To write data to the low-power mode control register in word length, ensure that the data is
written to an even-number address. If low-power mode is started by writing data to an odd-
number address, malfunction may result.

Table 6.3-2 List of Instructions Used for Transition to Low-power Mode

MOQV io,#imm8 MOV dir,#imm8 MOV eam,#imm8 MOV eam, #immRi
MOV io,A MOV dir,A MOV addr16,A MOV eam,A

MOV RLi+dip8,A MOVP addr24,A

MOVW io,#imm16 MOVW dir#imm16 MOVW eam #imm16 MOVW eam,RWi
MOVW io,A MOVW dir,A MOVW addr16,A MOVW eam,A
MOVW RLi+dip8,A MOPW addr24,A

SETB io:bp SETB dir:bp SETB addr16:bp

B Notes on the transition to low-power mode

To set a pin to high impedance when the pin is shared by a peripheral function and a port in
stop mode or watch mode, use the following procedure:

1. Disable the output of peripheral functions.

2. Set the SPL bit of the low-power mode control register (LPMCR) to 1, and set the STP bit to
1.

90

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

6.3.1 Sleep Mode

In sleep mode, only the clock supplied to the CPU is stopped. As a result, the CPU
terminates while peripheral circuits keep operating.

B Transition to Sleep Mode

The standby control circuit is set in sleep mode by writing "1" to the SLP bit and "0" to the STP
bit of the low-power mode control register. In sleep mode, only the clock supplied to the CPU is
stopped. The CPU stops, and the peripheral circuits continue operation.

If an interrupt request has been issued when "1" is written to the SLP bit, the standby control
circuit does not enter sleep mode. Therefore, the CPU executes the next instruction if the
interrupt cannot be accepted, or immediately branches to the interrupt processing routine if the
interrupt can be accepted.

In sleep mode, the values of special registers such as the accumulator and the internal RAM are
maintained.

B Releasing Sleep Mode

The standby control circuit releases sleep mode in the event of a reset input or an interrupt. If
sleep mode is released by a reset, the reset status takes effect after sleep mode is released.

If a peripheral circuit or similar issues an interrupt request of a higher interrupt level than 7 in
sleep mode, the standby control circuit releases sleep mode. After sleep mode is released,
processing is handled as normal interrupt processing. The CPU executes interrupt processing if
the interrupt can be accepted according to the | flag, ILM, and the interrupt control register
(ICR). If the interrupt cannot be accepted, processing continues from the instruction following
the instruction that was being executed before the transition to sleep mode.

Note:

Usually, interrupt processing is started after the instruction following the instruction that was
executed during the transition to sleep mode.

91

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

6.3.2 Watch Mode

Watch mode stops operations other than the source oscillation, timebase timer, and
watch timer, resulting in almost all functions of the chip being stopped.

H Transition to Watch Mode

The standby control circuit is set to watch mode when the MCS bit of the clock selection register
is "0" and "1" is written to the STP bit of the low-power mode control register. In watch mode, all
operations are stopped except for the source oscillation and timebase timer. Most functions of
the chip stop.

Using the STP bit of the low-power mode control register, the I/O pin may be maintained at the
immediately preceding status or at high impedance in watch mode.

If an interrupt request has been issued when "1" is written to the STP bit, the standby control
circuit does not enter watch mode.

In watch mode, the values of special registers such as the accumulator and the internal RAM
are maintained.

Note:

To set a pin to high impedance when the pin is shared by a peripheral function and a port in
watch mode, disable the output of peripheral functions, and set the STP bit of the low-power
mode control register (LPMCR) to 1.

This applies to the following pins:

P06/OUTO, PO7/OUT1, P10/OUT2, P11/0OUT3, P12/0UT4, P13/0OUT5, P15/TX1, P16/SGO,
P17/SGA, P34/SOTO, and P35/SCKO

Bl Releasing Watch Mode

92

The standby control circuit releases watch mode in the event of a reset input or an interrupt. If
watch mode is released by a reset, the reset status takes effect after watch mode is released.

To return from watch mode, the standby control circuit initially releases watch mode, then enters
the PLL clock oscillation stabilization wait state. The MCS bit is not cleared by an external reset,
so the reset sequence is performed using the main clock if the reset period is shorter than the
PLL clock oscillation stabilization wait period. The PLL clock oscillation stabilization wait period

is 213 to 3*2'3 main clock cycles depending on the timebase timer status, because the timebase
timer is not cleared.

If a peripheral circuit or similar issues an interrupt request of a higher interrupt level than 7 in
watch mode, the standby control circuit releases watch mode. After the watch mode is released,
processing is handled as normal interrupt processing. The CPU executes interrupt processing if
the interrupt can be accepted according to the | flag, ILM, and the interrupt control register
(ICR). If the interrupt cannot be accepted, processing continues from the instruction following
the instruction that was being executed during transition to watch mode.

Note:

Usually, interrupt processing is started after the instruction following the instruction that was
being executed during the transition to watch mode.

The standby control circuit enters PLL clock oscillation stabilization wait status when watch
mode is released. If the PLL clock is not used, write "1" to the MCS bit by an instruction
immediately following the reset or interrupt.

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

6.3.3 Stop Mode

Stop mode stops the source oscillation, resulting in all functions of the chip being
stopped. Data can be maintained at the lowest power consumption possible.

B Transition to Stop Mode

The standby control circuit is set to stop mode when the MCS bit of the clock selection register
is "1" and "1" is written to the STP bit of the low-power mode control register. In stop mode, the
source oscillation is stopped and all functions of the chip are stopped. Therefore, data can be
maintained at the lowest power consumption possible.

Using the SPL bit of the LPMCR, the I/O pins can be maintained at the immediately preceding
status or at high impedance in stop mode. When the SPL bit is set to 0, all inputs must be
provided with stable digital values. Otherwise it results in current consumption at the input
buffers. (A/D analog inputs are exception)

If an interrupt request has been issued when "1" is written to the STP bit, the standby control
circuit does not enter the stop mode.

In stop mode, the values of special registers such as the accumulator and the internal RAM are
maintained.

Note:

To set a pin to high impedance when the pin is shared by a peripheral function and a port in
stop mode, disable the output of peripheral functions, and set the STP bit of the low-power
mode control register (LPMCR) to 1.

This applies to the following pins:

P06/0OUTO, PO7/0UT1, P10/0OUT2, P11/0OUT3, P12/0UT4, P13/0UT5, P15/TX1, P16/SGO,
P17/SGA, P34/SOTO0, and P35/SCKO

B Releasing Stop Mode

The standby control circuit releases stop mode in the event of a reset input or an interrupt. If
stop mode is released by a reset, the reset status takes effect after stop mode is released.

If a peripheral circuit or similar issues an interrupt request of a higher interrupt level than 7 in
stop mode, the standby control circuit releases stop mode. After stop mode is released, the
processing is handled as normal interrupt processing after the main clock oscillation stabilization
wait period specified by the WS1 and WSO bits of CKSCR. The CPU executes interrupt
processing if the interrupt can be accepted according to the | flag, ILM, and the interrupt control
register (ICR). If the interrupt cannot be accepted, processing continues from the instruction
following the instruction that was being executed during transition to stop mode.

93

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

B Setting the Oscillation Stabilization Wait Time

94

Use the WS1 and WSO bits to specify the oscillation stabilization wait time when stop mode or
hardware standby mode is released. Specify the oscillation stabilization wait time according to
the types and characteristics of the oscillator circuit and oscillator device connected to the X0

and X1 pins.

These bits are not initialized upon a reset, except for a power-on reset. Upon a power-on reset,
these bits are initialized to "11". Therefore, at power-on, the oscillation stabilization wait time is

about 217 counts of source oscillation.
Note:

Usually, interrupt processing is started after the instruction following the instruction that was
being executed during the transition to stop mode.

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

6.3.4 Hardware Standby Mode

In the hardware standby mode, oscillation is stopped and all I/O pins are set to high
impedance while the HST pin is at "L" level, regardless of other statuses (including
reset).

H Transition to Hardware Standby Mode

The standby control circuit can be set in hardware standby mode from any status by setting the
HST pin at "L" level. In hardware standby mode, oscillation is stopped and all I/O pins are set to
high impedance while the HST pin is at "L" level, regardless of other status including reset.

In hardware standby mode, the internal RAM contents are maintained but the special registers
such as the accumulator are initialized.

B Releasing Hardware Standby Mode

Hardware standby mode can be released only by the HST pin. When the HST pin is set at "H"
level, the standby control circuit releases hardware standby mode, enables the internal reset
signal, and enters oscillation stabilization wait status. After the oscillation stabilization wait
period, the standby control circuit releases the internal reset, and consequently the CPU starts
execution from the reset sequence.

B Setting the Oscillation Stabilization Wait time

Use the WS1 and WSO bits to specify the oscillation stabilization wait time when stop mode or
hardware standby mode is released. Specify the oscillation stabilization wait time according to
the types and characteristics of the oscillator circuit and oscillator device connected to the X0
and X1 pins.

These bits are not initialized upon a reset, except for a power-on reset. Upon a power-on reset,
these bits are initialized to "11". Therefore, at power-on, the oscillation stabilization wait time is

about 217 counts of source oscillation.

95

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

6.4 Intermittent CPU Operation

The intermittent CPU operation function pauses the clock supplied to the CPU when a
register, or internal memory (ROM, RAM, I/O, or resource) is accessed, delaying the
activation of the internal bus cycle. The CPU execution speed is decreased while a
high-speed clock is supplied to internal resources, thus enabling processing at low-
power consumption.

B Intermittent CPU Operation

Figure 6.4-1 "Intermittent CPU Operation" is a diagram of intermittent CPU operation. For
intermittent CPU operation, the CG1 and CGO bits are used to select the cycle count for clock
pausing.

The external bus operation itself is performed using the same clock as that used for the
resources.

An instruction execution time using the intermittent CPU operation function can be obtained by
adding a compensation value to the ordinary execution time. The compensation value is
obtained by multiplying the number of accesses to a register, internal memory, or internal
resource by the cycle count for pausing.

Figure 6.4-1 Intermittent CPU Operation

CPU clock

Intermittent operation pause cycle I Internal bus activation cycle

96

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

6.5 Switching Machine Clocks

Writing to the MCS bit in the CKSCR register switches the machine clock from the
main clock to the PLL clock.

B Switching between Main Clock and PLL Clock

Write data to the MCS bit of the CKSCR register to switch between the main clock and PLL
clock.

When the MCS bit is changed from "1" to "0", the PLL clock takes over the main clock after the
PLL clock oscillation stabilization wait time (213 machine clock cycles).

When the MCS bit is changed from "0" to "1", the main clock takes over the PLL clock when the
edges of the PLL and main clocks match (after about 1 to 8 PLL clock cycles).

Writing to the MCS bit does not change the machine clock immediately. To manipulate a
resource that depends on the machine clock, always reference the MCM bit before hand to
check that the machine clock has been switched.

Note:

In attempting to switch the clock mode, do not attempt to switch to another clock mode or
low-power consumption mode until the first switching is completed. The MCM bit of the clock
selection register (CKSCR) indicates that switching is completed.

B Initializing the Machine Clock

The MCS bit cannot be initialized by a reset that uses the RST external reset pin or the RST bit.
The MCS bit is initialized to "1" by any other reset.

97

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

6.6 Status Transition of Clock Selection

The oscillation stabilization wait time for the PLL clock is fixed at 213 main clock

cycles. (The oscillation wait time is about 2 ms at a source oscillation of 4 MHz.)

H Status Transition of Clock Selection

Figure 6.6-1 "Status Transition of Clock Selection" is a diagram of status transition of clock

selection.
Figure 6.6-1 Status Transition of Clock Selection
Power on
@
Main Main=PLLx
MCS =1 MCS=0 ®
MCM = 1 MCM =1
CS1/0=xx CS1/0=xx ®
@) PLL1
PLL=Main ® multiplication
MCS =1 MCS =0
MCM =0 ® | McM=0
CS1/0=00 CS1/0=00
@ \
) PLL2
PLL2=Main multiplication
MCS =1 MCS =0
@ MCM =0 ® | MCM =0
CS1/0=01 CS1/0=01
®
] PLL3
PLL3=Main multiplication
® MCS =1 MCS =0
MCM =0 ® MCM =0
CS1/0=10 \ CS1/0=10
) PLL4
PLL4=Main multiplication
MCS =1 MCS =0
MCM =0 ® MCM =0
CS1/0=11 CS1/0=11
@® MCS bit clear
@ End of PLL clock oscillation stabilization wait & CS1/0=00
® End of PLL clock oscillation stabilization wait & CS1/0=01
@ End of PLL clock oscillation stabilization wait & CS1/0=10
® End of PLL clock oscillation stabilization wait & CS1/0=11
® MCS bit set (including hardware standby and watch-dog reset)
@ Synchronization timing between PLL clock and main clock

98

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

Note:

In attempting to switch the clock mode, do not attempt to switch to another clock mode or
low-power consumption mode until the first switching is completed. The MCM bit of the clock
selection register (CKSCR) indicates that switching is completed.

99

CHAPTER 6 LOW-POWER CONTROL CIRCUIT

100

CHAPTER7 MEMORY ACCESS MODES

This chapter explains the functions and operations of the memory access modes.

7.1 "Outline of Memory Access Modes"
7.2 "Mode Pins"
7.3 "Mode Data"

101

CHAPTER 7 MEMORY ACCESS MODES

7.1

Outline of Memory Access Modes

In the F2MC-16LX, the following two memory access modes are provided for each of
the access methods and access areas:

¢ Operation mode

e Bus mode

H Memory Access Modes

102

H Operation mode H H Bus mode H

RUN —— Single chip
Flash programming

For the MB90590 Series, the external bus function is not supported. Therefor the following part
of this document is not fully supported. In user applications, please use the MB90590 Series in
the single chip mode.

To set the MB90590 Series into the single chip mode, the mode inputs (MD2 to 0) should be
"011" and the most significant two bits of the mode data (M1 and MO) should be "00".

Operation mode

Operation mode means the mode for controlling the device operation status. The operation
mode is specified by the MDx mode setting pin and the Ex bit in mode data. By selecting an
operation mode, normal operation, internal test program activation, or special test function
activation can be performed.

Bus mode

Bus mode means the mode for controlling the internal ROM operation and external access
function. The bus mode is specified by the MDx mode setting pin and the Mx bit in mode data.
The MDx mode setting pin specifies the bus mode for reading the reset vector and mode data,
and the Mx bit in mode data specifies the bus mode for normal operation.

7.2 Mode Pins

CHAPTER 7 MEMORY ACCESS MODES

Table 7.2-1 "Mode Pins and Modes" describes the operations specified by
combinations of the MD2 to MDO external pins.

H Mode pins

Table 7.2-1 Mode Pins and Modes

programming

Reset External
Mode pin setting Mode name vector data bus Remarks
access area width
MD2 MD1 MDO

0 0 0

0 0 1 Specification not allowed

0 1 0
Reset sequence and

0 1 1 Internal vector mode Internal (Mode data) later segments are
controlled based on
mode data.

1 0 0

Specification not allowed
1 0 1
1 1 0 Flash memory serial) i i

Flash memory

Mode for use of a
parallel programmer

*1: Data cannot be written only by setting the flash serial programming mode by mode pins.
Other must be set. For details, see Chapter 25 "Examples of MB90OF594A/MB90F594G/MB90F591A/
MB90F591G Serial Programming Connection".

103

CHAPTER 7 MEMORY ACCESS MODES

7.3 Mode Data

Mode data is stored at FFFFDFy of main memory and used for controlling the CPU
operation. This data is fetched during a reset sequence and stored in the mode
register inside the device. The mode register value can be changed only by a reset

sequence.
The setting of this register is valid after the reset sequence.
Always set the reserved bits to "0".

H Mode Data
Figure 7.3-1 "Mode Data Structure" is a diagram of the setting of the bits.

Figure 7.3-1 Mode Data Structure
7 6 5 4 3 2 1 0

Mode data| M1 MO 0 0 0 0 0 0

Function extension bit (reserved area)

Bus mode setting bits

B Bus Mode Setting Bits

These bits are used to specify the operation mode after the reset sequence is completed. Table
7.3-1 "Bus Mode Setting Bits and Functions" shows the relationship between the bits and the
functions.

Table 7.3-1 Bus Mode Setting Bits and Functions

M1 Mo Function Remarks
0 0 Single chip mode
0 1
1 0 (Inhibited)
1 1

Figure 7.3-2 "Access Areas and Physical Addresses in each Bus Mode" is a diagram of the
correspondence between the access areas and physical addresses for each bus mode.

104

CHAPTER 7 MEMORY ACCESS MODES

Figure 7.3-2 Access Areas and Physical Addresses in each Bus Mode

FFFFFFy - = --

ROM
Device- =
dependent #
FFOO00H - = -
010000 - =-

ROM
004000 - = -
Device- .
dependent”

RAM
002100 - = -

I/O
001100y - = - .

RAM @ : No access
000100y - = -
OOOOCOT.| e E : Internal access
000000 - > - Vo

Single chip

Note:
"Device-dependent" means an address that is determined depending on the device.
B Recommended Setting

Table 7.3-2 "Sample Recommended Setting of Mode Pins and Mode Data" lists a sample
recommended setting of mode pins and mode data.

Table 7.3-2 Sample Recommended Setting of Mode Pins and Mode Data

Sample setting MD2 | MD1 | MDO M1 MO

Single chip 0 1 1 0 0

Note:

For the MB90590 series devices with Flash memory, the mode data have predetermined
values by the hard-wired logic.

For more information, refer to Section 24.9 "Reset Vector Address in Flash Memory".

105

CHAPTER 7 MEMORY ACCESS MODES

106

CHAPTER 8 1I/O PORTS

This chapter explains the functions and operations of the I/O ports.

8.1 "l/O Port"
8.2 "I/O Port Registers"

107

CHAPTER 8 1/0 PORTS

8.1 1I/0 Ports

Each pin of the ports can be specified as input or output using the direction register if
the corresponding peripheral does not use the pin. When a pin is specified as input,
the logic level at the pin is read. When a pin is specified as output, the data register
value is read. The above also applies to a read operation for the read-modify-write
instructions.

Only for Port 0, Port 1, Port 2 and Port 3, the corresponding bits of the Port Direction
registers should be set to "1" in order to enable peripheral signal outputs.

H 1/0 Ports

When a pin is used as an output of other peripheral function, the peripheral output value is read
regardless of the direction register value.

It is generally recommended that the read-modify-write instructions should not be used for
setting the data register prior to setting the port as an output. This is because the read-modify-
write instruction in this case results reading the logic level at the port rather than the register
value.

Figure 8.1-1 "I/O Port Block Diagram” is a block diagram of the 1/O ports.

Figure 8.1-1 1/O Port Block Diagram

™

Internal data bus

—

Data register read

@ Pin

} Data register ‘

Data register write
| Direction register }7

Direction register write

—

Direction register read

108

CHAPTER 8 1/0 PORTS

8.2 1/0 Port Registers

There are three types of I/O port registers:
¢ Port data register (PDRO to 9)

e Port direction register (DDRO to 9)

¢ Analog input enable register (ADER)

B 1/O Port Registers
Figure 8.2-1 "I/O Port Registers" shows the I/O port registers.

Figure 8.2-1 1/0O Port Registers
Bit 15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0

Address : 000000 PO7 P06 PO5 P04 P03 P02 PO1 P00 Port 0 data register (PDRO)

Address : 000001 | p17 | P16 | P15 | P14 | P13 | P12 | P11 | P10 | Port1 data register (PDR1)

Address : 000002 p27 P26 P25 P24 P23 p22 P21 P20 Port 2 data register (PDR2)

Address : 000003 | P37 | P36 | P35 | P34 | P33 | P32 | P31 | P30 | Port3 data register (PDR3)

Address : 000004 P47 P46 P45 P44 P43 P42 P41 P40 Port 4 data register (PDR4)

Address : 000005 P57 P56 P55 P54 P53 P52 P51 P50 Port 5 data register (PDR5)

Address : 000006 P67 P66 P65 P64 P63 P62 P61 P60 Port 6 data register (PDR6)

Address : 000007 4 | P77 | P76 P75 | P74 | P73 P72 P71 P70 | Port 7 data register (PDR7)

Address : 000008 P87 P86 P85 P84 P83 P82 P81 P80 Port 8 data register (PDR8)

Address : 000009 — — P95 P94 P93 P92 P91 P90 Port 9 data register (PDR9)

Bit 15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0

Address : 000010 DO7 D06 D05 D04 D03 D02 DO1 D00 Port 0 direction register (DDRO)

Address : 000011y | p17 | p16 | D15 | D14 | D13 | D12 | D11 D10 | Port 1 direction register (DDR1)

Address : 000012y | p27 | D26 | D25 | D24 | D23 | D22 | D21 | D20 | Port 2 direction register (DDR2)

Address : 000013 | p37 | D36 | D35 | D34 | D33 | D32 | D31 D30 | Port 3 direction register (DODR3)

Address : 000014 D47 D46 D45 D44 D43 D42 D41 D40 | Port 4 direction register (DDR4)

Address : 000015 D57 D56 D55 D54 D53 D52 D51 D50 Port 5 direction register (DDR5)

Address : 000016 D67 D66 D65 D64 D63 D62 D61 D60 Port 6 direction register (DDR6)

Address : 000017 D77 D76 D75 D74 D73 D72 D71 D70 Port 7 direction register (DDR7)

Address : 000018 4 | D87 Ds6 | D85 | D84 | D83 | Ds2 | D8t D80 | Port 8 direction register (DDR8)

Address : 000019 — — D95 D94 D93 D92 D91 D90 Port 9 direction register (DDR9)

Bit 15 14 13 12 11 10 9 8

Address : 00001B | ADE7 | ADE6 | ADE5 | ADE4 | ADE3 | ADE2 | ADE1 | ADE | Port6analog input enable
register (ADER)

109

CHAPTER 8 1/0 PORTS

8.2.1

Port Data Register

Note that R/W for I/0O ports differ from R/W for memory in the following points:

Input mode

Read: The level at the corresponding pin is read.

Write: Data is written to an output latch.
Output mode

Read: The data register latch value is read.

Write: Data is written to an output latch and output to the corresponding pin.

B Port data Register

PDRO

Address:

PDR1
Address

PDR2

Address:

PDR3

Address:

PDR4

Address:

PDR5

Address:

PDR6

Address:

PDR7

Address:

PDR8

Address:

PDR9

Address:

110

Figure 8.2-2 "Port Data Registers" shows the port data registers.

000000 H

: 000001 H

000002 H

000003 H

000004 1

000005 H

000006 H

000007 H

000008 H

000009 H

Figure 8.2-2 Port Data Registers

7 6 5 4 3 2 1 0
po7 | Pos | Pos| Po4a| Po3| Po2| Po1| PoOO
15 14 13 12 11 10 9 8
P17 | P16 | P15| P14 | P13| P12] P11| P10
7 6 5 4 3 2 1 0
P27 | P26 | P25| P24 | P23| P22| P21| P20
15 14 13 12 11 10 9 8
P37 | P36 | P35 | P34 | P33| P32]| P31| P30
7 6 5 4 3 2 1 0
P47 | P46 | P45 | P44 | P4a3| Pa2| P41| P40
15 14 13 12 11 10 9 8
ps7 | P56 | P55 | P54 | P53 | P52| P51| P50
7 6 5 4 3 2 1 0
Pe7 | P66 | P65 | Pe4a| P63 | Pe2| P61| P60
15 14 13 12 11 10 9 8
p77 | P76 |P75 | P74 | P73 | P72 | P71]| P70
7 6 5 4 3 2 1 0
ps7 | Pse| Ps5| Ps4a| Ps3| pPs2| Psi1| PsoO
15 14 13 12 11 10 9 8
— — | pos| Poa| Po3 | Po2| P91]| P90

Initial value

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Access
R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

"1

*1

*1

*1

*1

*1

*1

*1

*1

*1

8.2.2 Port Direction Register

CHAPTER 8 1/0 PORTS

When a pin is used as a port, the corresponding pin is controlled as described below:
0: Input mode
1: Output mode

B Port Direction Register

Figure 8.2-3 "Port Direction Registers" shows the port direction registers.

DDRO

Address:

DDR1

Address:

DDR2
Address

DDR3

Address:

DDR4

Address:

DDR5

Address:

DDR6

Address:

DDR7

Address:

DDR8

Address:

DDR9
Address

N

Figure 8.2-3 Port Direction Registers

7 6 5 4 3 2 1 0 Initial value Access
| D07| DO6| D05 | D04 |D03 |D02 |DO1 |Doo | 00000000 g R/W
000010
15 14 13 12 11 10 9 8
D17| D16 | D15 | D14 | D13 |D12 |D11 |D10 R/W
000011 1 00000000 g
7 6 5 4 3 2 1 0
D27| D26 | D25 | D24 |D23 |D22 |D21 |D20 | R/W
000012 |y | 00000000 g
15 14 13 12 11 10 9 8
| D37| D36| D35 | D34 |D33 |D32 |D31 |D30 | 00000000 g R/W
000013
7 6 5 4 3 2 1 0
R/W
000014 14 | D47| D46| D45 | D44 |D43 |D42 |D41 |D4o | 00000000 g
15 14 13 12 11 10 9 8
D57| D56 | D55 | D54 |D53 |D52 |D51 |D50 | R/W
000015 14 | 00000000 g
7 6 5 4 3 2 1 0
| D67| D66| D65 | D64 |D63 |D62 |D61 |D60 | 00000000 g R/W
000016
15 14 13 12 11 10 9 8
D74 | D73 | D72 | D71 | D70 | R/W
000017 1 | D77| D76 | D75 | 00000000 g
7 6 5 4 3 2 1 0
| D87| D86| D85 | D84 |D83 |D82 |D81 |D80 | 00000000 g R/W
000018
15 14 13 12 11 10 9 8
— — D95| D94 | D93 | D92 | D91 |D90 | R/W
£ 000019 | | | —000000 B
ote:

The Port Direction Registers for Ports 0 and 1 will stay undefined during Power-On reset and
will be initialized to 00y after the completion of Power-On reset. For this reason, the Port 0

and 1 outputs become undefined during Power-On reset.

111

CHAPTER 8 1/0 PORTS

8.2.3 Analog Input Enable Register

This register controls the port 6 pins as described below:

0: Port input/output mode

1: Analog input mode

If an external pin is used as an analog input for the A/D converter, the corresponding
bit should be set to "1".

H Analog Input Enable Register

Figure 8.2-4 "Analog Input Enable Register" shows the analog input enable register.

Figure 8.2-4 Analog Input Enable Register

bit 15 14 13 12 11 10 9 8

Initial value
Address: 00001B 1y | ADE7 | ADE6 | ADE5 | ADE4 ADE3 | ADE2 | ADE1 | ADEO | 11111111 g

R/W R/W R/W R/W R/W R/W R/W R/W

112

CHAPTER 9 TIMEBASE TIMER

This chapter explains the functions and operations of the timebase timer.

9.1 "Outline of Timebase Timer"
9.2 "Timebase Timer Control Register"

9.3 "Operations of Timebase Timer"

113

CHAPTER 9 TIMEBASE TIMER

9.1 Outline of Timebase Timer

The timebase timer consists of an 18-bit timebase counter and a control register. The
18-bit timebase counter divides the system clock. The timebase timer issues interrupts
at specified intervals based on carry signals of the timebase counter.

H Outline of Timebase Timer

When the power is turned on, the timebase counter can be cleared to all zeroes by setting the
stop mode or by software (writing "0" to the TBR bit). The timebase counter is incremented
while the source oscillation is input.

The timebase counter can be used as a timer for supplying clock to the watch-dog timer or for
waiting for the oscillation to stabilize.

B Block Diagram of Timebase Timer

Figure 9.1-1 "Block Diagram of Timebase Timer" shows a block diagram of the timebase timer.

Figure 9.1-1 Block Diagram of Timebase Timer

WTE
WT1 Output enable
v
WTO J i Reset
Two-bit Reset
Selector counter control -
Timebase counter
1 1 1 1 1 1 1 1 1
f/2 e R L NN]
2 o1l | 512 | 513 | 514 | 516 | 516 | 17 | 518
Power-on |
gasgt ; Cle?rl
ml—,dg o TBOF IRQ
j Selector TBOF)y
TBR T
) Clear
TBC1 J EI20S
TBCO 1/21%910 1/2'7 Timebase devision output
WS1 e . e
Selector Osciliation stabilization wait completion signal
WSO

114

9.2 Timebase Timer Control Register

CHAPTER 9 TIMEBASE TIMER

The timebase timer control register controls interrupts of the timebase timer and can

clear the timebase counter.

Bl Timebase Timer Control Register (TBTC)

bit
TBTC !
Address: 0000A9y

[bit 15] Reserved

15 14 13 12 11 10 9
Reserved| — — TBIE |TBOF | TBR | TBC1 |TBCO
w R/W R/W w R/W R/W

Initial value

1--00100

This is a reserved bit. When writing data to this register, ensure that "1" is written to this bit.
[bit 12] TBIE

This bit is used to enable interval interrupts based on the timebase timer. Writing "1" to this
bit enables interrupts, and writing "0" disables interrupts. This bit is initialized to "0" upon a
reset. This bit is readable and writable.

[bit 11] TBOF

This is an interrupt request flag for the timebase timer. While the TBIE bit is "1", an interrupt
request is issued when "1" is written to TBOF. This bit is set to "1" for each interval specified

with the TBC1 and TBCO bits.

This bit is cleared by writing "0", transition to stop or hardware standby mode, or a reset.

Writing "1" has no effect.

"1" is always read by a read-modify-write instruction.
[bit 10] TBR

This bit clears all bits of the timebase timer counter to "0".
Writing "0" clears the timebase counter.
Writing "1" has no effect.

"1" is always read from this bit.

115

CHAPTER 9 TIMEBASE TIMER

[bits 9 and 8] TBC1 and TBCO
These bits are used to set the timebase timer interval.

Table 9.2-1 "Selecting the Timebase Timer Interval" lists the specifiable intervals.

Table 9.2-1 Selecting the Timebase Timer Interval

TBC1 TBCO Interval at 4 MHz source oscillation
0 0 1.024 ms
0 1 4.096 ms
1 0 16.384 ms
1 1 131.072 ms

116

CHAPTER 9 TIMEBASE TIMER

9.3 Operations of Timebase Timer

The timebase timer functions as a watch-dog timer clock source, timer for waiting for
the oscillation to stabilize, and interval timer for generating interrupts at specified

intervals.

H Timebase Counter

The timebase counter consists of an 18-bit counter for a clock generated by dividing the source
oscillation input by two. This clock is used to generate the machine clock. While the source
oscillation is input, the timebase counter keeps counting. The timebase counter is cleared by a
power-on reset, transition to stop or hardware standby mode, or writing "0" to the TBR bit of the
TBTC register.

M Interval Interrupt Function

Interrupts are generated at specified intervals according to the carry signals of the timebase
counter. The TBOF flag is set at the intervals specified with the TBC1 and TBCO bits of the
TBTC register. The flag is written to reference to the time at which the timebase timer is cleared
last.

Upon transition to stop or hardware standby mode, the timebase timer is used as a timer for
waiting for the oscillation to stabilize upon recovery. Therefore, the TBOF flag is immediately
cleared upon mode transition.

117

CHAPTER 9 TIMEBASE TIMER

118

CHAPTER 10 WATCH-DOG TIMER

This chapter explains the functions and operations of the watch-dog timer.

10.1 "Outline of Watch-Dog Timer"
10.2 "Watch-dog Timer Operations"

119

CHAPTER 10 WATCH-DOG TIMER

10.1 Outline of Watch-Dog Timer

The watch-dog timer consists of a two-bit watch-dog counter, control register, and
watch-dog reset controller. The two-bit watch-dog counter uses the carry signals of an
18-bit timebase counter as a clock source.

B Watch-dog Timer Block Diagram

Figure 10.1-1 "Watch-dog Timer Block Diagram" is a diagram of the configuration of the watch-

dog timer.
Figure 10.1-1 Watch-dog Timer Block Diagram
WTE
Output enable
WTO Two-bit Reset | Reset
Selector counter control :
Timebase counter
1 1 1 1 1 1 1 1 1
f2 1 SO0 ST | o2 | 518 | o1 | 515 | 516 | o17 | T8
Power-on |
rse_lggtp . Cle?r |
contro
Selector TBOF iy
TBR
7 T Clear
TBC1 J EI20S
TBCO 1/210 to 1/217 Timebase devision output
WSH1
Selector Osciliation stabilization wait completion signal
WSO

120

CHAPTER 10 WATCH-DOG TIMER

B Watch-dog Timer Control Register (WDTC)

Bit 7 6 5 4 3 2 1 0 Initial value

WDTC XXXXX111
Address : 0000A8,, PONR| STBR | WRST| ERST | SRST | WTE | WT1 | WTO B
R R R R R w w w

[bits 7 to 3] PONR, STBR, WRST, ERST, and SRST

These flags indicate the reset causes. The flags are set upon a reset as described in Table
10.1-1 "Reset Cause Registers".

All bits are cleared to "0" after the WDTC register is read. These bits are read-only bits. For
details, see Section 5.2 "Reset Cause Occurrence".

Table 10.1-1 Reset Cause Registers

Reset cause PONR STBR WRST ERST SRST
Power-on 1 - - - -
Hardware standby * 1 * * *
Watch-dog timer * * 1 * x
External pin * * * 1 *
RST bit * * * x 1

(*: The previous value is maintained.)

[bit 2] WTE

While the watch-dog timer is stopped, writing "0" to this bit activates the watch-dog timer.
Subsequently, writing "0" clears the watch-dog timer counter. Writing "1" has no effect.

The watch-dog timer is stopped by power-on, hardware standby, or reset by watch-dog
timer. "1" is always read from this bit.

121

CHAPTER 10 WATCH-DOG TIMER

[bits 1 and 0] WT1 and WTO

These bits are used to select the watch-dog timer interval. Only the data items written during
watch-dog timer activation are valid. Data items that are written outside watch-dog timer
activation are ignored. Table 10.1-2 "Watch-dog Timer Interval Selection Bit" lists the interval
settings.

These bits are write-only bits.

Table 10.1-2 Watch-dog Timer Interval Selection Bit

Interval (at a source oscillation of 4
WT1 WTo MHz) Main clock cycle
count
Minimum Maximum

0 0 approx. 3.58 ms approx. 4.61 ms 214 plus or minus 21"
cycles

0 1 approx. 14.33 ms | approx. 18.43ms | 2'® plus or minus 213
cycles

1 0 approx. 57.23ms | approx.73.73ms | 2'® plus or minus 21°
cycles

1 1 approx. 458.7 ms approx. 589.82 ms 221 plus or minus 218
cycles

Note:

The interval becomes the maximum when the timebase counter is not reset during watch-
dog timer operation.

122

CHAPTER 10 WATCH-DOG TIMER

10.2 Watch-dog Timer Operation

The watch-dog timer function enables detection of program malfunction.
If the watch-dog timer is not accessed within the specified time due to, for example, a
program malfunction, the watch-dog timer resets the system.

M Activation

The watch-dog timer is activated by writing "0" to the WTE bit of the WDTC register while the
watch-dog timer is stopped. At the same time, the WT1 and WTO bits are used to set the watch-
dog timer reset interval. Only the interval setting specified during activation is valid.

B Watch-dog Counter

Once the watch-dog timer is activated, the watch-dog timer counter must be periodically cleared
within the program. Writing "0" to the WTE bit of the WDTC register clears the watch-dog
counter. The watch-dog counter consists of a two-bit counter which uses the carry signals of the
timebase counter as a clock source. Therefore, the watch-dog reset time may become shorter
than the setting if the timebase counter is cleared.

The watch-dog counter is cleared not only by writing to the WTE bit but also by a reset and
transition to the sleep or stop mode. (The watch-dog counter is not cleared by transition to
watch mode.)

Figure 10.2-1 "Watch-dog Timer Operation" is a diagram of the watch-dog timer operation.

Figure 10.2-1 Watch-dog Timer Operation

Timebase [

Watch-dog 00 X ot X 10X 00 X ot X 10X 11X 00
WTE write |_| |_|

Watch-dog activation Watch-dog clear
Watch-dog reset

B Watch-dog Stop

Once activated, the watch-dog timer is initialized and stopped only by power-on, hardware
standby, or reset by watch-dog. Reset by an external pin or software merely clears the watch-
dog counter without stopping the watch-dog function.

123

CHAPTER 10 WATCH-DOG TIMER

124

CHAPTER 11 16-BIT I/0O TIMER

This chapter explains the functions and operations of the 16-bit I/O timer.

11.1
11.2
11.3
11.4
11.5

"Outline of 16-Bit I/0O Timer"
"16-Bit I/O Timer Registers"
"16-bit Free-running Timer"
"Output Compare"

“Input Capture"

125

CHAPTER 11 16-BIT I/O TIMER

11.1 Outline of 16-Bit I/0 Timer

The MB90590 Series contains one 16-bit free-running timer module, three output
compare modules, and three input capture modules and supports six input channels
and six output channels. The following sections only describes the 16-bit free-running
timer, Output Compare 0/1 and Input Capture 0/1.

The remaining modules have the identical functions and the register addresses should
be found in the I/O map.

B 16-bit Free-running Timer
The 16-bit free-running timer consists of a 16-bit up counter, control register, and prescaler. The
values output from this timer counter are used as the base timer for input capture and output
compare.
O Four counter clocks are available.
Internal clock:¢ /4, /16, 6/64, $/256

O An interrupt can be generated upon a counter overflow or a match with compare register
0.

O The counter value can be initialized to '00004' upon a reset, software clear, or match with
compare register 0.

B Output Compare (2 Channels per One Module)

The output compare module consists of two 16-bit compare registers, compare output latch, and
control register.

When the 16-bit free-running timer value matches the compare register value, the output level is
reversed and an interrupt is issued.

O The two compare registers can be used independently.

Output pins and interrupt flags corresponding to compare registers

O Output pins can be controlled based on pairs of the two compare registers.
Output pins can be reversed by using the two compare registers.

O Initial values for output pins can be set.

O Interrupts can be generated upon a compare match.

126

H Input Capture (2 Channels per one Module)

CHAPTER 11 16-BIT I/0 TIMER

The input capture module consists of two 16-bit capture registers and control registers
corresponding to two independent external input pins. The 16-bit free-running timer value can
be stored in the capture register and an interrupt is issued simultaneously upon detection of an
edge of a signal input from an external input pin.

O The detection edge of an external input signal can be specified.

Rising, falling, or both edges

O Two input channels can operate independently.

O An interrupt can be issued upon a valid edge of an external input signal.

The intelligent I/O service can be activated upon an input capture interrupt.

B Block Diagram of 16-bit I/O Timer

Figure 11.1-1 "Block Diagram of 16-bit I/O Timer" shows a block diagram of the 16-bit 1/0 timer.

Bus

|

Figure 11.1-1 Block D

iagram of 16-bit I/O Timer

|

Control logic

Interrupt

16-bit free-running timer

|

16-bit timer

Output compare 0

X
(6]
S
—1 Q
Ny
(6]
| S
(0]
(o]
|_
Clear
,,,,,,,,,, NS

Compare register 0 k OouTOo
— | O
Qutput compare 1 o

|

Compare register 1

Input capture 0

|

Capture register 0

|6 Edge selection |<— INO

Input capture 1

Capture register 1

— |
|e Edge selection |[<— IN1
| —

127

CHAPTER 11 16-BIT I/O TIMER

11.2 16-Bit I/O Timer Registers

The 16-bit I/O timer has the following three registers:

¢ 16-bit free-running timer register
* 16-bit output compare register
¢ 16-bit input capture register

B 16-bit Free-running Timer

15

0

0019444 TCDT

00006E

TCCS

B 16-bit Output Compare

15

Timer data register

Timer status register

0

001930y OCCPO/1
001932

Compare register

000058y 0OCSt ‘

OCSo

Control status register

B 16-bit Input Capture

15

0019204 IPCPO0/1

001922,

000054

ICS0/1

128

Capture register

Control status register

CHAPTER 11 16-BIT I/0 TIMER

11.3 16-bit Free-running Timer

The 16-bit free-running timer consists of a 16-bit up counter and a control status

register. The count values of this timer are used as the base timer for the output

compares and input captures.

¢ Four counter clock frequencies are available.

¢ An interrupt can be generated upon a counter value overflow.

¢ The counter value can be initialized upon a match with compare register 0,
depending on the mode.

B 16-bit Free-running Timer Block Diagram

Figure 11.3-1 16-bit Free-running Timer Block Diagram

1L Interrupt request ¢
A A
<— IVF [IVFE [STOP|MODE] CLR [CLK1[CLKO]
Comparator 0
Bus
~ 16-bit up counter < -’ Clock T15
B to
Count value output T00

129

CHAPTER 11 16-BIT I/O TIMER

11.3.1 Data Register

The data register can read the count value of the 16-bit free-running timer. The counter
value is cleared to "0000" upon a reset. The timer value can be set by writing a value to
this register. However, ensure that the value is written while the operation is stopped
(STOP=1).

The data register must be accessed by the word access instructions.

B Data Register

. 15 14 13 12 11 10 9 8
bit

Address: 001945y, T15 T14 | T13 | T12 T11| T10 | TO9 | TO8
R/W Rw RW RW RW RW RW RW

«Attribute
«Initial value

0 0 0 0 0 0 0 0
it 7 6 5 4 3 2 1 0
Address: 001944, To7 | Tos | Tos | Toa| To3| To2 | Tot| Too| TCDT
«Attribute
RV R RANRAVRAW RV RV RV Cinitial value

The 16-bit free-running timer is initialized upon the following factors:
* Reset
e Clear bit (CLR) of control status register

* A match between compare register 0 and the timer counter value.

130

CHAPTER 11 16-BIT I/0 TIMER

11.3.2 Control Status Register

The control status register sets the operation mode of the 16-bit free-running timer,
starts and stops the 16-bit free-running timer, and controls interrupts.

B Control Status Register

bit 7 6 5 4 3 2 1 0
Address: 00006E Reserved| IVF IVFE | STOP | MODE | CLR CLK1 | CLKO TCCS

«—Attribute
R/W R/W R/W R/W R/W R/W R/W R/W P
0 0 0 0 0 0 0 0 «Initial value

[bit 7] Reserved bit
Always write "0" to this bit.
[bit 6] IVF
This bit is an interrupt request flag of the 16-bit free-running timer.

If the 16-bit free-running timer overflows, or if the counter is cleared by a match with
compare register 0, "1" is set to this bit.

An interrupt is issued if the interrupt request enable bit (bit 5: IVFE) is set.
This bit is cleared by writing "0". Writing "1" has no effect.

"1" is always read by a read-modify-write instruction.

0 No interrupt request (initial value)
1 Interrupt request
[bit 5] IVFE

IVFE is an interrupt enable bit of the 16-bit free-running timer. While this bit is "1", an
interrupt is issued if "1" is set to the interrupt flag (bit 5: IVF).

0 Interrupt disabled (initial value)

1 Interrupt enabled

131

CHAPTER 11 16-BIT I/O TIMER

[bit 4] STOP
The STOP bit is used to stop the 16-bit free-running timer.
Writing "1" to this bit stops the timer. Writing "0" starts the timer.

0 Counter enabled (operation) (initial value)

1 Counter disabled (stop)

Note:
The output compare operation stops when the 16-bit free-running timer stops.
[bit 3] MODE
The MODE bit is used to set the reset condition of the 16-bit free-running timer.
When "0" is set, the counter value can be initialized by RESET or a clear bit (bit 2: CLR).

When "1" is set, the counter value can be initialized by a match with compare register 0 in
addition to RESET and a clear bit (bit 2: CLR).

0 Initialization by reset or clear bit (initial value)
1 Initialization by reset, clear bit, or compare register O
Note:
The clear bit and the match with compare register initializes the timer when the timer value
changes.
[bit 2] CLR

The CLR bit initializes the operating 16-bit free-running timer value to "0000".

When "1" is set, the counter value is initialized to "0000". Writing "0" has no effect. "0" is
always read from this bit. The counter value is initialized when the count value changes.

0 No effect (initial value)

1 The counter value is initialized to "0000".

Note:

To initialize the counter value while the timer is stopped, write "0000" to the data register.

132

[bits 1 and 0] CLK1 and CLKO
CLK1 and CLKO are used to select the count clock for the 16-bit free-running timer. The
clock is updated immediately after a value is written to these bits. Therefore, ensure that the
output compare and input capture operations are stopped before a value is written to these

CHAPTER 11 16-BIT I/0 TIMER

bits.

CLK1 CLKoO Countclock | ¢=16 MHz | ¢=8 MHz ¢0=4 MHz ¢=1 MHz
0 0 o/4 0.25 us 0.5us 1us 4 us
0 1 /16 1us 2us 4 us 16 us
1 0 /64 4 us 8 us 16 us 64 us
1 1 ¢/256 16 us 32 us 64 us 256 us

¢ = Machine clock

133

CHAPTER 11 16-BIT I/O TIMER

11.3.3 16-bit Free-running Timer Operation

The 16-bit free-running timer starts counting from counter value "0000" after the reset
is released. The counter value is used as the reference time for the 16-bit output
compare and 16-bit input capture operations.

B 16-bit Free-running Timer Operation
The counter value is cleared in the following conditions:
* When an overflow occurs.
* When a match with the output compare register 0 occurs. (This depends on the mode.)
* When "1" is written to the CLR bit of the TCCS register during operation.
* When "0000" is written to the TCDC register during stop.
* Reset

An interrupt can be generated when an overflow occurs or when the counter is cleared by a
match with the compare register 0. (Compare match interrupts can be used only in an
appropriate mode.)

B Clearing the Counter by an Overflow

Counter value

fl
o O vemow

= = = P 2 g
TRFFY b T
BFFFy f-oommm T T
0000, Time

Reset S

Interrupt

134

CHAPTER 11 16-BIT I/0 TIMER

B Clearing the Counter upon a Match with Output Compare Register 0

Counter value

T
BFFFH f---cmmmmmm e e e e e T
TFFFYy [- T e e
BFFFy [~ Tt T s e
0000 Time

Reset |

Compare [BFFF,
register value
Interrupt |

B 16-bit Free-running Timer Timing

O 16-bit free-running timer clear timing (match with the compare register 0)

The counter can be cleared upon a reset, software clear, or a match with the compare register
0. By a reset or software clear, the counter is immediately cleared. By a match with compare
register 0, the counter is cleared in synchronization with the count timing.

Compare
register value

Compare match

N 0000

Counter value

135

CHAPTER 11 16-BIT I/O TIMER

11.4 Output Compare

The output compare module consists of two 16-bit compare registers, two compare
output pins, and control register. If the value written to the compare register of this
module matches the 16-bit free-running timer value, the output level of the pin can be
reversed and an interrupt can be issued.

B Output Compare

* Two compare registers exist that can be used independently. Depending on the setting, the
two compare registers can be used to control pin outputs.

* The initial value for the pin output can be specified.

* Aninterrupt can be issued upon a match as a result of comparison.

B Output Compare Block Diagram

136

Figure 11.4-1 "Output Compare Block Diagram" shows a block diagram of output compare.

Figure 11.4-1 Output Compare Block Diagram
16-bit timer counter value (T15 to T0O0)

]
| Compare control i ouTo
O

<—>| Compare register 0 |

16-bit timer counter value (T15 to T00)

—

Bus | Compare control I
<—>| Compare register 1 |
| 1cP1 | IcPo| ICE1 |ICEO |
Compare 1
<~ Controller | —0D interrupt
\ —{ >———> Compare 0
Control blocks interrupt
N

11.4.1 Output Compare Register

CHAPTER 11 16-BIT I/0 TIMER

These 16-bit compare registers are compared with the 16-bit free-running timer. Since
the initial register values are undefined, set appropriate value before enabling the
operation. These registers must be accessed by the word access instructions. When
the value of the register matches that of the 16-bit free-running timer, a compare signal
is generated and the output compare interrupt flag is set. If output is enabled, the
output level corresponding to the compare register is reversed.

Bl Output Compare Register

001931
001933

001930
001932

bit

15 14 13 12 11 10 9 8
Ci15 C14 | C13 C12 C11 C10 C09 | Co08
«—Attribute
R/W RW RW RW RW RW RW R/W o
X X X X X X X X «Initial value
bit 7 6 5 4 3 2 1 0
co7 Co6 C05 co4 Cco3 | Co2 Co1 Coo OCCPO0/1
«Attribute
W RW RW RW RW RW RW RW il value

137

CHAPTER 11 16-BIT I/O TIMER

11.4.2 Control Status Register of Output Compare

The control status register sets the operation mode of output compare, starts and
stops output compare, controls interrupts, and sets the external output pins.

B Control Status Register of Output Compare

000059,

138

bit

15 14 13 12 11 10 9 8
— — — |CMOD| OTE1 | OTEO | OTD1| OTDO OCS1
«Attribute
_ _ ~ RW RW RW RW RW i
- - - 0 0 0 0 0 «lInitial value
bit " 6 5 4 3 2 1 0
0000584 ICP1 | ICPO | ICE1 | ICEO — — | CST1 | CSTO 0CSso
— — «Attribute
I:{(/)W RéW RC/)W R(/)W - - R/(\)N R/(\)N «Initial value

[bits 15, 14, and 13] Unused bits
[bit 12] CMOD

CMOD is used to switch the pin output level reverse mode upon a match while pin output is
enabled (OTE1=1 or OTEO=1).

When CMOD=0 (initial value), the output level of the pin corresponding to the compare
register is reversed.

* QOUTO: The level is reversed upon a match with compare register 0.
* OUT1: The level is reversed upon a match with compare register 1.

When CMOD-=1, the output level is reversed for the compare register 0 in the same manner
as for CMOD=0. The output level of the pin corresponding to compare register 1 (OUT1),
however, is reversed upon a match with compare register 0 or 1. If compare registers 0 and
1 have the same value, the same operation as with a single compare register is performed.

e OUTO: The level is reversed upon a match with compare register 0.

e OUT1: The level is reversed upon a match with compare register 0 or 1.

[bits 11 and 10] OTE1 and OTEO

These bits are used to enable the output compare output pins. The initial value for these bits
is IIOII.

0 General-purpose port (initial value)

1 Output compare pin output

Note:

OTE1: Corresponds to output compare 1 (OUT1).
OTEO: Corresponds to output compare 0 (OUTO).

When they are specified as outputs, the corresponding bits of the Port Direction registers
should also be set to "1".

CHAPTER 11 16-BIT I/0 TIMER

[bits 9 and 8] OTD1 and OTDO

These bits are used to change the pin output level when the output compare pin output is
enabled. The initial value of the compare pin output is "0". Ensure that the compare
operation is stopped before a value is written. When read, these bits indicate the output
compare pin output value.

0 Sets "0" for the compare pin output. (initial value)

1 Sets "1" for the compare pin output.

Note:
OTD1: Corresponds to output compare 1.
OTDO: Corresponds to output compare 0.
[bits 7 and 6] ICP1 and ICPO

These bits are used as output compare interrupt flags. "1" is set to these bits when the
compare register value matches the 16-bit free-running timer value. While the interrupt
request bits (ICE1 and ICEQ) are enabled, an output compare interrupt occurs when the
ICP1 and ICPO bits are set. These bits are cleared by writing "0".

Writing "1" has no effect. "1" is always read by a read-modify-write instruction.

0 No compare match (initial value)

1 Compare match

Note:
ICP1: Corresponds to output compare 1.
ICPO: Corresponds to output compare 0.
[bits 5 and 4] ICE1 and ICEO

These bits are used as output compare interrupt enable flags. While the "1" is written to
these bits, an output compare interrupt occurs when an interrupt flag (ICP1 or ICPO) is set.

0 Output compare interrupt disabled (initial value)

1 Output compare interrupt enabled

Note:
ICE1: Corresponds to output compare 1.
ICEQ: Corresponds to output compare 0.
[bits 3 and 2] Unused bits
[bits 1 and 0] CST1 and CSTO

These bits are used to enable the comparison with 16-bit free-running timer.

0 Compare operation disabled (initial value)

1 Compare operation enabled

Ensure that a value is written to the compare register before the compare operation is
enabled.

139

CHAPTER 11 16-BIT I/O TIMER

Note:
CST1: Corresponds to output compare 1.
CSTO: Corresponds to output compare 0.

Since output compare is synchronized with the 16-bit free-running timer clock, stopping the
16-bit free-running timer stops compare operation.

140

CHAPTER 11 16-BIT I/0 TIMER

11.4.3 16-bit Output Compare Operation

In the 16-bit output compare operation, an interrupt request flag can be set and the
output level can be reversed when the specified compare register value matches the

16-bit free-running timer value.

Bl Sample of Output Waveform when Compare Registers 0 and 1 are Used (The Initial Output Value is 0.)

Figure 11.4-2 Sample of Output Waveform when Compare Registers 0 and 1 are Used

Counter value

FFFFy
BFFF
7FFFy
3FFFH
0000y

Reset]

Compare register
0 value)
Compare register

1 value 1 ‘ :
OouTo ‘ | 1 I

OouT1

Compare 0
interrupt

Compare 1
interrupt

The output level can be changed using two compare registers (when CMOD=1).

141

CHAPTER 11 16-BIT I/O TIMER

H Sample of a Output Waveform with Two Compare Registers (The Initial Output Value is '0.")

Figure 11.4-3 Sample of a Output Waveform with Two Compare Registers (The Initial Output Value is '0')
Counter value
FFFFH
BFFF
7FFFH

3FFFy
0000y

Reset

Compare register ‘
0 value

Compare register |

1 value ‘ ‘
OouTo [\—;
OUT1 Corresponds to

compare 0 and 1

Compare 0 |
interrupt
Compare 1 |
interrupt

Bl Output Compare Timing

In output compare operation, a compare match signal is generated when the free-running timer
value matches the specified compare register value. The output value can be reversed and an
interrupt can be issued. The output reverse timing upon a compare match is synchronized with
the counter count timing.

O Compare operation upon update of compare register

When the compare register is updated, comparison with the counter value is not performed.

N X N+1 X N+2 X N+3 X
! No match signal is generated. !

Counter value

Compare register M ‘ N+1.
0 value 1
Compare register s
0 write !

Compare register M ‘ ‘ ‘
1 value w w ' !
Compare register : : : [:
1 write + Compare 0 stop Compare 1 stop

142

O Interrupt timing

CHAPTER 11 16-BIT I/0 TIMER

Counter value N

Compare register

value

Compare match

Interrupt

O Output pin change timing

Counter value N N+1

N-+1

Compare register

value

Compare match

signal

Pin output

143

CHAPTER 11 16-BIT I/O TIMER

11.5 Input Capture

Input capture detects a rising or falling edge or both edges of an external input signal

and stores a 16-bit free-running timer value at that time in a register. In addition, input

capture can generate an interrupt upon detection of an edge. Input capture consists of
an input capture data register and a control register.

H Input Capture

Each input capture has a corresponding external input pin.

O The valid edge of an external input can be selected from the following three types:

Rising edge 1
Falling edge 1
Both ed

oth edges 1

O An interrupt can be generated upon detection of a valid edge of an external input.

144

CHAPTER 11 16-BIT I/0 TIMER

H Input Capture Block Diagram

Figure 11.5-1 "Input Capture Block Diagram" shows a block diagram of input capture.

Figure 11.5-1 Input Capture Block Diagram

<—>| Capture data register 0 |% Edge detection INO
| 16-bit timer counter value (T15t0 T00) | | EG11| EG10 |EGOT |EGOO |
\/ -
Bus
<—>| Capture data register 1 ||< Edge detection IN1

| icP1 |icPo [ICE1 |jcE0 |

=)>——= Interrupt
=)>——= Interrupt

145

CHAPTER 11 16-BIT I/O TIMER

11.5.1 Input Capture Register Details

Input capture has the two registers listed. These registers store a value from the 16-bit
free running timer when a valid edge of the corresponding external pin input waveform
is detected. (The registers must be accessed in word mode. No values can be written
to the registers.)

¢ Input capture data register

* Input capture control register

B Input Capture Data Register

bit 15 14 13 12 11 10 9 8
001921 CP15| CP14| CP13| CP12| CP12| CP11| CP09| CP08
001923 «—Attribute
R R R R R R R R tr
X X X X X X X X «Initial value
bit 7 6 5 4 3 2 1 0
gg]gggH CP07| CP06 CP05| CP04| CP03| CP02| CPO1| CP00| IPCPO/1
: R R R R R R R R < Attribute
X X X X X X X X «Initial value

B Control Status Register

bit 7 6 5 4 3 2 1 0
000054 ICP1 ICPO ICE1 ICEO EG11 EG10| EGO1 EGO00 ICS01
«Attribute
R/W R/W R/W R/W R/W R/W R/W R/W o
0 0 0 0 0 0 0 0 «Initial value

[bits 7 and 6] ICP1 and ICP0O

These bits are used as input capture interrupt flags. "1" is set to this bit upon detection of a
valid edge of an external input pin. While the interrupt enable bits (ICEO and ICE1) are set,
an interrupt can be generated upon detection of a valid edge.

These bits are cleared by writing "0". Writing "1" has no effect. "1" is always read by a read-
modify-write instruction.

0 No valid edge detection (initial value)

1 Valid edge detection

Note:
ICPO: Corresponds to input capture 0.

ICP1: Corresponds to input capture 1.

146

[bits 5 and 4] ICE1 and ICEOQ

CHAPTER 11 16-BIT I/0 TIMER

These bits are used to enable input capture interrupts. While these bits are "1", an input
capture interrupt is generated when the interrupt flag (ICPO or ICP1) is set.

0

Interrupt disabled (initial value)

1

Interrupt enabled

Note:

ICEOQ: Corresponds to input capture 0.

ICE1: Corresponds to input capture 1.
[bits 3, 2, 1, and 0] EG11, EG10, EGO01, and EG00

These bits are used to specify the valid edge polarity of the external inputs. These bits are
also used to enable input capture operation.

EG11 EG10 . .
EGO1 EGO00 Edge detection polarity
0 0 No edge detection (stop) (initial value)
0 1 Rising edge detection
T
1 0 Falling edge detection
1
1 1 Both edge detection
T1
Note:

EGO01 and EGO00: Correspond to input capture 0.
EG11 and EG10: Correspond to input capture 1.

147

CHAPTER 11 16-BIT I/O TIMER

11.5.2 16-bit Input Capture Operation

In 16-bit input capture operation, an interrupt can be generated upon detection of at
the specified edge, fetching the 16-bit free-running timer value and writing it to the
capture register.

Bl Sample of Input Capture Fetch Timing
e Capture 0: Rising edge
e Capture 1: Falling edge

e Capture example: Both edges

Figure 11.5-2 Sample of Input Capture Fetch Timing
Counter value

o o o T L T Ty T LT
BFFF b - oo oo e T T
TFFF b oo oo oo s R
SFFFy ---------— ———————————— SERREEE ———————————————
0000 4 3 f j 3 Time
Reset — | ‘
INO ¢ ‘ ‘
IN1 1 | | Y
IN example ¢‘ ¢‘ :
Capture 0 Undefined | 3FFRy |

Capture 1 Undefined
Captur ‘ ‘
&% z?mp?e Undefined ‘ [BFFF [3FFF

7FFR,

Capture 0 !
interrupt
Capture 1
interrupt
Capture
interrupt

148

CHAPTER 11 16-BIT I/0 TIMER

B Input Capture Input Timing

O Capture timing for input signals

Counter value N N+1
Input capture

input } Valid edge
Capture signal

N-+1

Capture register

Interrupt

149

CHAPTER 11 16-BIT I/O TIMER

150

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT
COUNT FUNCTION)

This chapter explains the functions and operations of the 16-bit reload timer (with the
event count function).

12.1 "Outline of 16-bit Reload Timer (with Event Count Function)"

12.2 "16-bit Reload Timer (with Event Count Function)"

12.3 "Internal Clock and External Clock Operations of 16-bit Reload Timer"
12.4 "Underflow Operation of 16-bit Reload Timer"

12.5 "Output Pin Functions of 16-bit Reload Timer"

12.6 "Counter Operation State"

151

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.1 Outline of 16-Bit Reload Timer (with Event Count Function)

The 16-bit reload timer consists of a 16-bit down-counter, a 16-bit reload register, one
input pin (TIN) and one output pin (TOT), and a control register. The input clock can be
selected from one external clock and three types of internal clock.

H Outline of 16-bit Reload Timer (with Event Count Function)

The output pin (TOT) outputs a toggle output waveform in reload mode and outputs a square
waveform indicating counting in one-shot mode. The input pin (TIN) is used for event input in
event count mode, and can be used for trigger input or gate input in internal clock mode.

The MB90590 Series has two 16-bit reload timers. However the TIN input and TOT output
external pins are shared between the two timers.

B Intelligent I/0 Service (EIZOS) Function and Interrupts

152

The timer includes a circuit that supports EIOS. The timer can activate EI’0S when an

underflow occurs. EI’0OS can be used with both timers on this product. However, as both timers
(ch0 and ch1) are connected to the same interrupt control register (ICRx) in the interrupt

controller, chO and ch1 cannot be assigned to different EI?OS services. Also, as the two timers
have different interrupt vectors, they can be assigned to two different interrupt services.
However, as ch0 and ch1 share an interrupt control register as described above, the same
interrupt level applies to both channels.

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

B Block Diagram of 16-bit Reload Timer

FEMC-16BUS

Figure 12.1-1 "Block Diagram of 16-bit Reload Timer" shows a block diagram of the 16-bit

reload timer.

Figure 12.1-1 Block Diagram of 16-bit Reload Timer

16
> 16-bit reload register
) 8
Reload < v
%J\ | RELD
A4
< 16-bit down-counter UF [] OUTE
16
OUTL
i (
< ouT
¢ GATE CTL. INTE |
7 S 5 IRQ
UF
Clock selector CSL1 -
CNTE | \ Clear
CSLo mi 20SCLR
T TRG
N 2 Re-trigger
L—e—— N CTL Port (TIN)
EXCK .
Output enable
o ¢ o 3 P
— = < Prescaler Port (TOT)
21 23 25
clear | MoD2
— MOD1 UART baud rate (ch0)
Peripheral clock A/DC (ch1)
L— MODO
” iy
3

153

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.2 16-Bit Reload Timer (with Event Count Function)

The 16-bit reload timer has the following two types of registers:
¢ Timer control register (TMCSR)
e 16-bit timer register (TMR)/16-bit reload register (TMRLR)

B 16-bit Reload Timer Register

Timer control status register (upper) 15 14 13 12 11 10 9 8 <5 Bit number

T T T T]

— — — — [csLi | csLo | MoDb2 | MoD1

Address: ch0 000051+
ch1 000053+

Read/write o — — — — (RW) (RW) (RW) (R/W)
Initial value = — - — — (0) (0) () ()
Timer control status register (lower) 7 6 5 4 3 2 1 0 < Bit number
el USSP BEDETS BTN TR IS I
Address: ch0 000050+ MODO | OUTE | OUTL | RELD | INTE | UF | CNTE | TRG TMCSR
ch1 000052+ P

Readiwrite . (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value (0) (0) (0) (0) (0) (0) (0) (0)

16-bit timer register (upper)/ 15 14 13 12 11 10 9 8 , Bitnumber
16-bit reload register (upper) | =1] =T = = —] =

Address: ch0 001941k = =
ch1 001943H

Readwrite ., (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value = (X) (X) (X) (X) (X) (X) (X) (X)

16-bit timer register (lower)/ 7 6 5 4 3 2 1 0 Bitnumber
16-bit reload register (lower) . = 1 _
Address: ch0 001940+ — — -

]]] B] B TMR/
ch1 001942 —— TMRLR

Read/write .. (RW) (RW) (RW) (RW) (RW) (RW) (RW) (R/W)
Initial value = X) X)) X) X) X) X) X)

154

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.2.1 Timer Control Status Register (TMCSR)

Controls the operation mode and interrupts for the 16-bit timer. Only modify bits other
than UF, CNTE, and TRG when CNTE = "0".

B Register Layout of Timer Control Register (TMCSR)

Timer control status register (upper)

Address: chO 000051+
ch1 000053H

Read/write
Initial value >

Timer control status register (lower)

Address: chO 0000504
ch1 000052+

Read/write
Initial value =>

15 14 13 12 11 10 9 8 5 Bitnumber
S T o
— — CSL1 | CSLO | MOD2 | MOD1 —
— — Rw) (RW) (RW) (R/W)
— — (0) (0) (0) (0)
7 5 4 3 2 1 0 <jBitnumber
MODO | OUTE | OUTL | RELD | INTE UF CNTE | TRG — TMCSR
(R'W) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
(0) (0) (0) (0) (0) (0) (0) (0)

B Register Contents of Timer Control Register (TMCSR)
[Bits 11, 10] CSL1, CSLO (Clock select 1, 0)

The count clock select bits. Table 12.2-1 "Clock Sources for CSL Bit Settings" lists the
selected clock sources.

Table 12.2-1 Clock Sources for CSL Bit Settings

CSL1 CSLO Clock Source (Machine cycle ¢ = 16 MHz)
0 0 o/2" (0.125 ps)
0 1 /23 (0.5 us)
1 0 /2% (2.0 us)

External event count mode

155

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

[Bits 9, 8, 7] MOD2, MOD1, MODO
These bits set the operation mode and I/O pin functions.

The MOD2 bit selects the I/O functions. When MOD2 = "0", the input pin functions as a
trigger input. In this case, the reload register contents is loaded to the counter when an
active edge is input to the input pin and count operation proceeds. When MOD2 = "1", the
timer operates in gate counter mode and the input pin functions as a gate input. In this
mode, the counter only counts while an active level is input to the input pin.

The MOD1 and 0 bits set the pin functions for each mode. Table 12.2-2 "MOD2, 1, 0 Bit
Settings (1)" and Table 12.2-3 "MOD2, 1, 0 Bit Settings (2)" list the MOD2, 1, 0 bit settings.

Table 12.2-2 MOD2, 1, 0 Bit Settings (1)

MOD2 MOD1 MODO Input Pin Function Active Edge or Level
0 0 0 Trigger disabled -
0 0 1 Trigger input Rising edge
0 1 0 Falling edge
T
0 1 1 Both edges
T
1 X 0 Gate input "L" level
1 X 1 "H" level
T

Internal clock mode (CSLO, 1 ="00", "01", or "10")

Table 12.2-3 MOD2, 1, 0 Bit Settings (2)

MOD2 MOD1 MODO Input Pin Function Active Edge or Level
0 0 - -
0 1 Trigger input Rising edge
1 0 Falling edge
X T
1 1 Both edges
T

* Event counter mode (CSLO,1 ="11")
» Bits marked as X in the table can be set to any value.
[Bit 6] OUTE

Output enable bit. The TOT pin functions as a general-purpose port when this bit is "0" and
as the timer output pin when this bit is "1". In reload mode, the output waveform toggles. In
one-shot mode, TOT outputs a square waveform that indicates that counting is in progress.

156

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

[Bit 5] OUTL
This bit sets the output level for the TOT pin.

Table 12.2-4 OUTE, RELD, and OUTL Settings

OUTE RELD OUTL Output Waveform
0 X X General-purpose port
1 0 0 Output an "H" level square waveform during counting.
1 0 1 Output an "L" level square waveform during counting.
1 1 0 Toggle output. Starts with "L" level output.
1 1 1 Toggle output. Starts with "H" level output.

[Bit 4] RELD (Reload)

This bit enables reload operations. When RELD is "1", the timer operates in reload mode. In
this mode, the timer loads the reload register contents into the counter and continues
counting whenever an underflow occurs (when the counter value changes from 0000y to

FFFFR). When RELD is "0", the timer operates in one-shot mode. In this mode, the count
operation stops when an underflow occurs due to the counter value changing from 0000y to
FFFFy.

[Bit 3] INTE (Interrupt enable)

Timer interrupt request enable bit. When INTE is "1", an interrupt request is generated when
the UF bit changes to "1". When INTE is "0", no interrupt request is generated, even when
the UF bit changes to "1".

[Bit 2] UF (Underflow)

Timer interrupt request flag. UF is set to "1" when an underflow occurs (when the counter
value changes from 0000y to FFFF). Cleared by writing "0" or by the intelligent I/O service.

Writing "1" to this bit has no meaning. Read as "1" by read-modify-write instructions.
[Bit 1] CNTE (Count enable)

Timer count enable bit. Writing "1" to CNTE sets the timer to wait for a trigger. Writing "0"
stops count operation.

[Bit 0] TRG (Trigger)

Software trigger bit. Writing "1" to TRG applies a software trigger, causing the timer to load
the reload register contents to the counter and start counting. Writing "0" has no meaning.
Reading always returns "0". Applying a trigger using this register is only valid when CNTE =
"1". Writing "1" has no effect if CNTE = "0".

157

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.2.2 Register Layout of 16-bit Timer Register (TMR)/16-bit
Reload Register (TMRLR)

TMR contents (for reading)

Reading this register reads the count value of the 16-bit timer. The initial value is
undefined. Always read this register using the word access instructions.

TMRLR contents (for writing)

The 16-bit reload register holds the initial count value. The initial value is undefined.
Always write to this register using the word access instructions.

B Register Layout of 16-bit Timer Register (TMR)/16-bit Reload Register (TMRLR)

16-bit timer register (upper)/ 15 14 13 12 11 10 9 8 Bit number
16-bit reload register (upper)] = =] T =T =7] = _

Address: ch0 0019414
ch1 001943~

Read/write (RW) (RW) (RW) (RW) (RW) (RW) [RW) [RW)
Initial value = (X) (X) (X) (X) (X) (X) (X) (X)

16-bit timer register (lower)/ 7 6 5 4 3 2 1 0 o Bitnumber
16-bit reload register (lower) X T | T T =] =T —
Address: chO 001940 -) I~ - - - = — ’ T™R/
ch1 001942+ P TMRLR

Readiwrite . (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value = (X) (X) (X) (X) (X) (X) (X) (X)

158

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.3 Internal Clock and External Clock Operations of 16-bit
Reload Timer

The machine clock divided by 21, 23, or 2° can be selected as the clock sources for
operating the timer from an internal divide clock. The external input pin can be
selected as either a trigger input or gate input by a register setting.

If an external clock is selected, the TIN pin functions as an external event input pin to
count the number of valid edges set in the register.

H Internal Clock Operation of 16-bit Reload Timer

Writing "1" to both the CNTE and TRG bits in the control register enables and starts counting at
one time. Using the TRG bit as a trigger input is always available when the timer is enabled
(CNTE ="1"), regardless of the operation mode.

Figure 12.3-1 "Activation and Operation of 16-bit Reload Timer Counter" shows counter
activation and counter operation. A time period T (T: machine cycle) is required from the counter
start trigger being input until the reload register data is loaded into counter.

Figure 12.3-1 Activation and Operation of 16-bit Reload Timer Counter

Count clock

Counter >< Reload data >< -1 >< -1 >< -1

Data load

CNTE (bit)

TRG (bit)

159

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

B Input Pin Functions of 16-bit Reload Timer (in Internal Clock Mode)

The TIN pin can be used as either a trigger input or a gate input when an internal clock is
selected as the clock source. When used as a trigger input, input of an active edge causes the
timer to load the reload register contents to the counter and then start count operation after
clearing the internal prescaler. Input a pulse width of at least 2T (T is the machine cycle) to TIN.

Figure 12.3-2 "Trigger Input Operation of 16-bit Reload Timer" shows the operation of trigger
input.

Figure 12.3-2 Trigger Input Operation of 16-bit Reload Timer

Count clock r

TIN Rising edge detected

Prescaler clear |_|

Counter >< 00004 >< Reload data >< 1 >< 1 >< -1
Load _I

2T-
2.5T

When used as a gate input, the counter only counts while the active level specified by the
MODO bit of the control register is input to the TIN pin. In this case, the count clock continues to
operate unless stopped. The software trigger can be used in gate mode, regardless of the gate
level. Input a pulse width of at least 2T (T is the machine cycle) to the TIN pin. Figure 12.3-3
"Gate Input Operation of 16-bit Reload Timer" shows the operation of gate input.

Figure 12.3-3 Gate Input Operation of 16-bit Reload Timer

Count clock

TIN When MODO = "1" (Count when "H" is input)

Counter -1 1 1

H External Event Counter

The TIN pin functions as an external event input pin when an external clock is selected. The
counter counts on the active edge specified in the register. Input a pulse width of at least 4T (T
is the machine cycle) to the TIN pin.

160

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.4 Underflow Operation of 16-bit Reload Timer

An underflow is defined for this timer as the time when the counter value changes
from 00004 to FFFF. Therefore, an underflow occurs after (reload register setting + 1)

counts.

B Underflow Operation of 16-bit Reload Timer

If the RELD bit in the control register is "1" when the underflow occurs, the contents of the
reload register is loaded into the counter and counting continues. When RELD is "0", counting
stops with the counter at FFFF.

The UF bit in the control register is set when the underflow occurs. If the INTE bit is "1" at this
time, an interrupt request is generated.

Figure 12.4-1 "Underflow Operation of 16-bit Reload Timer" shows the operation when an
underflow occurs.

Figure 12.4-1 Underflow Operation of 16-bit Reload Timer

Count clock
Counter >< 0000+ >< Reload data >< -1 >< 1 >< -1

Data load

Underflow set

[RELD=1]

Count clock Ji
Counter >< 0000k >< FEEFH

Underflow set

[RELD=0]

161

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.5 Output Pin Functions of 16-bit Reload Timer

In reload mode, the TOT pin performs toggle output (inverts at each underflow). In one-
shot mode, the TOT pin functions as a pulse output that outputs a particular level
while the count is in progress.

H Output Pin Functions of 16-bit Reload Timer

The OUTL bit of the control register sets the output polarity. When OUTL = "0", the initial value
for toggle output is "0" and the one-shot pulse output is "1" while the count is in progress. The
output waveforms are opposite when OUTL ="1".

Figure 12.5-1 "Output Pin Function of 16-bit Reload Timer (1)"
and Figure 12.5-2 "Output Pin Function of 16-bit Reload Timer (2)" show the output pin
functions.
Figure 12.5-1 Output Pin Function of 16-bit Reload Timer (1)

Count start

Underflow T T —L

TOT Level is opposite
when OUTL ="1".
General-purpose port
CNTE
Trigger

[RELD=1, OUTL=0]

Figure 12.5-2 Output Pin Function of 16-bit Reload Timer (2)

Underflow T T

TOT Level is opposite
when OUTL = "1".

General-purpose port

CNTE

Trigger H H

<— Waiting for a trigger —>|

[RELD=0, OUTL=0]

162

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.6 Counter Operation State

The counter state is determined by the CNTE bit in the control register and the internal
WAIT signal. Available states are: CNTE = "0" and WAIT = "1" (STOP state), CNTE = "1"

and WAIT = "1" (WAIT state for trigger), and CNTE = "1" and WAIT = "0" (RUN state).

H Counter Operation State

Figure 12.6-1 "Counter State Transitions" shows the transitions between each state.

Reset

Figure 12.6-1 Counter State Transitions

—> State transitions by hardware

CNTE="0"

CNTE="1"
TRG="0"

STOP | CNTE=0, WAIT=1

TIN pin: Input disabled

TOT pin: General-purpose port

Counter: Retains the value while
counting stopped.
Value undefined after reset.

CNTE="0"

CNTE="1"
TRG="1"

WAIT CNTE=1, WAIT=1

RUN CNTE=1, WAIT=0

TIN pin: Only trigger input enabled

TIN pin: Functions as TIN pin

TOT pin: Initial value output

TOT pin: Functions as TOT pin

Counter: Retains the value whil
counting stopped.

Value undefined after reset until
load.

e
RELD-UF

Counter: Running

TRG="1" TRG="1"

RELD-UF

» LOAD | CNTE=1, WAIT=

0 I«
Load complete

Load contents of the reload
register to the counter.

—> State transitions by register access

163

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

164

CHAPTER 13 WATCH TIMER

This chapter explains the functions and operations of the Watch Timer.

13.1 "Outline of Watch Timer"
13.2 "Watch Timer Registers"

165

CHAPTER 13 WATCH TIMER

13.1 Outline of Watch Timer

The Watch Timer consists of the Timer Control register, Sub-second register, Second/
Minute/Hour registers, 1/2 clock divider, 21-bit prescaler and Second/Minute/Hour
counters. The oscillation frequency of the MCU is assumed to be at 4MHz for the aimed
operation of the Watch Timer. The Watch Timer operates as the real-world timer and
provides the real-world time information.

B Block Diagram of Watch Timer

Figure 13.1-1 "Block Diagram of Watch Timer" shows a block diagram of the Watch Timer.

Figure 13.1-1 Block Diagram of Watch Timer

Oscillation OF OE
clock 1/2 Clock 21bit Prescaler -
EN
Sub-second
register

uPDT| | ST ‘_CISecond Counter| Minute Counter Hour Counter

EN
LOAD CO CO CcO

| Second/Minute/Hour register |

INTEO |NTT| |INTE1| INT1 | |INTE2| INT2 | | INT3 | INT3 |

IRQ

166

CHAPTER 13 WATCH TIMER

13.2 Watch Timer Registers

The Watch Timer has the following five types of registers:
¢ Timer control register (WTCR)

e Sub-second register (WTBR)

e Second register (WTSR)

¢ Minute register (WTMR)

* Hour register (WTHR)

B Watch Timer Registers

Timer control register

7 6 5 4 3 2 1 0 <5 Bit number
Address: 000060+
‘Heserved ‘ Reserved‘Reserved‘ — ‘ — ‘ UPDT‘ OE ‘ ST ‘ WTCR
Read/write _, (RW) (RW) (RW) — — (RW) (R/W) (RMW)
Initial value > 0) 0) (O — - 0) 0) 0)
Timer control register 15 14 13 12 1 10 9 8 <5 Bit number
Address: 000061+
‘ INTES‘ INT3 ‘ INTEZ‘ INT2 ‘ INTE1 ‘ INT1 ‘ INTEO‘ INTO ‘ WTCR
Readiwrite o, (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value > (0) 0) 0) 0) (0) 0) (0) 0)
Sub-second register
7 6 5 4 3 2 1 0 @Bit number
Address: 00194Ax
‘ D7 ‘ D6 ‘ D5 ‘ D4 ‘ D3 ‘ D2 ‘ D1 ‘ DO ‘ WTBR
Read/write ., (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value => (X) (X) (X) (X) (X) (X) (X) (X)
Sub-second register 15 14 13 12 11 10 9 8 5 Bitnumber
Address: 00194Bn
‘ D15 ‘ D14 ‘ D13 ‘ D12 ‘ D11 ‘D10 ‘ D9 ‘ D8 ‘ WTBR
Readiwrite ., (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value => (X) (X) (X) (X) (X) (X) (X) (X)
Sub-second register
7 6 5 4 3 2 1 0 <5 Bit number
Address: 00194CH
‘ — ‘ — ‘ — ‘ DZO‘ D19 ‘ D18 ‘ D17 ‘ D16 ‘ WTBR
Readiwrite o, — — — (RW) (RW) (RW) (RW) (RW)
Initial value = ~ — — — (X) (X) (X) (X) (X)
Second register 15 14 13 12 1 10 9 8 . Bitnumber
Address: 00194DH
‘ — ‘ — ‘ s5 ‘ s4 ‘ s3 ‘ s2 ‘ s1 ‘ S0 ‘ WTSR
Readiwrite o, __ _ (RW) (RW) (RW) (RW) (RW) (RW)
Initial value > _ _ (X) X) (X) (X) X) X)
Minute register
7 6 5 4 3 2 1 0 < Bit number
Address: 00194Ew WTMR
[— [w v w [we [w |w]
Read/write ., ~ — — (RW) (RW) (RW) (RMW) (RW) (RW)
Initial value = ~ — — (X) (X) (X) (X) (X) (X)
Hour register 15 14 13 12 1 10 9 8 . Bitnumber
Address: 00194FH
‘ — ‘ — ‘ — ‘ H4 ‘ H3 ‘ H2 ‘ H1 ‘ Ho ‘ WTHR

Readiwrite ., __ . RW) (RW) RW) @EW) (RW)
Initial value = — — (X) (X) (X) (X) (X)

167

CHAPTER 13 WATCH TIMER

13.2.1 Timer Control Register

The timer control register starts and stops the Watch Timer, controls interrupts, and
sets the external output pins.

B Timer Control Register

168

Timer control register

7 6 5 4 3 2 1 0 < Bit number
Address: 000060+
Reserved | Reserved | Reserved | — — UPDT OE ST WTCR
Read/write . (RW) (RW) (RW) — — (RW) (RW) (RW)
Initial value => (0) (0) o -)))
Timer control register 15 14 13 12 11 10 9 8 < Bit number
Address: 000061+
INTE3| INT3 | INTE2| INT2 | INTE1| INT1 | INTEO| INTO WTCR

R.e.ad/write = (RW) RW) (RW) RW) (RW) (RMW) [RW) (RW)
Initial value = (0) (0) (0) ©) (0) (©) (0) 0

[bits 15 to 8] INT3 to 0, INTE3 to 0: Interrupt flags and Interrupt enable flags

INTO to INT3 are the interrupt flags. They are set when the second counter, minute counter
and hour counter overflow respectively. If a INT bit is set while the corresponding INTE bit is
"1", the Watch Timer signals an interrupt. These flags are intended to signal an interrupt
every second/minute/hour/day.

Writing "0" to the INT bits clears the flags and writing "1" does not have any effect. Any read-
modify-write instruction performed on the INT bit results reading "1".

[bits 7 to 5] Reserved bits

These are reserved bits. Always write "0" to these bits.

[bit 2] UPDT: Update bit

The UPDT bit is prepared for modifying the Second/Minute/Hour counter values.

To modify the counter values, write the modified data in the Second/Minute/Hour registers.
Then set the UPDT bit to "1". The register values are loaded to the counter at the next CO
signal from the 21-bit prescaler. The UPDT bit is reset by the hardware when the counter
values are updated. However, if the set operation by software and the reset operation by
hardware occur at the same time, the UPDT bit will not be reset.

Writing "0" to the UPDT bit does not have any effect. The result of reading by a read-modify-
write instruction is always "0".

Note:

If this bit is set during "59 second", normal up count operation is executed and this bit is reset
to "0" without reflecting the Second/Minute/Hour register values.

Writing "0" to the UPDT bit has no effect and a read-modify-write instruction results in
reading "0".

CHAPTER 13 WATCH TIMER

[bit 1] OE: Output enable bit

When the OE bit is set to "1", the WOT external pin serves as the output for the Watch
Timer. Otherwise it can be used as a general purpose 1/O or for another peripheral block.

[bit 0] ST: Start bit

When the ST bit is set to "1", the Watch Timer loads Second/Minute/Hour values from the
registers and starts its operation. When it is reset to "0", all the counters and the prescalers
are reset to "0" and halts.

169

CHAPTER 13 WATCH TIMER

13.2.2 Sub-second Registers

The sub-second register stores a reload value for the 21-bit prescaler that divides the
oscillation clock. The reload value is usually set so that the 21-bit prescaler will output
exactly within a one-second cycle. This register is not initialized by reset, but 21-bit
prescaler is initialized by reset.

B Sub-second Register

Sub-second register
7 6 5 4 3 2 1 0 <o Bit number

D7 D6 D5 D4 D3 D2 D1 DO WTBR

Address: 00194An

Read/writec> (RW) (RW) ((RW) (RW) ((RW) (RW) (RW) (RW)
Initial value => X) X) X) (X) X) (X) (X) (X)

Sub-second register 15 14 13 12 11 10 9 8 < Bitnumber
Address: 00194BH

D15 D14 D13 D12 D11 D10 D9 D8 WTBR

Read/write . (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value > (X) (X) (X) (X) (X) (X) (X) (X)

Sub-second register

7 6 5 4 3 2 1 0 <5 Bit number
Address: 00194Cw

— | — | = D20 | D19 | D18 | D17 | D16 WTBR
Readiwrite ., — — — (RW) (RW) (RW) W) RW)
Initial value = — — — (X) (X) (X) (X) (X)

[bit 20 to 0] D20 to DO

The Sub-second register stores the reload value for the 21-bit prescaler. This value is
reloaded after the reload counter reaches "0". Note that when modifying the all three bytes,
make sure the reload operation will not be performed in between the write instructions.
Otherwise the 21-bit prescaler loads the incorrect value of the combination of new data and
old data bytes. It is generally recommended that the Sub-Second register are updated while
the ST bit is "0". If the sub-second registers are set to "0", the 21-bit prescaler does not
operate at all.

The input clock frequency always equals the oscillation clock frequency and it is intended to
be 4MHz. The reload value of the 21-bit prescaler is typically set to Hex1E847F which

equals to "27 * 55-1". Therefore the combination of these two prescalers is intended to
provide a clock signal of exact one second.

170

CHAPTER 13 WATCH TIMER

13.2.3 Second/Minute/Hour Registers

The Second/Minute/Hour registers stores the time information. It is a binary
representation of the second, minute and hour.

Reading any of these register always results in the corresponding counter value.
These registers are write associable however, the written data is loaded in the
counters after the UPDT bit is set to "1". These registers and counter are initialized by
reset.

B Second/Minute/Hour Registers

Second register 15 14 13 12 11 10 9 8 < Bitnumber
Address: 00194DH
— — | s5 | s4 s3 | s2 st | so WTSR
Read/write _ —_ (BW) (RW) (RW) (RW) (RW) (RW)
Initial value &> _ (X) (X) (X) (X) (X) (X)
Minute register
7 6 5 4 3 2 1 0 < Bit number
Address: 00194EH
_ | M5 | M4 | M3 | M2 | M1 MO WTMR
Read/write o, ~ — — (RW) (RW) (RW) (RW) (RW) (R/W)
Initial value = — — X) X) (X) X) X) X)
Hour register 15 14 13 12 11 10 9 8 < Bitnumber
Address: 00194FH
— | — | — | Ha H3 | H2 H1 | Ho WTHR
Read/write _ _ — (RW) (RW) (RW) (RW) (RW)
Initial value &> — — X) X) X) X) X)

Since there are three byte-registers, make sure the obtained values from the registers are
consistent.

i.e. Obtained value of "1 hour, 59 minute, 59 second" could be "0 hour 59 minute, 59 second" or
"1 hour, 0 minute, 0 second" or "2 hour, 0 minute, 0 second".

Also when the operation clock of the MCU is the half of the oscillation clock (When the PLL is
stopped), the read values from these registers may be corrupt. This is due to the
synchronization of the read operation and the count operation. Therefore it is recommended is
use a second interrupt to trigger the read instructions.

171

CHAPTER 13 WATCH TIMER

172

CHAPTER 14 8/16-BIT PPG

This chapter explains the 8/16-bit PPG and explains its functions.

14.1 "Outline of 8/16-bit PPG"

14.2 "Block Diagram of 8/16-bit PPG"

14.3 "8/16-bit PPG Registers"

14.4 "Operations of 8/16-bit PPG"

14.5 "Selecting a Count Clock for 8/16-bit PPG"
14.6 "Controlling Pin Output of 8/16-bit PPG Pulses"
14.7 "8/16-bit PPG Interrupts"

14.8 "Initial Values of 8/16-bit PPG Hardware"

173

CHAPTER 14 8/16-BIT PPG

14.1 Outline of 8/16-bit PPG

The 8/16-bit Programable Pulse Generator (PPG) consists of two eight-bit down
counters, four eight-bit reload registers, one 16-bit control register, two external pulse
output signals, and two interrupt outputs. The following functions are implemented:

W Function of 8/16-bit PPG

174

8-bit PPG output, 2-channel independent operation mode:

Two independent channels of PPG output operation are implemented.

16-bit PPG output operation mode:

One channel of 16-bit PPG output operation is implemented.

8+8-bit PPG output operation mode:

8-bit PPG output operation is implemented at specifies intervals, using channel 0 output as
channel 1 clock input.

PPG output operation:

Pulse waves are output at specified intervals and duty ratio. With an external circuit, this module
can be used as a D/A converter.

The MB90590 Series contains six PPG’s. The following sections only describe the functionality
of the PPG 0/1. The remaining PPG’s have the identical function and the register addresses
should be found in the /0O map.

CHAPTER 14 8/16-BIT PPG

14.2 Block Diagram of 8/16-bit PPG

Figure 14.2-1 "8-bit PPG ch0 Block Diagram" shows a block diagram of the 8/16-bit
PPG (chO0). Figure 14.2-2 "8-bit PPG ch1 Block Diagram" shows a block diagram of the
8/16-bit PPG (ch1).

B Block Diagram of 8/16-bit PPG

Figure 14.2-1 8-bit PPG ch0 Block Diagram

PPGOO0 output enable
E PPGO00
—<—— Peripheral clock 16-division

—<—— Peripheral clock 8-division In MB90590 Series, this signal is not
—=—— Peripheral clock 4-division connected to any external pin.
—<——-7>Peripheral clock 2-division
Peripheral clock

PPGO
QOutput latch

Invert Clear

——<— PENO

In MB90590 Series, this IRQ signal
merged with the Channel 1 IRQ signal
by OR logic.

T
OOOO(:}
Py

PCNT

S
Count clock | (down counter) @TD IRQ
selection

Timebase counter output Reload
o ch1-borrow

512-division of main clock
L/H selector

L/H selection

PRLLO PRLBHO
n PIEO
PRLHO

PUFO
L data bus

]

. -—— Hdata bus
7 :
PPGCO

(Operation mode control)

175

CHAPTER 14 8/16-BIT PPG

Figure 14.2-2 8-bit PPG ch1 Block Diagram

PPG10 output enable
—
E PPG10
——<— Peripheral clock 8-division

Peripheral clock 4-division In MB90590 Series this pin is connected to

< Peripheral clock 2-division the "PPGO" external pin.
Peripheral clock L

——=<——Peripheral clock 16-division

PPG1
~| Output latch

Invert Clear

Count clock

selection $— =—PENT |1 MB90590 Series, this IRQ signal
merged with the Channel 0 IRQ signal

f by OR logic.
ch0 borrow Ff S
PCNT
(down counter) RQ IRQ

dooooy
J

Timebase counter output
512-division of main clock

Reload

L/H selection L/H selector

SRS | A —

PRLL1 | | PRLBH1 |

0 |

PRLH1
‘ PUF

L data bus
]

H data bus 7]

{
PPGC1

(Operation mode control)

176

CHAPTER 14 8/16-BIT PPG

14.3 8/16-bit PPG Registers

The 8/16-bit PPG has the following five types of registers:
¢ PPGO operation mode control register

* PPG1 operation mode control register

e PPGO, 1 output pin control register

¢ Reload register H

* Reload register L

B 8/16-bit PPG Registers

PPGO operation mode control register
6 5 4 3 2 1 0 <= Bit No.

Address: chO 0000384 o
|PENO‘ — ‘ PEOO‘ PIEO ‘PUFO‘ — ‘ — ‘Reserved|

PPGCO
Read/write => (RW) ((RW) (RW) (RW) ()
(_

-)) (W)
Initial value = (0)) (0) (0) (0)))

(- (1)

PPG1 operation mode control register

15 14 13 12 11 10 9 8 <= Bit No.
Address: chO 0000394

|PEN1 ‘ — ‘ PE10‘ PIE1‘ PUF1‘ MD1 ‘ MDO ‘Reserved|

PPGC1
Read/write — (RW) () (RW) (RW) (RW) (RW) (RW) (W)
Initial value —> 0) () (0) (0) (0) (0) (0) (1)

PPGO,1 output pin control register 7 6 5 4 3 2 1 0

<= Bit No.
Address: ch0,1 003AH -
|PCSZ‘PCS1‘PCSO‘PCM2‘PCM1‘PCMO‘ — ‘ — |
_ - PPGOT
Read/write —, (RwW) (RW) RW) BRW) RW) RW)) ()
Initial value =) (0 (0) (0) (0) (0) (OO
15 14 13 12 11 10 9 8 <= Bit No.
Reload register H T T T T T T T T - -
Address: ch0 0019014
ch1 001903, -~ PRLH
Read/write => (R/W) (R/W) (R/W) (RW) (RW) (R/W) (R/W) (R/W)
Initial value => (X) (X) X X X X X X
7 6 5 4 3 2 1 0 <= Bit No.
Reload register L T o]]] o]] g
Address: ch0 0019004 o
ch1 001902, J PRLL

Read/write = (R/W) (RW) (RW) (RW) (RW) (RW) (R/W) (R/W)
Initial value => (X) (X) X X X X X (X

177

CHAPTER 14 8/16-BIT PPG

14.3.1 PPGO Operation Mode Control Register (PPGCO0)

PPGCO is a five-bit control register that selects the operation mode of the block,
controls pin outputs, selects count clock, and controls triggers.

B PPGO Operation Mode Control Register (PPGCO0)

PPGO operation mode control register

Address: ch0, 0000384 o 7 6 5 4 3 2 1 0 <= Bit No.
PENO - PEOO PIEO PUFO - - Reserved PPGCO
Read/write — (R/w) () RW) (RW) (RW))) (W)
Initial value = (0)) (0) (0) 0) ¢))

[bit 7] PENO (PPG enable): Operation enable bit

This bit enables the counter operation of the PPG.

PENO Operation
0 Stop ("L" level output maintained)
1 PPG operation enabled

Setting this bit to 1 enables the counter operation.
This bit is initialized to "0" upon a reset. This bit is readable and writable.
[bit 5] PEOO (PPG output enable 00): PPG00 pin output enable bit

This bit controls the PPGO0O pulse output external pin as described below.

0 General-purpose port pin (pulse output disabled)

1 PPGO0O0 = pulse output pin (pulse output enabled)

This bit is initialized to "0" upon a reset. This bit is readable and writable.
For MB90590 Series, this bit should always be set to "0".
[bit 4] PIEO (PPG interrupt enable): PPG interrupt enable bit

This bit controls PPG interrupt as described below.

0 Interrupt disabled

1 Interrupt enabled

While this bit is "1", an interrupt request is issued as soon as PUFO is set to "1". No interrupt
request is issued while this bit is set to "0".

This bit is initialized to "0" upon a reset. This bit is readable and writable.

178

CHAPTER 14 8/16-BIT PPG

[bit 3] PUFO (PPG underflow flag): PPG counter underflow bit

This bit indicates the PPG counter underflow as described below.

0 PPG counter underflow is not detected.

1 PPG counter underflow is detected.

In 8-bit PPG 2-channel mode or 8-bit prescaler + 8-bit PPG mode, this bit is set to "1" when
an underflow occurs as a result of the ch0 counter value becoming from 00y to FFy. In 16-bit
PPG mode, this bit is set to "1" when an underflow occurs as a result of the Channel 0 and 1
counter value becoming from 0000y to FFFFp. To set this bit to "0", write "0". Writing "1" to
this bit has not effect. Upon a read operation during a read-modify-write instruction, "1" is
read.

This bit is initialized to "0" upon a reset. This bit is readable and writable.
[bit 0]
This is a reserved bit. When setting PPGCO, always set this bit to 1.

179

CHAPTER 14 8/16-BIT PPG

14.3.2 PPG1 Operation Mode Control Register (PPGC1)

PPGCO is a seven-bit control register that selects the operation mode of the block,
controls pin outputs, selects count clock, and controls triggers.

B PPG1 Operation Mode Control Register (PPGC1)

PPG1 operation mode 15 14 13 12 11 10 9 8 <= BitNo.
control register -
Address: ch1 000039 PENA1 - PE10 PIE1 PUF1 | MD1 | MDO |Reserved | PPGCT
Readiwrite == (R/w)) RW) (RW) (RW) (RW) (RW) W)
Initial value == 0) 3 0) 0) (0) (0) 0) 1)

[bit 15] PEN1 (PPG enable): Operation enable bit

This bit enables the counter operation of the PPG.

PEN1 Operation
0 Stop ("L" level output maintained)
1 PPG operation enabled

Setting this bit to 1 enables the counter operation.
This bit is initialized to "0" upon a reset. This bit is readable and writable.

[bit 13] PE10 (PPG output enable 10): PPG10 pin output enable bit

This bit controls the PPG10 pulse output external pin as described below.

0 General-purpose port pin (pulse output disabled)

1 PPG10 = pulse output pin (pulse output enabled)

This bit is initialized to "0" upon a reset. This bit is readable and writable.
For MB90590 Series, the pulse signal is output to the "PPGO0" external pin.
[bit 12] PIE1 (PPG interrupt enable): PPG interrupt enable bit

This bit controls PPG interrupt as described below.

0 Interrupt disabled

1 Interrupt enabled

While this bit is "1", an interrupt request is issued as soon as PUF1 is set to "1". No interrupt
request is issued while this bit is set to "0".

This bit is initialized to "0" upon a reset. This bit is readable and writable.

180

CHAPTER 14 8/16-BIT PPG

[bit 11] PUF1 (PPG underflow flag): PPG counter underflow bit

This bit indicates the PPG counter underflow as described below.

0 PPG counter underflow is not detected.

1 PPG counter underflow is detected.

In 8-bit PPG 2-channel mode or 8-bit prescaler + 8-bit PPG mode, this bit is set to "1" when
an underflow occurs as a result of the Channel 1 counter value becoming from 00y to FFy.

In 16-bit PPG mode, this bit is set to "1" when an underflow occurs as a result of the Channel
0 and 1 counter value becoming from 00004 to FFFFy. To set this bit to "0", write "0". Writing

"1" to this bit has not effect. Upon a read operation during a read-modify-write instruction, "1"
is read.

This bit is initialized to "0" upon a reset. This bit is readable and writable.

[bit 10, 9] MD1, 0 (PPG count mode): Operation mode selection bit

These bits selects the PPG timer operation mode as described below.

MD1 MDO Operation mode
0 0 8-bit PPG 2ch independent mode
0 1 8-bit prescaler + 8-bit PPG 1ch mode
1 0 Reserved
1 1 16-bit PPG 1ch mode

These bits are initialized to "00" upon a reset. These bits are readable and writable.

Note:

Do not set "10" in these bits.

To write "01" to these bits, ensure that "01" is not written to the PENO bit of PPGCO or PEN1
bit of PPGC1. Write "11" or "00" in both the PENO and PEN1 bits simultaneously.

To write "11" to these bits, update PPGCO and PPGC1 by word transfer and write "11" or
"00" to both the PENO and PEN1 bits simultaneously.

[bit 8]

This is a reserved bit. When setting PPGC1, always write "1" to this bit.

181

CHAPTER 14 8/16-BIT PPG

14.3.3 PPGO, 1 Output Control Register (PPGO01)

The PPGO, 1 output control register (PPGO01) is an 8-bit control register that controls
the pin output of the 8/16-bit PPG.

B PPGO, 1 Clock Select Register (PPGO01)

PPGO, 1 output control register

Address: ch0, 1 00003A, 7 6 5 4 3 2 1 0 <= BitNo.
PCS2 PCS1 PCSO0 PCM2 PCM1 PCMO — e PPGO1
Read/write — (Rw) (RIW) RW) (RW) (RW) (RW)))
Initial value == (g) 0) (0) 0) 0) (0)))

[bits 7 to 5] PCS2 to 0 (PPG count select): Count clock selection bit

These bits select the operation clock for the down counter of Channel 1 as described below.

PCS2 | PCS1 | PCSO Operation mode

0 0 0 Peripheral clock (62.5 ns machine clock, 16 MHz)

0 0 1 Peripheral clock/2 (125 ns machine clock, 16 MHz)

0 1 0 Peripheral clock/4 (250 ns machine clock, 16 MHz)

0 1 1 Peripheral clock/8 (500 ns machine clock, 16 MHz)

1 0 0 Peripheral clock/16 (1 us machine clock, 16 MHz)

1 0 1 Clogk input from the timebase timer (128 us, 4 MHz source

oscillation)

These bits are initialized to "000" upon a reset. These bits are readable and writable.
Note:

In 8-bit prescaler + 8-bit PPG mode or in 16-bit PPG mode, ch1 PPG operates in response
to a counter clock from chO. Therefore, the setting in these bits has no effect.

182

CHAPTER 14 8/16-BIT PPG

[bits 4 to 2] PCM2 to 0 (PPG count mode): Count clock selection bit

These bits select the operation clock for the down counter of Channel 0 as described below.

PCM2 PCM1 PCMO Operation mode
0 0 0 Peripheral clock (62.5 ns machine clock, 16 MHz)
0 0 1 Peripheral clock/2 (125 ns machine clock, 16 MHz)
0 1 0 Peripheral clock/4 (250 ns machine clock, 16 MHz)
0 1 1 Peripheral clock/8 (500 ns machine clock, 16 MHz)
1 0 0 Peripheral clock/16 (1 us machine clock, 16 MHz)
1 0 1 Clock input from the timebase timer (128 us, 4 MHz
source oscillation)

These bits are initialized to "000" upon a reset. These bits are is readable and writable.

183

CHAPTER 14 8/16-BIT PPG

14.3.4 Reload Register (PRLL/PRLH)

The reload registers (PRLL and PRLH) are 8-bit registers that store reload values for
the PCNT down counters. The PRLL and PRLH registers are readable and writable.

B Reload Register (PRLL/PRLH)

15 14 13 12 11 10 9 8 <= Bit No.
Reload register H I T 7 7 7] ‘ 7 ‘ --
Address: ch0 001901y
ch1 0019034 - PRLH
Read/write => (RW) (R/W) (R/W) (R/W) (R/W) (RW) (R/W) (R/W)
Initial value => (X) (X) X) X) (X X)X X)
7 6 5 4 3 2 1 0 <= Bit No.
Reload register L I T ‘ ‘ = ‘ T ‘
Address: ch0 001900y o
ch1 0019024 B PRLL
=> (RW) RW) (RW) (RW) (RW) (RW) (RW) (R/W)
= X)X (SO0 TR 0 B O N Y N O
Register name Function

0

Holds the L side reload value.

1

Holds the H side reload value.

Note:

In 8-bit prescaler + 8-bit PPG mode, different values in PRLL and PRLH of Channel 0 may
cause the PPG waveform of ch1 to vary in each cycle. Write the same value to PRLL and

PRLH of chO.

184

CHAPTER 14 8/16-BIT PPG

14.4 Operations of 8/16-bit PPG

One 8/16-bit PPG consists of two channels of 8-bit PPG units. These two channels can
be used in three modes: independent two-channel mode, 8-bit prescaler + 8-bit PPG
mode, and single-channel 16-bit PPG mode.

Bl Operations of 8/16-bit PPG

Each of the 8-bit PPG units has two eight-bit reload registers. One reload register is for the L
pulse width (PRLL) and the other is for the H pulse width (PRLH). The values stored in these
registers are reloaded into the 8-bit down counter (PCNT), from the PRLL and PRLH in turn.
The pin output value is inverted upon a reload caused by counter borrow. This operation results
in the pulses of the specified L pulse width and H pulse width.

Table 14.4-1 "Reload Operation and Pulse Output" lists the relationship between the reload
operation and pulse outputs.

Table 14.4-1 Reload Operation and Pulse Output

Reload operation Pin output change
PRLH --> PCNT PPGO00/10[0--> 1] Rise
PRLL --> PCNT PPGO00/10[1 --> 0] Fall

When 1 is set in bit 4 (PIEO) of PPGCO or in bit 12 (PIE1) of PPGC1, an interrupt request is
output upon a borrow from 00 to FF (from 0000 to FFFF in 16-bit PPG mode) of each counter.

Bl Operation Modes of 8/16-bit PPG
This block can be used in three modes: independent two-channel mode, 8-bit prescaler + 8-bit
PPG mode, and single-channel 16-bit PPG mode.
O Independent two-channel mode
The two channels of 8-bit PPG units operate independently. The PPGO0O0 pin is connected to the
ch0 PPG output, while the PPG10 pin is connected to the ch1 PPG output.
O 8-bit prescaler + 8-bit PPG mode

ch0 is used as an 8-bit prescaler while the count in ch1 is based on borrow outputs from chO.
Thus, 8-bit PPG waveforms can be output with arbitrary length of cycle time. The PPGOO pin is
connected to the chO prescaler output, while the PPG10 pin is connected to the ch1 PPG
output.

185

CHAPTER 14 8/16-BIT PPG

O 16-bit PPG 1ch mode

ch0 and ch1 are connected and used as a single 16-bit PPG. The PPG00 and PPG10 pins are
connected to the 16-bit PPG output.

For the MB90590 Series, the output signal from the Channel 0 PPG is not connected to any
external pin.

B 8/16-bit PPG Output Operation

PEN

PPG00/10
Output pin

In this block, the chO PPG is activated to start counting when "1" is written to bit 7 (PENO) of the
PPGCO (PMW operation mode control register). Similarly, the ch1 PPG is activated to start
counting when "1" is written to bit 15 (PEN1) of the PPGC1 register. Once the operation has
started, counting is terminated by writing "0" to bit 7 (PENO) of PPGCO or in bit 15 (PEN1) of
PPGC1. Once the counting is terminated, the output is maintained at the L level.

For the MB90590 Series, the output signal from the Channel 0 PPG is not connected to any
external pin.

In 8-bit prescaler + 8-bit PPG mode, do not set ch1 to be in operation while chO operation is
stopped.

In 8/16-bit PPG mode, ensure that bit 7 (PENQO) of PPGCO (PMW operation mode control
register) and bit 15 (PEN1) of PPGC1 register are started or stopped simultaneously. The figure
below is a diagram of PPG output operation. During PPG operation, a pulse wave is
continuously output at a frequency and duty ratio (the ratio of the H-level period of the pulse
wave to the L-level period). PPG continues operation until stop is specified explicitly.

Figure 14.4-1 PPG Output Operation, Output Waveform

4 Starts operation based on PEN (from Lside). |
. [1

boTox (L) T x (H+1) L : PRLL value
‘ H : PRLH value

T : Inputfrom peripheral clock (9, $/4, $/16)
or timer base counter (depending on the
clock selection by PPGC)

H Relationship Between 8/16-bit PPG Reload Value and Pulse Width

186

The width of the output pulse is determined by adding 1 to the reload register value and
multiplying it by the count clock cycle. Note that when the reload register value is 00y during 8-
bit PPG operation or 0000y during 16-bit PPG operation, the pulse width is equivalent to one
count clock cycle. In addition, note that when the reload register value is FFy during 8-PPG
operation, the pulse width is equivalent to 256 count clock cycles. When the reload register
value is FFFFy during 16-bit PPG operation, the pulse width is equivalent to 65536 count clock
cycles.

L :PRLL value
P1=T x (L+1) H :value
Ph=T x (H+1 : Input clock cycle
Ph : High pulse width
Pl : Low pulse width

-

CHAPTER 14 8/16-BIT PPG

14.5 Selecting a Count Clock for 8/16-bit PPG

The count clock used for the operation is supplied from the peripheral clock or the
timebase timer. The count clock can be selected from six choices.

B Selecting a Count Clock for 8/16-bit PPG

Select ch0 clock at bit 4 to 2 (PCM2 to 0) of the PPGO1 register, and ch1 clock at bit 7 to 5
(PCS2 to 0) of the PPGO1 register.

The clock is selected from a peripheral clock 1/16 to 1 times higher than a machine clock or an
input clock from the timebase timer.

In 8-bit prescaler + 8-bit PPG mode or 16-bit PPG mode, however, the setting in the PCS2 to 0
has no effect.

When the timebase timer input is used, the first count cycle after a trigger or a stop may be
shifted. The cycle may also be shifted if the timebase counter is cleared during operation of this
module.

In 8-bit prescaler + 8-bit PPG mode, if ch1 is activated while chO is in operation and ch1 is
stopped, the first count cycle may be shifted.

187

CHAPTER 14 8/16-BIT PPG

14.6 Controlling Pin Output of 8/16-bit PPG Pulses

The pulses generated by this module can be output from external pins PPG00 and
PPG10.

H Controlling Pin Output of 8/16-bit PPG Pulses

To output the pulses from an external pin, write "1" to the bit corresponding to each pin
(PPGCO: PEQO, PPGC1: PE10). When "0" is written to these bits (default), the pulses are not
output from the corresponding external pins; the pins work as general-purpose ports.

In 16-bit PPG mode, the same waveform is output from PPGO0 and PPG10. Thus, the same
output can be obtained by enabling both external pin.

In 8-bit prescaler + 8-bit PPG mode, the 8-bit prescaler toggle output waveform is output from
PPGO0O0, while the 8-bit PPG waveform is output from PPG10. Figure 14.6-1 "8+8 PPG Output
Operation Waveform" is a diagram of output waveforms in this mode.

For the MB90590 Series, the output signal from the Channel 0 PPG is not connected to any
external pin.

Figure 14.6-1 8+8 PPG Output Operation Waveform
‘Pho ' PIO

| | |
~= | ~=

upipipigipipigipinip]
oto | T L L

Ph1 Pl -
LO : chO PRLL value and chO PRLH value

L1 : ch1 PRLL value

H1 : ch1 PRLH value

T : Inputclock cycle

PhO : PPGOO high pulse width
PI0 : PPGOO low pulse width
Ph1: PPG10 high pulse width
PI1 : PPG10 low pulse width

PIO =T x (LO+1)
PhO=T x (LO+1)
PH =T x (LO+1) x (LI+1)
Ph1=T x (LO+1) x (HI+1)

Note:
Set the same value in chO PRLL and chO PRLH.

188

CHAPTER 14 8/16-BIT PPG

14.7 8/16-bit PPG Interrupts

For the 8/16-bit PPG, an interrupt becomes active when the reload value counts out
and a borrow occurs.

B 8/16-bit PPG Interrupts

In 8-bit PPG 2ch mode or 8-bit prescaler + 8-bit PPG mode, an interrupt is requested by a
borrow in each counter. In 16-bit PPG mode, PUGO and PUF1 are simultaneously set by a
borrow in the 16-bit counter. Therefore, enable only PIEO or PIE1 to unify the interrupt causes.
In addition, simultaneously clear the interrupt flags for PUFO and PUF1.

189

CHAPTER 14 8/16-BIT PPG

14.8 Initial Values of 8/16-bit PPG Hardware

The hardware components of this block are initialized to the following values when

reset:

H Initial Values of 8/16-bit PPG Hardware

O Registers
e PPGCO -->
e PPGC1 -->
e PPG10 -->

O Pulse outputs
« PPGO0 -->
« PPG10 -->
 PEOO -->
 PE10 -->

0X000XX1g
0X000001g
XXXXXX00g

w
w

PPGOO0 output disabled
PPG10 output disabled

O Interrupt requests
e IRQO --> "L"
* IRQ1 --> "L"

Hardware components other than the above are not initialized.

Note:

In 2 mode other than 16-bit PPG mode, it is recommended to use a word transfer instruction
to write data in reload registers PRLL and PRLH. If two byte transfer instructions are used to
write a data item to these registers, a pulse of unexpected cycle time may be output
depending on the timing.

Figure 14.8-1 Write Timing for 8/16-bit PPG Reload Registers (PRLL and PRLH)

PPGO ‘|

NI RN Nl

JBCBC

eA%@eA : : ! ' ! D : - D—=!

®

Assume that PRLL is updated from A to C before point 1 in the time chart above, and PRLH is
updated from B to D after point 1. Since the PRL values at point 1 are PRLL=C and PRLH=B, a
pulse of L side count value C and H side count value B is output only once.

Similarly, to write data in PRL of chO and ch1 in 16-bit PPG mode, use a long word transfer
instruction, or use word transfer instructions in the order of chO and then ch1. In this mode, the
data is only temporarily written to chO PRL. Then, the data is actually written into chO PRL when
the ch1 PRL is written to.

In a mode other than 16-bit PPG mode, ch0 and ch1 PRL are written independently.

190

CHAPTER 14 8/16-BIT PPG

Figure 14.8-2 PRL Write Operation Block Diagram
ch0 PRL write data ch1 PRL write data

; Transferred in synchronization

with ch1 write in 16-bit
PPG mode

| Temporary latch

chO write in a mode other
than 16-bit PPG mode ch1 write

| ch0 PRL | ch1 PRL

191

CHAPTER 14 8/16-BIT PPG

192

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

This chapter explains the functions and operations of the DTP/external interrupts.

15.1
15.2
15.3
15.4
15.5

"Outline of DTP/External Interrupts"

"DTP/External Interrupt Registers"

"Operations of DTP/External Interrupts”

"Switching Between External Interrupt and DTP Requests”

"Notes on Using DTP/External Interrupts"

193

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

15.1 Outline of DTP/External Interrupts

The data transfer peripheral (DTP) is located between an external peripheral and the
F2MC-16LX CPU. The DTP receives a DMA request or interrupt request from the

external peripheral, transfers the request to the F2MC-16LX CPU to activate the
intelligent I/O service or interrupt processing.

B Outline of DTP/External Interrupts

For the intelligent 1/O service, "H" and "L" request levels are available. For an external interrupt
request, four request levels are available: "H", "L", rising edge, and falling edge.

For the MB90590 Series, the external bus interface is not supported. Therefore the DTP/
External Interrupt can not serve as the data transfer peripheral. It can be only used as the
External Interrupt.

For MB90V590G, there are only four external pins assigned to this block. Therefor the external
interrupt channel 4 to 7 are not supported. These external interrupts should be disabled.

B Block Diagram of DTP/External Interrupts

194

Figure 15.1-1 Block Diagram of DTP/External Interrupts

Interrupt/DTP enable register ‘

Gate M Cause F/F M Edge detection circuit @ Request input

Interrupt/DTP cause register ‘

16 Request level setting register }7

FLE

B DTP/external Interrupts Registers

Address

Address

Address

Address

bit
- 000030y
bit
- 000031

bit
: 000032

bit
: 000033

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

7 6 5 4 3 2 1 0
EN7 | EN6 | EN5 | EN4 | EN3| EN2 | EN1| ENO
15 14 13 12 11 10 9 8
ER7 | ER6 | ER5 | ER4 | ER3| ER2 | ER1| ERO
7 6 5 4 3 2 1 0
LB3 | LA3 | LB2 | LA2 | LB1 | LA1 | LBO | LAO
15 14 13 12 11 10 9 8
LB7 | LA7 | LB6 | LA6 | LB5 | LA5 | LB4 | LA4

Interrupt/DTP enable register
(ENIR)

Interrupt/DTP cause register
(EIRR)

Request level setting register
(ELVR)

Request level setting register
(ELVR)

195

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

15.2 DTP/External Interrupt Registers

The DTP/external interrupts has the following three types of registers:

* Interrupt/DTP enable register (ENIR: Interrupt request enable register)

e Interrupt/DTP source register (EIRR: External interrupt request register)
¢ Request level setting register (ELVR: External level register)

B Interrupt/DTP Enable Register (ENIR: Interrupt request enable register)

7 6 5 4 3 2 1 0 Initial value
ENIR
Address : 000030 EN7 | EN6 EN5 | EN4 | EN3 EN2 EN1| ENO| 00000000g

RW RW RW RW RW RW RW R/W

ENIR enables the function to issue a request to the interrupt controller using a device pin as an
external interrupt/DTP request input. A pin corresponding to a "1" bit of this register is used as
an external interrupt/DTP request input. A pin corresponding to a "0" bit holds the external
interrupt/DTP request input cause, but does not issue a request to the interrupt controller.

B Interrupt/DTP Source Register (EIRR: External interrupt request register)

15 14 13 12 11 10 9 8 Initial value
EIRR
Address : 000031y ER7 | ER6 ER5 | ER4 | ER3 ER2 ER1 | ERO | XXXXXXXX g

RW R/W RW RW RW RW RW R/W - The objects differ
forRand W.

The EIRR indicates the presence of external interrupt/DTP requests at the pins corresponding
to the "1" bits of this register. Writing "0" to a bit of this register clears the corresponding request
flag. Writing "1" has no effect. Reading this register with a read-modify-write instruction always
results in the reading value "1".

Note:

If more than one external interrupt request output is enabled (EN7 to ENO of ENIR are set to
1), clear to 0 only the bit for which the CPU accepted an interrupt (any of bits ER7 to ERO
that are set to 1). Do not clear the other bits without a valid reason.

196

B Request Level Setting Register (ELVR: External level register)

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

Address : 000032

Address : 000033 4

7 6 5 4 3 2 1 0
LB3 | LA3 | LB2 | LA2 | LB1 LA1 LBO | LAO
RW RW RW RW RW R/W RW R/W
7 6 5 4 3 2 1 0
LB7 | LA7 | LB6 | LA6 | LB5 LA5 LB4 | LA4
RW RW RW RW RW R/W RW R/W

Initial value

00000000

Initial value

00000000

ELVR defines the request event at the external pin. Each pin is assigned two bits as described
in Table 15.2-1 "Interrupt Request Detection Factor for LBx and LAx Pins". If a request is
detected by the input level, the interrupt flag is set as long as the input is at the specified level
even after the flag is reset by software.

Table 15.2-1 Interrupt Request Detection Factor for LBx and LAx Pins

Falling edge pin input

LBx LAX Interrupt request detection factor
0 0 L level pin input
0 1 H level pin input
1 0 Rising edge pin input

197

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

15.3 Operations of DTP/External Interrupts

When the interrupt flag is set, this block signals an interrupt to the interrupt controller.
The interrupt controller judges the priority levels of the simultaneous interrupts, and

issues an interrupt request to the F2MC-16LX CPU if the interrupt from this block has

the highest priority. The F2MC-16LX CPU compares the ILM bits of its internal CCR
register and the interrupt request. If the interrupt level of the request is higher than

that indicated by the ILM bits, the F2MC-16LX CPU activates the hardware interrupt
processing microprogram as soon as the currently executing instruction is terminated.

B External Interrupt Operation

198

Cause

In the hardware interrupt processing microprogram, the CPU reads the ISE bit information from
the interrupt controller, identifies that the request is for interrupt processing based on that
information, and branches to the interrupt processing microprogram. The interrupt processing
microprogram reads the interrupt vector area and issues an interrupt acknowledgment signal for
the interrupt controller. Then, the microprogram transfers the jump destination address of the
macro instruction generated from the vector to the program counter, and executes the user
interrupt processing program.

Figure 15.3-1 External Interrupt

External interrupt/DTP Interrupt controller F2MC-16CPU
Other request

ELVR I N ETeT=
EIRR
ENIR ICRyy

s et il N

Yy

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

B DTP operation

To activate the intelligent I/O service, the user program initially sets the address of a register,
assigned between 0000004 and 0000FFy, in the I/O address pointer of the intelligent 1/O
service descriptor. Then, the user program sets the start address of the memory buffer in the
buffer address pointer.

The DTP operation sequence is almost the same as for external interrupts. The operation is
identical until the CPU activates the hardware interrupt processing microprogram. Then, for the
DTP, control is transferred to the intelligent 1/0 service processing microprogram, since the ISE
bit read by the CPU within the hardware interrupt processing microprogram indicates the DTP.
Once the intelligent 1/0O service is activated, a read or write signal is sent to the addresses
external peripheral, and data is transferred between the peripheral and the chip. The external
peripheral must cancel the interrupt request to this chip within three machine cycles after the
transfer is made. When the transfer is completed, the descriptor is updated, and the interrupt
controller generates a signal that clears the transfer cause. Upon receiving the signal to clear
the transfer cause, this resource clears the flip-flop holding the cause and prepares for the next
request from the pin. For details of the intelligent 1/O service processing, refer to the MB90500
Programming Manual.

Figure 15.3-2 Timing to Cancel the External Interrupt at the End of DTP Operation

Internal operation J ? Edge request or H level request L

Interrupt cause reading !

descriptor !
Address bus pin >< Read address >< Write address ><
Data bus pin >< Read dataX X Write data ><
Read signal 1 o [
Write signal _ :

* When data is transferred from the I/O register to memory

Selecting and in the intelligent 1/O service

@

Cancel within three machine cycles.

External peripheral

Cancel within three machine
cycles after transfer.

Figure 15.3-3 Sample Interface to the External Peripheral

ata, address
K ? bus < Internal bus >
| ® | ’ e ‘ ’
()] | | |
&-‘ | | |
v ‘ vV

IRQ INT

/ DTP CORE MEMORY

MB90590

199

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

15.4 Switching between External Interrupt and DTP Requests

To switch between external interrupt and DTP requests, use the ISE bit in the ICR
register corresponding to this block, which is in the interrupt controller. Each pin is
individually assigned ICR. Thus, a pin is used for a DTP request if "1" is written to the
ISE bit of the corresponding ICR, and is used for an external interrupt request if "0" is
written to the bit.

B Switching Between External Interrupt and DTP Requests

200

Pin

Figure 15.4-1 Switching Between External Interrupt and DTP Requests

External
interrupt/DTP

— Interrupt controller

ICR & | 0

ICRy |

:

- -r

I i//

F2MC-16 CPU

[

DTP
External interrupt

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

15.5 Notes on Using DTP/External Interrupts

Note carefully the following items when using DTP/external interrupts:

Conditions on the externally connected peripheral when DTP is used
Recovery from standby

External interrupt/DTP operation procedure

External interrupt request level

Notes on Using DTP/External Interrupts

O Conditions on the externally connected peripheral when DTP is used

DTP supports only external peripherals that automatically clear a request once a transfer is
completed. The system must be designed so that a transfer request is canceled within three
machine cycles (provisional) after transfer operation starts. Otherwise, this resource assumes
that a transfer request is issued.

Recovery from standby

To use an external interrupt to recover from the standby state in stop mode and watch mode,
use an H or L level request as an input request. If an edge request is used, recovery from the
standby state in stop mode and watch mode cannot be performed.

External interrupt/DTP operation procedure

To set registers in the external interrupt/DTP, follow the steps below:

1. Disable the bits corresponding to the enable register.

2. Set the bits corresponding to the request level setting register.

3. Clear the bits corresponding to the cause register.

4. Enable the bits corresponding to the enable register.

(Steps 3. and 4. can be simultaneously performed by word specification.)

To set a register in this resource, ensure that the enable register is disabled. Before enabling
the enable register, ensure that the cause register is cleared. Clearing the cause register
prevents a false interrupt cause from being determined while registers are set or interrupts are
enabled.

External interrupt request level

To detect an edge for an edge request level, the pulse width must be at least three machine
cycles.

As shown in Figure 15.5-1 "Clearing the Cause Hold Circuit Upon Level Set", when the request
input level is related to the level setting, a request that is input from an external device to the
interrupt controller is kept active even if the request is later canceled because a cause hold
circuit has been installed. To cancel the request to the interrupt controller, the cause hold circuit
must be cleared as shown in Figure 15.5-2 "Interrupt Cause and Interrupt Request to the
Interrupt Controller While Interrupts are Enabled".

201

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

Figure 15.5-1 Clearing the Cause Hold Circuit Upon Level Set

Level detection —{ Interrupt cause

Cause F/F (cause hold circuit)

/

The cause is kept held unless cleared.

Enable gate

To interrupt

—=
controller

Figure 15.5-2 Interrupt Cause and Interrupt Request to the Interrupt Controller While Interrupts are

Enabled

Interrupt cause 7‘

Interrupt request to
the interrupt controller

202

H level

Set inactive when the cause F/F is cleared.

CHAPTER 16 A/D Converter

This chapter explains the functions and operations of the A/D converter.

16.1
16.2
16.3
16.4

16.5
16.6

"Features of A/D Converter"
"Block Diagram of A/D Converter"
"A/D Converter Registers"

"Operations of A/D Converter"

"Conversion Using EI20S"

"Conversion Data Protection"

203

CHAPTER 16 A/D Converter

16.1 Features of A/D Converter

The A/D converter converts analog input voltages into digital values. The A/D
converter has the following features:

H Features of A/D converter

O Conversion time:

26.3 us min. per channel (at 16 MHz machine clock)

O RC sequential compare conversion with sample and hold circuit

O Resolution of 8 or 10 bits

O Analog input selected from eight channels by programming
Single conversion mode: One channel is selected for conversion.

Scan conversion mode: Voltages in multiple consecutive channels are converted. Up to eight
channels can be programmed.

Continuous conversion mode: Voltages at the specified channel are converted repeatedly.

Stop conversion mode: Voltages at the specified channel are converted, then the system

pauses and stands by for the next activation. (The conversion start points can be synchronized.)
O Interrupt request

At the end of A/D conversion, a relevant interrupt request can be issued to the CPU. This

interrupt can be used to activate the EI°0OS, which automatically transfers A/D conversion result
to memory. This feature is suitable for continuous processing.

O Selectable activation cause

The activation can be done by software, external trigger (falling edge), or timer (rising edge).

204

H Analog Input Enable Register
Always write "1" to the ADER bit corresponding to a pin used as analog input.

CHAPTER 16 A/D Converter

bit 15 14 13 12 11 10 9 8
Address: 00001By | ADE7 | ADE6 | ADE5 | ADE4 | ADE3 | ADE2 ADE1 | ADEO
R/W R/W R/W R/W R/W R/W R/W R/W

Port 6 pins are controlled as described below.
0: Port input/output mode
1: Analog input mode

"1" is set upon a reset.

H Input Impedance

Initial value
11111111

The sampling circuit of the A/D Converter can be represented with the equivalent circuit shown

below.

Analog input I>

3.2 kQ max.
oglle N\, .
30 pF max. ——
7777

ADC

Driving impedance to an analog input should be lower than 15.5K ohm when the sampling time
is set to 4us (ST1=0 and ST0=0 at 16MHz machine clock). Otherwise the conversion accuracy
will be worsened. If this is the case, set the sampling time longer (ST1=1 and STO0=1) or add

external capacitor in order to compensate the driving impedance.

205

CHAPTER 16 A/D Converter

16.2 Block Diagram of A/D Converter

Figure 16.2-1 "Block Diagram of A/D Converter" shows a block diagram of the A/D
converter.

B Block Diagram of A/D Converter

Figure 16.2-1 Block Diagram of A/D Converter

AVcc
AVRH/L
AVss
D/A converter
MPX
ANO ——|
AN2— ?
AN3——~| © Sequential compare register
AN4—~| 3 ”
AN5 —~ = ; ! S t E
‘ ‘ omparator «
ANG —~ 1 ; | P 2
AN7 —= ' ' o
Sample and hold circuit
E Data register
§ ADCRO, 1
a
A/D control register 0
A/D control register 1
Activation by external trigger | ADCSO, 1
ADTG
Activation by timer .
16-bit Reload Timer 1 Operation clock
¢ Prescaler

206

16.3 A/D Converter Registers

CHAPTER 16 A/D Converter

The A/D converter has the following two types of registers:
e Control status register
e Data register

Bl A/D Converter Registers

Address

Address

Address

Address

Figure 16.3-1 A/D Converter Register Configuration

15 8 7 0
ADCST1 ADCS0
ADCR1 ADCRO
=———— 8bit 8bit ——=
bit 7 6 5 4 3 2 1 0
1000034y | MD1 | MDO | ANS2 | ANS1| ANSO| ANE2 | ANE1| ANEO
Control status registers
bit 15 14 13 12 11 10 9 g (ADCSO0and ADCST)
100035y | BUSY| INT | INTE | PAUS| STS1| STSO | STRT|Reserved
bit 7 6 5 4 3 2 1 0
: 000036y | p7 D6| D5| D4| D3 D2 D1| DO
Data registers
bt 15 14 13 12 11 10 9 8 (ADCRO and ADCR1)
10000374 | g10| sT1 | SsTO| CT1| CTO| — | D9 | D8

207

CHAPTER 16 A/D Converter

16.3.1 Control Status Registers (ADCSO0)

The control status register (ADCSO0) controls the A/D converter and indicates the

status. Do not rewrite ADCSO0 during A/D conversion.

B Control Status Registers (ADCSO0)

7 6 5 4 3 2 1 0
ADCSO0
Address: 000034 MD1 MDO ANS2 | ANS1 | ANSO | ANE2 | ANE1 ANEO 3
0 0 0 0 0 0 0 «Initial value

R/W R/W R/W R/W R/W R/W R/W
[bits 7 and 6] MD1 and MDO (A/D converter mode set):

Table 16.3-1 Operation Mode Setting

R?\N «Bit attribute

MD1 MDO Operation mode
0 0 Single mode. Reactivation during operation is allowed.
0 1 Single mode. Reactivation during operation is not allowed.
1 0 Continuous mode. Reactivation during operation is not allowed.
1 1 Stop mode. Reactivation during operation is not allowed.

O Single mode:

A/D conversion is continuously performed from the channel specified with ANS2 to ANSO to the
channel specified with ANE2 to ANEO. The conversion stops once it has been done for all these

channels.

O Continuous mode:

A/D conversion is repeatedly performed from the channel specified with ANS2 to ANSO to the

channel specified with ANE2 to ANEO.

O Stop mode:

A/D conversion is performed from the channel specified with ANS2 to ANSO to the channel
specified with ANE2 to ANEO, pausing for each channel. The A/D conversion is resumed upon

an activation.
Upon a reset, these bits are initialized to "00".

Note:

When activated in the continuous or stop mode, A/D conversion continues until it is stopped

by the BUSY bit.
The conversion is stopped by writing "0" to the BUSY bit.

Reactivation disabled in single mode, continuous mode, and stop mode applies to all kinds

of activation by software, an external trigger, and a timer.

208

CHAPTER 16 A/D Converter

[bits 5, 4, and 3] ANS2, ANS1, and ANSO (Analog start channel set):

Use these bits to specify the start channel for A/D conversion.

When the A/D converter is activated, A/D conversion starts from the channel selected with

these bits.
ANS2 ANS1 ANSO Start channel
0 0 0 ANO
0 0 1 AN1
0 1 0 AN2
0 1 1 AN3
1 0 0 AN4
1 0 1 AN5
1 1 0 ANG6
1 1 1 AN7
* Read

During A/D conversion, the current conversion channel is read from these bits. If the system is

stopped in the stop mode, the last conversion channel is read.

* Upon a reset, these bits are initialized to "000".

209

CHAPTER 16 A/D Converter

210

[bits 2, 1, and 0] ANE2, ANE1, and ANEO (Analog end channel set):

Use these bits to set the A/D conversion end channel.

ANE2 ANE1 ANEO End channel
0 0 0 ANO
0 0 1 ANT
0 1 0 AN2
0 1 1 AN3
1 0 0 AN4
1 0 1 AN5
1 1 0 ANG6
1 1 1 AN7
Note:

When the same channel is written to ANE2 to ANEO and ANS2 to ANSO, conversion is
performed for one channel only (single conversion).

In the continuous or stop mode, operation returns to the start channel specified in ANS2 to
ANSO after the conversion is completed for the channel specified in ANE2 to ANEO.

If the ANS value is greater than the ANE value, conversion starts from the ANS channel.
Then, once conversion is complete up to channel 7, operation returns to channel 0 and
conversion is performed up to the ANE channel.

Upon a reset, these bits are initialized to "000".
Example: ANS=6, ANE=3, single mode
Conversion is performed in the following sequence: CH6, CH7, CHO, CH1, CH2, CH3

CHAPTER 16 A/D Converter

16.3.2 Control Status Register (ADCS1)

The control status register (ADCS1) controls the A/D converter and indicates the

status.

B Control Status Register (ADCS1)

ADCS1

Address: 0000354

15 14 13 12 11 10 9 8
BUSY INT INTE | PAUS STSH STSO STRT | Reserved

0 0 0 0 0 0 0 0 «Initial value
R/W R/W R/W R/W R/W R/W w R/W <Bit attribute

[bit 15] BUSY (busy flag and stop):

- Read

This bit indicates the A/D converter operation.

This bit is set when A/D conversion starts and is cleared when the conversion ends.
- Write

Writing "0" to this bit during A/D conversion forces the conversion to terminate.

The above feature is used for forced stop in continuous or stop mode.

"1" cannot be written to the BUSY bit. With a read-modify-write (RMW) instruction, "1" is read
from this bit. In single mode, this bit is cleared at the end of A/D conversion.

In continuous or stop mode, this bit is not cleared until conversion is stopped by writing "0".
This bit is initialized to "0" upon a reset.

Do not perform a forced stop and activation by software simultaneously (BUSY = 0, STRT =

1).

[bit 14] INT (Interrupt):

This bit is set when conversion data is written to ADCR.

An interrupt request is issued if this bit is set while bit 5 (INTE) is "1". In addition, the EI20S
is activated if it is enabled. Writing "1" has no effect.

This bit is cleared by writing "0" or by the EI20S interrupt clear signal.
Note: To clear this bit by writing "0", ensure that A/D conversion is not in progress.

This bit initialized to "0" upon a reset.

211

CHAPTER 16 A/D Converter

[bit 13] INTE (Interrupt enable):
This bit is used to enable or disable interrupts at the end of conversion.
- 0: Interrupts are disabled.

- 1: Interrupts are enabled.

Set this bit when using the EI20S. The EI?0S is activated when an interrupt request is
issued.

Upon a reset, this bit is initialized to "0".
[bit 12] PAUS (A/D conversion pause):
This bit is set when the A/D conversion is paused.

Only one register is available for storing the A/D conversion result. Therefore, unless the

conversion results are transferred by the EIOS, the result data would be continuously
updated and destroyed in continuous conversion.

To prevent the above condition, the system is designed so that a data register value must be
transferred by the EI20S before the next conversion data is saved. A/D conversion pauses
during that period. A/D conversion is resumed at the end of transfer by the EI20S.
This register is valid only when the EI20S is used.

Note:
For the conversion data protection function, see Section 16.4 "Operations of A/D Converter".
Upon a reset, this bit is initialized to "0".

[bits 11 and 10] STS1 and STSO0 (Start source select):

Upon a reset, these bits are initialized to "00".

These bits are used to select the A/D conversion activation source.

STS1 STSO Function
0 0 Activation by software
0 1 Activation by external pin trigger and software
1 0 Activation by timer and software
1 1 Activation by external pin trigger, timer, and software

In a mode allowing two or more activation factors, A/D conversion is activated by the source
that occurs first.

The activation source setting changes as soon as it is updated. Thus, take care when
updating it during A/D conversion.

Note:

The external pin trigger is detected by the falling edge. If this bit is updated to external trigger
activation while the external trigger input level is "L", A/D may be activated at once.

When timer is selected, the 16-bit Reload Timer 1 is selected.

212

CHAPTER 16 A/D Converter

[bit 9] STRT (Start):
A/D conversion is activated when "1" is written to this bit.
To reactivate A/D conversion, write "1" to this bit again.
Upon a reset, this bit is initialized to "0".

In the stop mode, a reactivation during the operation is not supported. Check the BUSY bit
before writing "1".

Do not perform a forced stop and activation by software simultaneously. (BUSY=0, STRT=1)
[bit 8] Reserved

This is a reserved bit. Always write "0" to this bit.

213

CHAPTER 16 A/D Converter

16.3.3 Data Registers (ADCR1 and ADCRO0)

These registers are used to store the digital values produced as a result of the
conversion. ADCR1 stores the most significant two bits of the conversion result, while
ADCRO stores the lower eight bits. These register values are updated each time
conversion is completed. Usually, the final conversion value is stored in these bits.

B Data Registers (ADCR1 and ADCRO0)

ADCRO bit
Address : 000036 4

ADCR1 bit
Address : 000037 4

7 6 5 4 3 2 1 0
D7 D6 D5 D4 D3 D2 D1 DO

Initial value
R R R R R R R R XXXXXXXX
15 14 13 12 11 10 9 8

S10 | ST1 STO | CT1 CTO0 — D9 D8

Initial value

W W wo W W R R 000010XX

"0" is always read from the bits 10 to 15 of ADCR1.

The conversion data protection function is available. See Section 2.7.4 "Program Counter (PC)".
Ensure that no data is written to these registers during A/D conversion.

[bits 15] S10

This bit specifies the resolution of the conversion. When it is set to "0", the 10-bit A/D
conversion is performed. Otherwise the 8-bit A/D conversion is performed and the result is

stored in the D7 to DO.

Reading this bit always results in the reading value "0".

[bits 14 and 13] ST1 and STO0 (Sampling time):

ST1 STO Function
0 0 64 machine cycles (4 us at 16 MHz)
0 1 Reserved
1 0 Reserved

4096 machine cycles (256 us at 16 MHz)

These bits determines the duration of the voltage sampling time at the input.

Reading this bit group always results in the reading value "00".

214

CHAPTER 16 A/D Converter

[bits 12 and 11] CT1 and CTO0 (Compare time):

CT1 CTO Function
0 0 176 machine cycles (22 us at 8 MHz)
0 1 352 machine cycles (22 us at 16 MHz)
1 0 Reserved
1 1 Reserved

These bits determines the duration of the compare operation time.

Do not set to "00" unless the machine clock is 8MHz. Otherwise the conversion accuracy is

not guaranteed.

Reading this bit group always results in the reading value "00".

215

CHAPTER 16 A/D Converter

16.4 Operations of A/D Converter

The A/D converter operates employs the sequential compare technique, and can be
selected from 10-bit or 8-bit resolution.

Since the A/D converter has one register (16 bits) for storing the conversion result, the
conversion data registers (ADCRO and ADCR1) are updated each time conversion is
completed. Thus, the A/D converter alone must not be used for the continuous

conversion. Use the External intelligent I/O service (EIZOS) function to transfer
converted data to memory while conversion is in progress.
The operation modes are explained below.

H Single Mode

In this mode, the converter sequentially converts the analog inputs specified with the ANS and
ANE bits. The converter stops operation after the conversion is completed for the end channel
specified with the ANE bits. If the start and end channels are the same (ANS=ANE), conversion
is performed only for one channel.

Example:

ANS=000, ANE=011
Start --> ANO --> AN1 --> AN2 --> AN3 --> End

ANS=010, ANE=010
Start --> AN2 --> End

H Continuous Mode

In this mode, the converter sequentially converts the analog inputs specified with the ANS and
ANE bits. After the conversion is completed for the end channel specified with the ANE bits,
conversion is repeated from the analog inputs of the ANS. If the start and end channels are the
same (ANS=ANE), conversion for one channel is repeated.

Example:

ANS=000, ANE=011
Start --> ANO --> AN1 --> AN2 --> AN3 --> ANO --> Repeat

ANS=010, ANE=010
Start --> AN2 --> AN2 --> AN2 --> Repeat

In continuous mode, conversion is repeated until "0" is written to the BUSY bit. (Writing "0" to
the BUSY bit forces the operation to end.) If the operation is terminated forcibly, conversion
stops before conversion is completed. (Upon a forced stop, the conversion register stores the
last data that has been converted completely.)

216

B Stop Mode

CHAPTER 16 A/D Converter

In this mode, the converter sequentially converts the analog inputs specified with the ANS and
ANE bits, pausing each time conversion for one channel is completed. To release pausing,
activate the converter again.

After the conversion is completed for the end channel specified with the ANE bits, conversion is
repeated from the analog inputs of the ANS. If the start and end channels are the same
(ANS=ANE), conversion is performed only for one channel.

Example:

ANS=000, ANE=011
Start --> ANO --> End --> Restart --> AN1 --> End --> Restarte --> AN2 --> End -->
--> Restart --> AN3 --> End --> Restart -->ANO Repeat

ANS=010, ANE=010
Start --> AN2 --> End --> Restart --> AN2 --> End --> Restarte --> AN2 Repeat

Only the activation sources specified with STS1 and STSO0 are used.

Using this mode, start of conversion can be synchronized with the activation source.

217

CHAPTER 16 A/D Converter

16.5 Conversion Using EI?0S

Figure 16.5-1 "A/D conversion processing flow from the start to converted data
transfer (in continuous mode)" shows the processing flow from the start of A/D
conversion to the transfer of converted data (in continuous mode).

B Conversion Using EI?0S

Figure 16.5-1 A/D conversion processing flow from the start to converted data transfer (in continuous
mode)

Starting A/D conversion

!

Sample and hold
¢ Starting EIPOS

Conversion Transferring data

!

End of conversion Interrupt processing

¢

Issuing interrupt Clearing interrupt

The portion indicated by the star (Y%) is determined according to the EI20S setting.

218

CHAPTER 16 A/D Converter

16.5.1 Starting EI?0S in Single Mode

Follow the steps below to start the EI20S in single mode.
¢ To terminate conversion after analog inputs AN1 to AN3 are converted
e To transfer conversion data sequentially to addresses 200H to 205H

To start conversion by software
To use the highest interrupt level

B Starting EI?0S in Single Mode

Settings Sample program

Function

EI20S setting MOV ICR10 #08H

Specifies the highest interrupt level, EI’0S
activation upon an interrupt, and the descriptor
address.

MOV BAPL, #00H

MOV BAPM, #02H

MOV BAPH, #00H

Specifies the transfer destination address of
converted data.

MOV ISCS, #18H

Specifies word data transfer. The transfer
destination address is incremented after
transfer. Data is transferred from 1/0O to memory.
Transfer is not terminated in response to a
request from a resource.

MOV |/ OA, #36H

MOV DCT, #03H

EI20S transfer is performed three times. This
count is the same as the conversion count.

A/D converter MOV ADCSO0 #0BH
setting

Specifies single mode, start channel AN1, and
end channel AN3.

MOV ADCS1 #A2H

Specifies activation by software and start of A/D
conversion.

Interrupt RET
sequence

Specifies return from an interrupt.

ICR10: Interrupt control register
BAPL.: Buffer address pointer, low-order

BAPM: Buffer address pointer, medium-order

BAPH: Buffer address pointer, high-order
ISCS: EI?0S status register

I/OA: I/0O address counter

DCT: Data counter

219

CHAPTER 16 A/D Converter

220

AN1 — Interrupt —» EI20S transfer

!

AN2 — | Interrupt — EI20S transfer

!

AN3 —> Interrupt — EI%0S transfer

|

End | Interrupt sequenc

L— Parallel processing —

CHAPTER 16 A/D Converter

16.5.2 Starting EI?0S in Continuous Mode

Follow the steps below to start the EI20S in continuous mode.

¢ To convert analog inputs AN3 to AN5 and obtain two conversion data items for each
channel

e To transfer conversion data sequentially to addresses 600H to 60BH

¢ To start conversion by external edge input

e To use the highest interrupt level

B Starting EI?0S in Continuous Mode

Settings Sample program

Function

EI%0S setting MOV ICR10 #08H

Specifies the highest interrupt level, EIP0S
activation upon an interrupt, and the
descriptor address.

MOV BAPL, #00H

MOV BAPM, #06H

MOV BAPH, #00H

Specifies the transfer destination address of
converted data.

MOV ISCS, #18H

Specifies word data transfer. The transfer
destination address is incremented after
transfer. Data is transferred from 1/O to
memory. Transfer is not terminated in
response to a request from a resource.

MOV |/ OA, #36H

Transfer source address

MOV DCT, #06H

EI?0S transfer is performed six times. Data
is transferred for three channels X 2.

A/D converter setting | MOV ADCSO #9DH

Specifies continuous mode, start channel
AN3, and end channel ANS5.

MOV ADCS1 #A4H

Specifies activation by external edge and
start of A/D conversion.

Interrupt sequence MOV ADCS1 #00H

Specifies return from an interrupt.

RET

ICR10: Interrupt control register

BAPL.: Buffer address pointer, low-order
BAPM: Buffer address pointer, medium-order
BAPH: Buffer address pointer, high-order
ISCS: EI?0S status register

I/OA: I/0O address counter

DCT: Data counter

221

CHAPTER 16 A/D Converter

Activation == AN3 —Interrupt — EI?OS transfer
AN4 ! Interrupt — EI?OS transfer —[After six transfers

!

AN5 —!Interrupt — EI?OS transfer Interrupt sequenc

}

‘ End

222

16.5.3 Starting EI?0S in Stop Mode

CHAPTER 16 A/D Converter

Follow the steps below to start the EI20S in stop mode.

To convert analog input AN3 12 times at fixed intervals

To transfer conversion data sequentially to addresses 600H to 617H
To start conversion by external edge input
To use the highest interrupt level

B Starting EI?0S in Stop Mode

Settings

Sample program

Function

EI20S setting

MOV ICR10 #08H

Specifies the highest interrupt level, EI20S
activation upon an interrupt, and the
descriptor address.

MOV BAPL, #00H

MOV BAPM, #06H

MOV BAPH, #00H

Specifies the transfer destination address of
converted data.

MOV ISCS, #18H

Specifies word data transfer. The transfer
destination address is incremented after
transfer.

Data is transferred from I/O to memory.
Transfer is not terminated in response to a
request from a resource.

MOV |/ OA, #36H

Transfer source address

MOV DCT, #0CH

EI20S transfer is performed 12 times.

A/D converter setting

MOV ADCSO #DBH

Specifies stop mode, start channel AN3, and
end channel AN3 (one-channel conversion).

MOV ADCS1 #A4H

Specifies activation by external edge and
start of A/D conversion.

Interrupt sequence

MOV ADCS1 #00H

Specifies return from an interrupt.

RET

ICR10: Interrupt control register

BAPL: Buffer address pointer, low-order
BAPM: Buffer address pointer, medium-order
BAPH: Buffer address pointer, high-order
ISCS: EI?0S status register

I/OA: I/O address counter

DCT: Data counter

223

CHAPTER 16 A/D Converter

!

Activation = AN3 —Interrupt — EI?0S transfer

)

Stop

After 12 transfers

Activation by external edge Iunterrupt sequenc

End

224

CHAPTER 16 A/D Converter

16.6 Conversion Data Protection

The A/D converter has a conversion data protection function that enables continuous

conversion and preservation of multiple data items using EI20S.

Since there is only one conversion data register, its value is updated each time
conversion is completed. Thus, continuous data conversion results in the loss of the
previous data due to storage of the new data. To prevent this situation, the A/D
converter pauses after conversion if the previous data item has not been transferred to

memory by EI20S. The converted data is not saved until the previous data is
transferred to memory.

H Conversion Data Protection

The pause is released after data is transferred to memory by EI20S.

If the previous data has been transferred to memory, the A/D converter continues operation
without pausing.

Note:
This function is related to the INT and INTE bits of ADCSH1.
The data protection function operates only when interrupts are enabled (INTE=1).

If interrupts are disabled (INTE=0), this function is disabled. Continuous A/D conversion
results in loss of previous data, since the converted data items are saved to the register one
after another.

If EI?0S is not used while interrupts are enabled (INTE=1), the INT bit is not cleared. Thus,
the data protection function works and the A/D converter pauses. In this case, clearing the
INT bit in the interrupt sequence releases the pause.

If the A/D converter is pausing during EI20S operation, disabling interrupts may restart the
A/D converter. In this case, the value in the conversion data register may be changed
without being transferred.

Restarting the A/D converter while it is pausing destroys the standby data.

225

CHAPTER 16 A/D Converter

B Flow of Data Protection Function (When EI20S is Used)

\ Setting EI20S \
v

‘ Starting continuous A/D conversion ‘
]

‘ Ending first conversion ‘

‘ Saving the result in the data register i

]
‘ Ending second conversion‘ ‘ Starting EI20S ‘
End EI0S?

NO
\ , ,
| Pausing A/D conversion H
YES
, , , YES NO
‘ Saving the result in the data register W

]

‘ Ending third conversion } } Starting EI20S ‘
i
¥ Continued

‘ Ending the last conversion} } Starting EI20S ‘

Interrupt routine
End i Stooping A/D conversion ‘

B Notes on using the conversion data protection function

To start the A/D converter upon an external trigger or internal timer, A/D activation factor bits
STS1 and STSO of the ADCS1 register are used. Ensure that the input values of the external
trigger or internal timer are inactive. If the values are active, A/D conversion may start
immediately.

When setting STS1 and STSO0, ensure that "1" (input) is specified for ADTG and "0" (output) is
specified for the internal timer (timer 2).

226

CHAPTER 17 UARTO

This chapter explains the UARTO functions and operations.

17.1 "Feature of UARTOQ"

17.2 "UART Block Diagram"

17.3 "UART Registers"

17.4 "UARTO Operation"

17.5 "Baud Rate"

17.6 "Internal and External Clock"

17.7 "Transfer Data Format"

17.8 "Parity Bit"

17.9 "Interrupt Generation and Flag Set Timings"
17.10 "UARTO Application Example"

227

CHAPTER 17 UARTO

17.1 Feature of UARTO

The UART is a serial I/O port for asynchronous or CLK synchronous communication.

The MB90590 Series contains three UART’s. The following sections only describe the
functionality of the UART 0. The remaining UART’s have the identical function and the
register addresses should be found in the I1/0 map.

B Feature of UARTO
UARTO has the following features.
e Full duplex double buffer
e Supports CLK synchronous and CLK asynchronous start-stop data transfer.
e Multiprocessor mode support (mode 2)
* Internally dedicated baud rate generator (12 types)
e Supports flexible baud rate setting using an external clock input or internal timer.
* Variable data length (7 to 9 bits, [no parity]; 6 to 8 bits [with parity]).
» Error detect function (framing, overrun, and parity)
* Interrupt function (receive and transmit interrupts)

* NRZ type transfer format

228

17.2 UART Block Diagram

CHAPTER 17 UARTO

Figure 17.2-1 "UART Block Diagram" shows a block diagram of the UART.

B UART Block Diagram

Figure 17.2-1 UART Block Diagram

CONTROL BUS

Dedicated baud rate clock

G—

16-bit reload timer 0

G—

SCKO

Receive interrupt
(to CPU)
» SCKO
Transmit clock Transmit interrupt
Clock select Receive clock (to CPU)
circuit l

SINO

Receive control circuit

Start bit detect

circuit

Receive bit counter

Receive parity
counter

Transmit control circuit

Transmit start circuit

Transmit bit counter

Transmit parity
counter

SOTO

Receive status

evaluation circuit L———>| Receive shifter

J

Transmit shifter
1"

Receive
complete Transmit start
UIDR UODR
. Receive error
indication signal
for EI0S (to CPU)
Data bus
—— PEN RDRF BCH
——{ SBL ORFE RC3
o USR PE URD RC2
register —> MCO i TDRE register RC1
9ster 7 smpe register RIE 9 RCO
5| RFC TIE BCHO
5| SCKE RBF P
5| SOE TBF D8
CONTROL BUS

229

CHAPTER 17 UARTO

17.3 UART Registers

The UART has the following four registers:

Serial mode control register

Status register

Input data register/output data register
Rate and data register

UART Registers

Serial mode control register

7 6 5 4 3 2 1 0 < Bit number
Address: ch0 000020+
PEN | SBL | MC1 | MCO | SMDE | RFC | SCKE | SOE UMCO
Read/write (RW) (RW) (RMW) [RW) [RBW) W) (RW) (RW)
Initial value > (0) (0) (0) (0) (0) (1) (0) (0)
Status register 15 14 13 12 11 10 9 8 < Bit number
Address: ch0 000021+
RDRF| ORFE| PE | TDRE| RIE | TIE | RBF | TBF USRO
Read/write (R) (R) (R) (R) (RW) (RW) (R) (R)
Initial value => (0) (0) (0) (1) (0) (0) (0) (0)
Input data register/)
Output data register 7 6 5 4 3 2 1 0 <5 Bit number
Address: ch0 000022+ UIDRO d
D7 | D6 | D5 | D4 | D3| D2 | DI | DO UODR((,'(?N"’}HL)
Read/write (RW) (RW) (RMW) [RMW) (RW) [RW) RW) (RW)
Initial value > (X) (X) (X) (X) (X) (X) (X) (X)
Rate and data register 15 14 13 12 11 10 9 8 < Bit number
Address: ch0 000023+
BCH | RC3 | RC2 | RC1 | RCO | BCHO | P D8 URDO
Read/write (RW) (RW) (RW) (RW) (RW) ((RMW) (RW) (RW)
Initial value => (0) (0) (0) (0) (0))) X)

230

CHAPTER 17 UARTO

17.3.1 Serial Mode Control Register (UMC)

UMC specifies the operation mode of UARTO. Set the operation mode while operation
is halted. However, the RFC bit can be accessed during operation.

B Layout of Serial Mode Control Register (UMC)

Serial mode control register
Address: chO0 000020+

7 6 5 4 3 2 1 0 <2 Bit number
PEN SBL MCA1 MCO | SMDE | RFC SCKE | SOE UMCO

Readiwrite o, (RW) (RW) (RW) (RW) (RMW) W) (RW) (RW)
Initial value > (0) (0) (0) (0) (0) (1 0))

B Serial Mode Control Register (UMC) Contents
[Bit 7] PEN (Parity enable)

Specifies whether to add (for transmit) or detect (for receive) a parity bit in serial data /0.
Set to "0" in mode 2.

0: Do not use parity
1: Use parity
[Bit 6] SBL (Stop bit length)

Specifies the number of stop bits for transmit data. For receive data, the first stop bit only is
recognized and any second stop bit is ignored.

0: 1 bit length
1: 2 bits length
[Bits 5, 4] MC1, MCO (Mode control)

These bits control the length of the transferred data. Table 17.3-1 "UART Operation Modes"
lists the four transfer modes (data lengths) selectable by these bits.

231

CHAPTER 17 UARTO

Table 17.3-1 UART Operation Modes

Mode MCH1 Mco Data Length™
0 0 0 7 (6)
1 0 1 8(7)
"2 1 0 8+1
3 1 1 9(8)

*1: The figures enclosed in parentheses indicate the data length with parity.

*2: Mode 2 is used when a number of slave CPUs are connected to a single host CPU. As
the receive parity check function cannot be used, set PEN in the UMC register to "0" (see
Section 17.4 "UARTO Operation" for details). The transmit data length is 9 bits and no
parity bit can be added.

[Bit 3] SMDE (Synchro mode enable)
This bit selects the transfer method.

0:Start-stop CLK synchronous transfer (clocked synchronous transfer using start and stop
bits.)

1:Start-stop CLK asynchronous transfer
[Bit 2] RFC (Receiver flag clear)

Writing "0" to this bit clears the RDRF, ORFE, and PE flags in the USR register. Writing "1"
has no effect. Reading always returns "1".

Note:

When receive interrupts are enabled during UARTO operation, only write "0" to RFC when
either RDRF, ORFE, or PE is "1".

[Bit 1] SCKE (SCLK enable)

Writing "1" to this bit in CLK synchronous mode switches the port pin to the UARTO serial
clock output pin and outputs the synchronizing clock. Set to 0 in CLK asynchronous mode or
external clock mode.

0: The pin functions as a general purpose I/O port and does not output the serial clock. The
pin functions as the external clock input pin when the port is set to input mode (DDR=0)
and RC3to 0 are setto "1111".

1: The pin functions as the UARTO serial clock output pin.
Note:

The corresponding bit of the Port Direction register should be set to "1" when the port pin is
used as the clock output. This is for UARTO only.

[Bit 0] SOE (Serial output enable)

Writing "1" to this bit switches the port pin to the UARTO serial data output pin and enables
serial output.

0: The pin functions as a port pin and does not output serial data.
1: The pin functions as the UARTO serial data output pin (SOT).
Note:

The corresponding bit of the Port Direction register should be set to "1" when the port pin is
used as the serial output. This is for UARTO only.

232

CHAPTER 17 UARTO

17.3.2 Status Register (USR)

USR indicates the current state of the UARTO port.

B Status Register (USR) Layout

Status register 15 14 13 12 11 10 9 8 Bitnumber
Address: ch0 000021H
RDRF| ORFE| PE | TDRE| RIE | TIE | RBF | TBF USRO
Read/write . (R) (R) R (R @®RW) RW) @R (R
Initial value > (0) 0) (0) (1) (0) (0) (0) (0)

B Status Register (USR) Contents
[Bit 15] RDRF (Receiver data register full)

This flag indicates the state of the UIDRO (input data register). The flag is set when the
receive data is loaded into UIDRO. Reading UIDRO or writing "0" to RFC in the UMCO
register clears the flag. If RIE is active, a receive interrupt request is generated when RDRF
is set.

0: No data in UIDRO
1: Data present in UIDRO
[Bit 14] ORFE (Over-run/framing error)

The flag is set when an overrun or framing error occurs in receiving. Writing "0" to RFC in the
UMCO register clears the flag. When this flag is set, the data in UIDRO is invalid and the load
from the receive shifter to UIDRO is not performed. If RIE is active, a receive interrupt
request is generated when ORFE is set.

0: No error

1: Error

Table 17.3-2 "UIDR State after Receive Completion" lists the UIDRO states after receive
completion by RDRF or ORFE.

Table 17.3-2 UIDR State after Receive Completion

RDRF ORFE UIDRO Data State
0 0 Empty
0 1 Framing error
1 0 Valid data
1 1 Overrun error

The data in UIDR is invalid if an overrun or framing error has occurred. Next data can be
received after clearing the flag(s).

233

CHAPTER 17 UARTO

234

[Bit 13] PE (Parity error)

The flag is set when a receive parity error occurs. Writing "0" to RFC in the UMC register
clears the flag. When this flag is set, the data in UIDRO is invalid and the load from the
receive shifter to UIDRO is not performed. If RIE is active, a receive interrupt request is
generated when PE is set.

0: No parity error
1: Parity error
[Bit 12] TDRE (Transmitter data register empty)

This flag indicates the state of the UODRO (output data register). Writing transmit data to the
UODRQO register clears the flag. The flag is set when the data is loaded to the transmit shifter
and the transmission is started. If TIE is active, a transmit interrupt request is generated
when TDRE is set.

0: Data present in UODRO
1: No data in UODRO
[Bit 11] RIE (Receiver interrupt enable)
Enables receive interrupt requests.
0: Disable interrupts.
1: Enable interrupts.
[Bit 10] TIE (Transmitter interrupt enable)

Enables transmit interrupt requests. A transmit interrupt is generated immediately if transmit
interrupts are enabled when TDRE is "1".

0: Disable interrupts.
1: Enable interrupts.
[Bit 9] RBF (Receiver busy flag)

This flag indicates that UARTO is receiving input data. The flag is set when the start bit is
detected and cleared when the stop bit is detected.

0: Receiver idle
1: Receiver busy
[Bit 8] TBF (Transmitter busy flag)

This flag indicates that UARTO is transmitting input data. The flag is set when transmit data
is written to the UODRO register and cleared when transmission completes.

0: Transmitter idle

1: Transmitter busy

CHAPTER 17 UARTO

17.3.3 Input Data Register (UIDR) and Output Data Register
(UODR)

UIDR (input data register) is the serial data input register. UODR (output data register)
is the serial data output register.

The most significant two bits (D7 and D6) are ignored if the data length is 6 bits and
the most significant bit (D7) is ignored if the data length is 7 bits. Write to UODR only
when TDRE = "1" in the USR register. Read UIDR only when RDRF = "1" in the USR
register.

B Input Data Register (UIDR) and Output Data Register (UODR)

Input data register/)
Output data register 7 6 5 4 3 2 1 0 <5 Bit number
Address: ch0 000022+
UIDRO(read)

D7 D6 D5 D4 D3 D2 D1 Do UODRO(write)

Readiwrite ., (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value => (X) (X) (X) (X) (X) (X) (X) (X)

235

CHAPTER 17 UARTO

17.3.4 Rate and Data Register (URD)

URD selects the data transfer speed (baud rate) for UARTO. The register also holds the
most significant bit (bit 8) of the data when the transmit data length is 9 bits. Set the
baud rate and parity when UARTO is halted.

B Layout of Rate and Data Register (URD)

Rate and data register

Address: chO 000023+

15 14 13 12 11 10 9 8 ., Bitnumber

BCH | RC3 | RC2 | RC1 | RCO | BCHO | P D8 URDO
Readiwrite ., (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
(0) (0) (0) (0) (0) (X)

Initial value => (0))

B Rate and Data Register (URD) Contents
[Bits 15, 10] BCH, BCHO (Baud rate clock change)

Specifies the machine cycles for the baud rate clock (see Section 17.4 "UARTO Operation"
for details).

Table 17.3-3 Clock Input Selection

BCH BCHO Divider ratio Setting Example for Each Machine Cycle
0 0 - - Prohibited setting -
0 1 Divide by 4 For a 16-MHz machine cycle: 16/4 = 4 MHz
1 0 Divide by 3 For a 12-MHz machine cycle: 12/3 = 4 MHz
1 1 Divide by 5 For a 10-MHz machine cycle: 10/5 = 2 MHz
Note:

Do not set BCH and BCHO to "00".
[Bits 14 to 11] RC3, RC2, RC1, RCO (Rate control)
Selects the clock input for the UARTO port (see Section 17.4 "UARTO Operation" for details).

Table 17.3-4 Clock Input Selection

RC3 to RCO

Clock Input

"0000" to "1011"

Dedicated baud rate generator

“1101"

16-bit Reload Timer 0

“1111"

External clock

236

CHAPTER 17 UARTO

Note:
Do not set the rate control bits to "1100" "1110".
[Bit9] P
Sets even or odd parity when parity is active (PEN = "1").
0: Even parity
1: Odd parity
[Bit 8] D8
Holds the bit 8 of the transfer data in mode 2 or 3 (9-bit data length) and no parity. Treated

as bit 8 of the UIDRO register for reading. Treated as bit 8 of the UODR register for writing.
The bit has no meaning in the other modes. Write to D8 only when TDRE = "1" in the USRO

register.

237

CHAPTER 17 UARTO

17.4 UARTO Operation

Table 17.4-1 "UARTO Operating Modes" lists the operating modes for UARTO. Set the
UMC register to switch between modes.

B UARTO Operation Modes

Table 17.4-1 UARTO Operating Modes

Mode Parity Data Length Clock Mode Length of Stop Bits”

On 6

0
Off 7
On 7

1
off 8 CLK asynchronous or CLK 1 bit or 2 bits

synchronous

2 Off 8+1
On 8

3
Off 9

*: The number of stop bits can only be set for transmission. The number of receive stop bits is always set to
one. Do not set modes other than those listed above. UARTO does not operate if an invalid mode is set.

Note:

UARTO uses start-stop clock synchronous transfer. Therefore, a start and stop bit are added
to the data even in clock synchronous transfer.

238

CHAPTER 17 UARTO

17.5 Baud Rate

When the dedicated baud rate generator is used, the following two types of baud rates
are available:

e CLK synchronous baud rate

¢ CLK asynchronous baud rate

B CLK Synchronous Baud Rate
The five URD register bits: BCH, BCHO and RC3, RC2, RC1 select the baud rate for CLK
synchronous transfer.

First select the machine clock divider ratio using BCH and BCHO.

BCH BCHO
0 1 --> Divide by 4 [For example, at 16 MHz: 16/4 = 4 MHZz]
1 0 --> Divide by 3 [For example, at 12 MHz: 12/3 = 4 MHZz]
1 1 --> Divide by 5 [For example, at 10 MHz: 10/5 = 2 MHZz]

Then, set the division ratio for the clock selected above in RC3, RC2, and RC1. The following
three settings are available for CLK synchronous transfer. Other settings are prohibited.

RC3 RC2 RCi1

0 1 0 --> Divide by 2 [For example, at 4 MHz: 4/2 = 2.0 M (bps)]
0 1 1 --> Divide by 4 [For example, at 4 MHz: 4/4 = 1.0 M (bps)]
1 0 0 --> Divide by 8 [For example, at 4 MHz: 4/8 = 0.5 M (bps)]

(At 2 MHz, the speed becomes half the above examples.)

B CLK Asynchronous Baud Rate

The six URD register bits: BCH, BCHO and RC3, RC2, RC1, RCO select the baud rate for CLK
asynchronous transfer.

First select the machine clock divider ratio using BCH and BCHO.

BCH BCHO
0 1 --> Divide by 4 [For example, at 16 MHz: 16/4 = 4 MHz]
1 0 --> Divide by 3 [For example, at 12 MHz: 12/3 = 4 MHz]
1 1 --> Divide by 5 [For example, at 10 MHz: 10/5 = 2 MHz]

Then, set the asynchronous transfer clock division ratio for the clock selected above in RCS3,
RC2, RC1, and RCO. The following settings are available.

239

CHAPTER 17 UARTO

RC3 RC2 RC1
0 0 0
0 1 0
0 1 1
1 0 0
0 1

1

-->Divide by 8 x 1

-->Divide by 8 x 2

--> Divide by 8 x 4
-->Divide by 8 x 8

--> Not divided
--> Divide by 8

RCO

0 =>Divide by 12
1 =>Divide by 13

0 =>Prohibited setting

=>Divide by 8

The above 12 baud rates can be selected. The following formula shows how to calculate the
CLK synchronous baud rate.

Baud rate =

Baud rate =

Baud rate =

o/4
2m-1

o/3
2m-1

o/5
2m-1

[bps] (machine cycle = 16 MHz)

[bps] (machine cycle = 12 MHz)

[bps] (machine cycle = 10 MHz)

where ¢ is a machine cycle and m is in decimal notation for RC3 to 1.

Note:

The above formula for m=0 or m=1 cannot be calculated.

Data transfer is possible if the CLK asynchronous baud rate is in the range -1% to +1%. The
baud rate is the CLK synchronous baud rate divided by 8 X 13, 8 X 12, or 8.

Table 17.5-1 "Baud Rate" shows examples for 16 MHz, 12 MHz, and 10 MHz machine

cycles. However, do not use the settings marked as

Table 17.5-1 Baud Rate

in the table.

CLK asynchronous (us/Baud) OLK CLK synchronous (us/Baud)
16 MHz 12 MHz 10 MHz asynchron | 16 MHz | 12 MHz | 10 MHz
ous divider
RC | RC | RC | RC BCH/ BCH/ BCH/ ratio BCH/ BCH/ BCH/
3 2 1 0 0=01 0=10 0=11 0=01 0=10 0=11
0 0 0 0 - - 48/ 20833 8Xx12 - - -
0 0 0 1 26/ 38460 | 26/ 38460 | 52/ 19230 8X13 - - -
0 0 1 0 - - - 8 - - -
0 0 1 1 2/500000 | 2/500000 | 4/250000 8 - - -
0 1 0 0 | 48/20833 | 48/20833 | 96/10417 8X12 - - -
0 1 0 1 52/ 19230 | 52/ 19230 | 104/ 9615 8X13 05/2M | 0.5/2M 1/1M
0 1 1 0 96/10417 | 96/10417 | 192/ 5208 8Xx12 - - -

240

Table 17.5-1 Baud Rate (Continued)

CHAPTER 17 UARTO

CLK asynchronous (us/Baud)

CLK synchronous (us/Baud)

CLK
16 MHz 12 MHz 10 MHz asynchron 16 MHz 12 MHz 10 MHz
ous divider
RC | RC | RC | RC BCH/ BCH/ BCH/ ratio BCH/ BCH/ BCH/
3 2 1 0 0=01 0=10 0=11 0=01 0=10 0=11
0 1 1 1 104/ 9615 | 104/ 9615 | 208/ 4808 8X13 1/1M 1/1M 2 / 500K
1 0 0 0 192/ 5208 | 192/ 5208 - 8X12 - - -
1 0 0 1 208/ 4808 | 208/ 4808 | 416/ 2404 8X13 2 /500K | 2/500K | 4/250K
1 0 1 0 - - - 8
1 0 1 1 16/ 62500 | 16/ 62500 | 32/ 31250 8 - - -

241

CHAPTER 17 UARTO

17.6 Internal and External Clock

Setting RC3 to 0 to "1101" selects the clock signal from the 16-bit Reload Timer.
Setting RC3 to 0 to “1111" selects the external clock. The external clock frequency has
a maximum value of 2 MHz.

H Internal and External Clock

The CLK asynchronous baud rate is the CLK synchronous baud rate divided by 8. Also, data
transfer is possible if the CLK asynchronous baud rate is in the range -1% to +1% of the
selected baud rate. Table 17.6-1 "Baud Rate and Reload Value" lists the baud rates when the
internal timer is selected as the clock. The values in this table are calculated for a machine cycle
of 7.3728 MHz. However, do not use the settings marked as "_" in the table.

o/ X
Baudrate= ____ [bps]
8 x2(n+1)
¢0: Machine cycle

X: Divider ratio for the count clock source for
the internal timer

n: Reload value (decimal)

Table 17.6-1 Baud Rate and Reload Value

Reload Value
Baud Rate X = 21 X=23
(divide machine cycle by 2) (divide machine cycle by 8)

76800 2 -
38400 5 -
19200 11 2

9600 23 5

4800 47 11
2400 95 23
1200 191 47
600 383 95
300 767 191

242

The values in the table are the reload values (decimal) for reload count operation of the 16-bit
Reload Timer.

CHAPTER 17 UARTO

17.7 Transfer Data Format

UARTO only handles NRZ (non-return-to-zero) type data. Figure 17.7-1 "Transfer Data
Format" shows the relationship between the transmit/receive clock and the data for
CLK synchronous mode.

Bl Transfer Data Format

Figure 17.7-1 Transfer Data Format

o U UUUUHUHUHLE

SINO, SOTO0
0 1 0 1 1 0 0 1 0 1 1
Start LSB MSB Stop Depends
D8 Stop [onthe mode.

The transferred data is 010011018 (mode 1) or 101001101e (mode 3).

As shown in Figure 17.7-1 "Transfer Data Format", the transfer data always starts with the start
bit (L level data), the specified number of data bits are transmitted with the LSB first, then
transmission ends with the stop bit ("H" level data). Always input a clock if external clock
operation is selected. When an internal clock (the dedicated baud rate generator or 16-bit
Reload Timer) is selected, the clock is output continuously. When using CLK synchronous
transfer, do not start data transfer until the selected baud rate clock has stabilized (for two baud
rate clock cycles).

When using CLK asynchronous transfer, set the SCKE bit in the UMCO register to "0" to disable
clock output. The transfer data format of SINO and SOUTO is the same as shown in Figure 17.7-
1 "Transfer Data Format".

243

CHAPTER 17 UARTO

17.8 Parity Bit

The P bit in the URDO register specifies whether to use even or odd parity when parity
is enabled. The PEN bit in the UMCO register enables parity.

B Parity Bit

Inputting the data shown in Figure 17.8-1 "Serial Data with Parity Enabled" to SIN when even
parity is set causes a receive parity error. Figure 17.8-1 "Serial Data with Parity Enabled" also
shows the data transmitted when sending 001101 with even parity and odd parity.

Figure 17.8-1 Serial Data with Parity Enabled

SINO _| (Receive parity error occurs P = 0)
0 1 0 1 1 0 0 0 1
Start LSB MSB §} Stop
(Parity)
SOTO _| (Even parity transmission P = 0)
0 1 0 1 1 0 0 1 1
Start LSB MSB {} Stop
(Parity)
SOT0 _| (Odd parity transmission P = 1)
0 1 0 1 1 0 0 0 1
Start LSB MSB {} Stop
(Parity)

244

CHAPTER 17 UARTO

17.9 Interrupt Generation and Flag Set Timings

UARTO has two interrupt causes and six flags. The two interrupt causes are the
receive and transmit interrupts. The six flags are RDRF, ORFE, PE, TDRE, RBF, and
TBF. For reception, the RDRF, ORFE, and PE flags request an interrupt. For
transmission, the TDRE flag requests an interrupt.

B Set Timings of the Six Flags

O RDRF flag
The RDREF flag is set when receive data is loaded into the UIDR register. The flag is cleared by
writing "0" to RFC in the UMC register or by reading the UIDRO register.

O OREFE flag
The ORFE flag is an overrun or framing error flag. The flag is set when a receive error occurs
and is cleared by writing "0" to RFC in the UMCO register.

O PE flag

The PE flag is a reception parity error flag. The flag is set when a receive parity error occurs and
is cleared by writing "0" to RFC in the UMCO register. Note that the parity detect function is not
available in mode 2.

O TDRE flag

The TDRE flag is set when the UODRO register becomes empty and is available for writing. The
flag is cleared by writing to the UODRO register. The above four flags (RDRF, ORFE, PE, and
TDRE) trigger transmit or receive interrupts.

O RBF and TBF flags

The RBF and TBF flags indicate that reception or transmission is in progress. The RBF flag
becomes active during reception, and the TBF flag becomes active during transmission.

245

CHAPTER 17 UARTO

17.9.1 Flag Set Timings for a Receive Operation (in Mode 0, 1, or
3)

The RDRF, ORFE, and PE flags are set and an interrupt request to the CPU generated
when the final stop bit is detected indicating the end of reception transfer. The data in
UIDRO is invalid when either the ORFE or PE bit is active.

B Flag set Timings for a Receive Operation (in Mode 0, 1, or 3)

Figure 17.9-1 "RDRF Set Timing (Mode 0, 1, or 3)", Figure 17.9-2 "ORFE Set Timing (Mode 0,
1, or 3)", and Figure 17.9-3 "PE Set Timing (Mode 0, 1, or 3)" show the set timings of the RDRF,
ORFE, and PE flags respectively.

Figure 17.9-1 RDRF Set Timing (Mode 0, 1, or 3)

< > Stop (Stop)

Data

RDRF

Receive interrupt |

Figure 17.9-2 ORFE Set Timing (Mode 0, 1, or 3)

Data ‘< Stop Data >{ } Stop ‘
RDRF =1 RDRF =0 |
ORFE [ORFE
Receive interrupt ’7 Receive interrupt ’7
(Overrun error) (Framing error)

Figure 17.9-3 PE Set Timing (Mode 0, 1, or 3)

Data >‘ >

PE

Stop (Stop)

Receive interrupt |

246

CHAPTER 17 UARTO

17.9.2 Flag Set Timings for a Receive Operation (in Mode 2)

The RDREF flag is set when the final stop bit is detected and reception transfer ends
with the last data bit (D8) having the value "1".

The ORFE flag is set when the final stop bit is detected, irrespective of the value of the
last data bit (D8). The data in UIDRO is invalid when the ORFE bit is active.

The interrupt request to the CPU is generated when either of the flags are set (see
Section 17.10 "UARTO Application Example" for details on using mode 2).

B Flag Set Timings for a Receive Operation (in Mode 2)

Figure 17.9-4 RDRF Set Timing (Mode 2)

Data D6 >’< D7 ‘ D8 ‘ Stop (Stop)

RDRF

Receive interrupt

Figure 17.9-5 ORFE Set Timing (Mode 2)

Data D7 ’< D8 ‘ Stop Data D7 >‘ D8 >‘ Stop | /

RDRF =1 RDRF =0

ORFE ORFE

Receive interrupt Receive interrupt

(Overrun error)

(Framing error)

247

CHAPTER 17 UARTO

17.9.3 Flag Set Timings for a Transmit Operation

TDRE is set and an interrupt request to the CPU is generated when the data written in
UODRO register is transferred to the internal shift register and the next data can be
written to UODRO.

B Flag Set Timings for a Transmit Operation

Figure 17.9-6 TDRE Set Timing (Mode 0)

UODR write —| —|

TDRE

Interrupt request to the CPU

/

Transmit interrupt

SOTO output sT|po|D1| D2|D3|D4 | D5| D6 |D7 | SP SP| sT|Do |D1 | D2 | D3

ST: Start bit DO to D7: Data bits SP: Stop bit

248

CHAPTER 17 UARTO

17.9.4 Status Flag During Transmit and Receive Operation

RBF is set when the start bit is detected and cleared when a stop bit is detected. The
receive data in UIDRO at the RBF clear timing is not yet valid. The data in UIDRO
becomes valid at the RDRF set timing.

B Status Flag during Transmit and Receive Operation

Figure 17.9-7 "RBF Set Timing (Mode 0)" shows the relationship between the RBF and receive
interrupt flag timing.

Figure 17.9-7 RBF Set Timing (Mode 0)

SINO input ST| Do|D1| D2| D3|D4 | D5| D6 | D7 | SP

RBF

RDRF, PE, ORFE

ST: Start bit DO to D7: Data bits SP: Stop bit

Writing the transmission data to UODRO sets TBF. TBF is cleared when transmission
completes.

Figure 17.9-8 TBF Set Timing (Mode 0)

UODR write |_|
SOTO output ST|Do|D1| D2| D3 |D4 | D5| D6 |D7 | SP SP
TBF
ST: Start bit DO to D7: Data bits SP: Stop bit
Note:

Receive operation starts after releasing a reset unless the SIN input pin is fixed at "1".
Therefore, before setting the mode, write "0" to RFC in the UMCO register to clear any
receive flags that have been set.

Set the communication mode when the RBF and TBF flags in the USRO register are "0". The
data transmitted and received during mode setting cannot be guaranteed.

m EIPOS (Extended intelligent I/O service)
See the Section 3.7 "Extended intelligent /O Service (EI?0S)" for details on EI?OS.

249

CHAPTER 17 UARTO

17.10 UARTO Application Example

Mode 2 is used when a number of slave CPUs are connected to a host CPU (see Figure
17.10-1 "RBF Set Timing (mode 0)".)

B Application Example

250

Figure 17.10-1 RBF Set Timing (Mode 0)

SINO input ST|DO| D1| D2| D3 |D4 | D5| D6 | D7 | SP

RBF

RDRF, PE, ORFE

ST: Start bit DO to D7: Data bits SP: Stop bit

As shown in Figure 17.10-2 "Example System Configuration Using Mode 2", communication
starts with the host CPU transmitting address data. The ninth bit (D8) of the address data is set
to "1". The address selects the slave CPU with which communication will be established. The
selected slave CPU communicates with the host CPU using a protocol determined by the user.
In normal data, D8 is set to "0". Unselected slave CPUs wait in standby until the next
communication session starts. Figure 17.10-3 "Communication Flowchart for Mode 2 Operation”
shows a flowchart of operation in this mode.

Because the parity check function is not available in this mode, set the PEN bit in the UMCO
register to "0".

Figure 17.10-2 Example System Configuration Using Mode 2

SOT0 g >
SINO g

Host CPU

SOTO SINO SOTO SINO

Slave CPU #0 Slave CPU #1

CHAPTER 17 UARTO

Figure 17.10-3 Communication Flowchart for Mode 2 Operation

(Host CPU) (Slave CPU)
(Start > (Start >
Set the transfer mode to 3 Set the transfer mode to 2

Receive a byte

Set the slave CPU selection
in DO to D7. Set D8 to "1".
Transfer the byte.

Selected?

Set D8 to "0" and perform
communications

l

Set the transfer mode to 3
(End > and enable SOTO output

Perform communications
with the master CPU

[

Use the status flag to
confirm transfer completion,
then set the transfer mode to
2 and disable SOTO output

251

CHAPTER 17 UARTO

252

CHAPTER 18 SERIAL /O

This chapter explains the functions and operations of the serial /0.

18.1
18.2
18.3
18.4
18.5

"Outline of Serial 1/0"
"Serial 1/0 Registers"
"Serial 1/0 Prescaler (CDCR)"
"Serial 1/0 Operation”

"Negative Clock Operation"

253

CHAPTER 18 SERIAL I/O

18.1 Outline of Serial I/O

The serial I/O interface operates in two modes:

¢ Internal shift clock mode: Data is transferred in synchronization with the internal

clock.

e External shift clock mode: Data is transferred in synchronization with the clock
supplied via the external pin (SCK3). By manipulating the general-purpose port
sharing the external pin (SCK3), data can also be transferred by a CPU instruction in

this mode.

B Serial I/O Block Diagram

This block is a serial 1/0 interface that allows data transfer using clock synchronization. The
interface consists of a single eight-bit channel. Data can be transferred from the LSB or MSB.

Figure 18.1-1 Extended Serial I/O Interface Block Diagram

Internal data bus

(MSB first) D7 to DO T’i

SIN3

‘ D7 to DO (LSB first)

‘ Transfer direction selection

=

SOT3

>

SCK3

SDR (Serial data register)

)

L

Internal clock <>

254

Co

Read
Write

=

ntrol circui

Shift clock counter

2

(i

1

SMD2

SMD1

SMDO

SIE

SIR

BUSY | STOP

STRT

MODE

BDS

SOE

SCOE

} Interrupt
request

Internal data bus

CHAPTER 18 SERIAL I/O

18.2 Serial I/O Registers

The serial I/0 has the following two registers:
¢ Serial mode control status register (SMCS)
* Serial data register (SDR)

B Serial I/O Registers

15 14 13 12 11 10 9 8

Address : 00002D+| SMD2| SMD1) SMDO| SIE | SIR | BUSY | STOP | STRT ftiiféfé‘;?;(ff{’stﬁks)

7 6 5 4 3 2 1 0
Address : 00002Cy | — — — |MODE| BDS SOE | SCOE
7 6 5 4 3 2 1 0

Address : 00002E+ | p7 | ps | D5 | D4 | D3 D2 D1 | DO | Serial data register (SDR)

255

CHAPTER 18 SERIAL I/O

18.2.1 Serial Mode Control Status Register (SMCS)

The serial mode control status register (SMCS) controls the serial I/0O transfer mode.

B Serial Mode Control Status Register (SMCS)

15 14 13 12 11 10 9 8 "
SMCS Initial value
Address: 00002Dy SMD2| SMD1| SMD0O| SIE SIR BUSY | STOP | STRT 00000010

R/W R/W R/W R/W R/W R RW R/W
! |
*1 *2

SMCS 7 6 5 4 3 2 1 0 s
Address: 00002Cy, Initial value

— — — — |MODE| BDS SOE | SCOE ----0000 g

, R/W R/W R/W R/W
*1: Only '0' can be written.

*2: Only '1' can be written. '0' is always read.

B Bit functions of Serial Mode Control Status Register (SMCS)
[bit 3] Serial mode selection bit (MODE)

The serial mode selection bit is used to select the conditions to start the transfer operation
from the stop state. This bit must not be updated during operation.

Table 18.2-1 Setting the Serial Mode Selection Bit

MODE Operation
0 Transfer starts when STRT=1. [Defauli]
1 Transfer starts when the serial data register is read or written to.

This bit is initialized to a "0" upon a reset, and can be read or written to. To activate the
intelligent I/O service, ensure that "1" is written to this bit.

[bit 2] Bit direction select bit (BDS)

When serial data is input or output, this bit determines from which bit data is to be
transferred first, the least significant bit (LSB first) or the most significant bit (MSB first), as
shown in Table 18.2-2 "Setting the Transfer Direction Selection Bit".

Table 18.2-2 Setting the Transfer Direction Selection Bit

0 LSB first [default]

1 MSB first

Note:

Specify the bit ordering before any data is written to SDR.

256

CHAPTER 18 SERIAL I/O

[bit 1] Serial output enable bit (SOE: Serial out enable)

This bit controls the output from the serial I/0 output external pins (SOT3) as shown in Table
18.2-3 "Setting the Serial Output Enable Bit".

Table 18.2-3 Setting the Serial Output Enable Bit

0

General-purpose port pin [defauli]

1

Serial data output

This bit is initialized to "0" upon a reset. This bit is readable and writable.
[bit 0] Shift clock output enable bit (SCOE: SCK3 output enable)

This bit controls the output from the shift clock 1/0 output external pins (SCK3) as shown in
Table 18.2-4 "Setting the Shift Clock Output Enable Bit".

Table 18.2-4 Setting the Shift Clock Output Enable Bit

0

General-purpose port pin, transfer for each instruction [default]

1

Shift clock output pin

Ensure that "0" is written to this bit when data is transferred for each instruction in external
shift clock mode.

This bit is initialized to "0" upon a reset. This bit is readable and writable.

257

CHAPTER 18 SERIAL I/O

[Bits 15, 14, and 13] Shift clock selection bits (SMD2, SMD1, SMDO: Serial shift clock
mode)

These bits are used to select the serial shift clock mode, as shown in Table 18.2-5 "Setting
the Serial Shift Clock Mode".

Table 18.2-5 Setting the Serial Shift Clock Mode

SMD2 SMD1 SMDO ¢=16MHz ¢=8MHz ¢=4MHz
div=4 div=4 div=4
0 0 0 2 MHz 1 MHz 500 kHz
0 0 1 1 MHz 500 kHz 250 kHz
0 1 0 250 kHz 125 kHz 62.5 kHz
0 1 1 125 kHz 62.5 kHz 31.25 kHz
1 0 0 62.5 kHz 31.25 kHz 5.625 kHz
1 0 1 External shift clock mode
1 1 0 Reserved
1 1 1 Reserved
div M1 DIV3 DIV2 DIVA DIVO Recommended
machine cycle
3 1 1 1 0 1 6 MHz
4 1 1 1 0 0 8 MHz
5 1 1 0 1 1 10 MHz
6 1 1 0 1 0 12 MHz
7 1 1 0 0 1 14 MHz
8 1 1 0 0 0 16 MHz

Setting of the Serial 1/0 prescaler (CDCR)
* For details, see 18.3 "Serial I/O Prescaler (CDCR)".

These bits are initialized to "000" upon a reset. These bits must not be updated during data
transfer.

Five types of internal shift clock and an external shift clock are available. Do not set 110 or
111 in SMD2, SMD1, and SMDO as these values are reserved.

Shift operation can be performed for each instruction by specifying SCOE =0 during clock
selection and by using the ports that share the SCKS3 pin.

[bit 12] Serial I/O interrupt enable bit (SIE: Serial I/O interrupt enable)

This bit controls the serial 1/O interrupt request as shown in Table 18.2-6 "Setting the
Interrupt Request Enable Bit".

258

CHAPTER 18 SERIAL I/O

Table 18.2-6 Setting the Interrupt Request Enable Bit

0 Serial I/O interrupt disabled [initial value]

1 Serial /O interrupt enabled

This bit is initialized to "0" upon a reset. This bit is readable and writable.
[bit 11] Serial I/O interrupt request bit (SIR: Serial I/0 interrupt request)

When serial data transfer is completed, "1" is set to this bit. If this bit is set while interrupts
are enabled (SIE=1), an interrupt request is issued to the CPU. The clear condition varies
with the MODE bit.

When "0" is written to the MODE bit, the SIR bit is cleared by writing "0". When "1" is written
to the MODE bit, the SIR bit is cleared by reading or writing to SDR. When the system is
reset or "1" is written to the STOP bit, the SIR bit is cleared regardless of the MODE bit
value.

Writing "1" to the SIR bit has no effect. "1" is always read by a read operation of a read-
modify-write instruction.

[bit 10] Transfer status bit (BUSY)

The transfer status bit indicates whether serial transfer is being executed.

Table 18.2-7 Setting the Transfer Status Bit

BUSY Operating
0 Stopped, or standing by for serial data register R/W [defauli]
1 Serial transfer

This bit is initialized to "0" upon a reset. This is a read-only bit.
[bit 9] Stop bit (STOP)

The stop bit forcibly terminates serial transfer. When "1" is written to this bit, the transfer is
stopped.

Table 18.2-8 Setting the Stop Bit

STOP Operating
0 Normal operation
1 Transfer stop by STOP=1 [initial value]

This bit is initialized to "1" upon a reset. This bit is readable and writable.
[bit 8] Start bit (STRT: Start)

The start bit activates serial transfer. Writing "1" to this bit starts the data transfer when the
MODE bit is set to 0. When the MODE bit is set to 1 and the STRT bit is set to 1, writing the
data into serial data register starts the transfer.

Writing "1" is ignored while the system is performing serial transfer or standing by for a serial
shift register read or write. Writing "0" has no effect. "0" is always read.

259

CHAPTER 18 SERIAL I/O

18.2.2 Serial Shift Data Register (SDR)

This serial data register stores the serial I/O transfer data. During transfer, the SDR
must not be read or written to.

B Serial Shift Data Register (SDR)

SDR 7 6 5 4 3 2 1 0
) Initial value XX
Address : 00002Ey | p7 D6 | D5 D4 | D3 D2 D1 DO (undefined) "

RW RW RW RW RW RW R'W R/W

260

18.3 Serial I/O Prescaler (CDCR)

CHAPTER 18 SERIAL I/O

The Serial I/O Prescaler provides the shift clock for the Serial 1/0.
The operation clock for the Serial I/O is obtained by dividing the machine clock. The
Serial /0 is designed so that a constant baud rate can be obtained for a variety of
machine clocks by the user of the communication prescaler. The CDCR register
controls the machine clock division.

B Serial I/O Prescaler (CDCR)

15 14 13 12 11 10 9 8
CDCR
Address: 00006Dy MD — — — DIV3 DIv2 DIV1 DIVO
R/W R/W R/W R/W R/W

[bit 15] MD (Machine clock divide mode select):

This bit is used to control the operation of the communication prescaler.
0: The Serial 1/0 Prescaler is disabled.

1: The Serial I/O Prescaler is enabled.
[bits 11, 10, 9, and 8] DIV3 to DIVO (Divide 3 to 0):

These bits are used to determine the machine clock division ratio.

Table 18.3-1 Machine Clock Division Ratio

DIV3to 0

Division ratio

1101

1100g

1011

1010g

1001g

1000g

| N[O o

Note:

Initial value

0--1111g

When the division ratio is changed, allow two cycles for the clock to stabilize before starting
communication.

261

CHAPTER 18 SERIAL I/O

18.4 Serial I/O Operation

The extended serial I/0 consists of the serial mode control status register (SMCS) and
shift register (SDR), and is used for input and output of 8-bit serial data.

B Serial I/O Operation

262

The bits in the shift register are serially output via the serial output pin (SOT3 pin) at the falling
edge of the serial shift clock (external clock or internal clock). The bits are serially input to the
shift register (SDR) via the serial input pin (SIN3 pin) at the rising edge of the serial shift clock.
The shift direction (transfer from MSB or LSB) is specified by the direction specification bit
(BDS) of the serial mode control status register (SMCS).

At the end of serial data transfer, this block is stopped or stands by for a read or write of the
data register according to the MODE bit of the serial mode control status register (SMCS). To
start transfer from the stop or standby state, follow the procedure below.

To resume operation from the stop state, write '0' to the STOP bit and '1' to the STRT bit.
(The STOP and STRT bits can be set simultaneously.)

To resume operation from the serial shift data register R/W standby state, read or write to
the data register.

CHAPTER 18 SERIAL I/O

18.4.1 Shift Clock

There are two modes of shift clock: internal or external shift clock. These two modes
are selected by setting the SMCS. To switch the modes, ensure that serial I/O transfer
is stopped. To check whether the serial I/O transfer is stopped, read the BUSY bit.

H Internal Shift Clock Mode

In internal shift clock mode, data transfer is based on the internal clock. As a synchronization
timing output, a shift clock of 50% duty ratio can be output from the SCK3 pin. Data is
transferred at one bit per clock. The transfer speed is expressed as follows:

Transfer speed (s)= A x div
P (s) /Internal clock machine cycle (Hz)

"A" is the division ratio indicated by the SMD bits of SMCS. The value can be 21, 22, 24 25 or
28,

Table 18.4-1 Formulas for Calculation Baud Rate in Internal Shift Clock Mode

SMD2 SMD1 SMDO o/div=4MHz | ¢/div=2MHz | ¢/div=1MHz Formula
0 0 0 2 MHz 1 MHz 500 kHz (¢/div)/2!
0 0 1 1 MHz 500 kHz 250 kHz (9/div)/22
0 1 0 250 kHz 125 kHz 62.5 kHz (¢/div)/2*
0 1 1 125 kHz 62.5 kHz 31.25 kHz (¢/div)/2°
1 0 0 62.5 kHz 31.2 kHz 15.625 kHz | (¢/div)/28

See Table 18.3-1 "Machine Clock Division Ratio" for the div value.

H External Shift Clock Mode

In external shift clock mode, the data transfer is based on the external clock supplied via the
SCKS pin. Data is transferred at one bit per clock.

The transfer speed can be between DC and 1/(8 machine cycles). For example, the transfer
speed can be up to 2 MHz when 1 machine cycle is equal to 62.5 ns. The external clock
frequency has a maximum value of 2 MHz.

A data bit can also be transferred by software, which is enabled as described below.

Select external shift clock mode, and write "0" to the SCOE bit of SMCS. Then, write "1" to the
direction register for the port sharing the SCK3 pin, and place the port in output mode. Then,
when "1" and "0" are written to the data register (PDR) of the port, the port value output via the
SCKS pin is fetched as the external clock and transfer starts. Ensure that the shift clock starts
from "H".

Note:
The SMCS or SDR must not be written to during serial I/O operation.

263

CHAPTER 18 SERIAL I/O

18.4.2 Serial I/O Operation

There are four serial I/O operation statuses:

e STOP

Halt

SDR R/W standby
Transfer

B Serial I/O Operation

264

STOP

The STOP state is initiated upon RESET or when "1" is written to the STOP bit of SMCS. The
shift counter is initialized, and "0" is written to SIR.

To resume operation from the STOP state, write "0" to STOP and "1" to STRT. (These two bits
can be written to simultaneously.) Since the STOP bit overrides the STRT bit, transfer cannot be
started by writing "1" to STRT while "1" is written to STOP.

Halt

When transfer is completed while the MODE bit is "0", "0" is set to BUSY and "1" is set to SIR of
the SMCS, the counter is initialized, and the system stops. To resume operation from the stop
state, write "1" to STRT.

Serial data register R/W standby

When transfer is completed while the MODE bit is "1", "0" is set to BUSY and "1" is set to SIR of
the SMCS, and the system enters the serial data register R/W standby state. If the interrupt
enable flag is set, an interrupt signal is output from this block.

To resume operation from R/W standby state, read or write to the serial data register. This sets
the BUSY bit to "1" and starts data transfer.
Transfer

"1" is set to the BUSY bit and serial transfer is being performed. According to the MODE bit, the
halt state or R/W standby state comes next.

Figure 18.4-1 "Extended /O Serial Interface Operation Transitions" is diagrams of the operation
transitions.

CHAPTER 18 SERIAL I/O

Figure 18.4-1 Extended I/O Serial Interface Operation Transitions

Serial data

y Reset
STOP=0 & STRT=0
End of transfer STOP
STRT=0, BUSY=0 STOP=1 STRT=0, BUSY=0
MODE=0
MODE=0
STOP=0 | &
& STOP=0 STOP=1 STOP=0 STOP=1
STRT=1 | & &
END STRT=1
Transfer Serial data register R/W standby
MODE=1 & END & STOP=0
STRT=1, BUSY=1 STRT=1, BUSY=0
MODE=1
SDR R/W & MODE=1
Figure 18.4-2 Serial Data Register Read/write
Data bus
<= SOT3 Data bus
—! SIN3 Read | Read CPU
Write S Write
Interrupt output 0
Extended I/O @ £ Interrupt input
serial interface Data bus Interrupt controller
1. If "1" is written to MODE, transfer ends according to the shift clock counter. The read/write
standby state starts when "1" is written to SIR. If "1" is written to the SIE bit, an interrupt
signal is generated. No interrupt signal is generated when SIE is inactive or transfer has
been terminated by writing "1" to STOP.
2.

Reading or writing to the serial data register clears the interrupt request and starts serial
transfer.

265

CHAPTER 18 SERIAL I/O

18.4.3 Shift Operation Start/Stop Timing

To start the shift operation, set the STOP bit to "0" and the STRT bit to "1" in SMCS.

The system may stop the shift operation at the end of transfer or when "1" is set in the

STOP bit.

e Stop by STOP=1 -> The system stops with SIR=0 regardless of the MODE bit.

e Stop by end of transfer -> The system stops with SIR=1 regardless of the MODE
bit.

Regardless of the MODE bit, the BUSY bit becomes "1" during serial transfer and

becomes "0" during stop or R/W standby state. To check the transfer status, read this

bit.

B Shift Operation Start/Stop Timing

O Internal shift clock mode (LSB first)

Figure 18.4-3 Shift Operation Start/Stop Timing (Internal Clock)

sCcks - ... LI 1" output
(Transfer start) (Transfer end)

STRT ____| If MODE=0 '

BUSY o I

SOT3 X DOO0 X - . X DO7 (Data maintained)

O External shift clock mode (LSB first)

Figure 18.4-4 Shift Operation Start/Stop Timing (External Clock)
scks o __.r |

(Transfer start) (Transfer end)
STRT | If MODE=0 '
BUSY .- |
SOT3 X DOO X e X DO7 (Data maintained)

266

CHAPTER 18 SERIAL I/O

O External shift clock mode with instruction shift (LSB first)

Figure 18.4-5 Shift Operation Start/Stop Timing (External Shift Clock Mode with Instruction Shift)

scks —__ SCK='0'inPDR__| | SCK=0'in PDR
SCK="1"in PDR (Transfer end)

STRT If MODE=0 |

BUSY |

sots *-- X DO6 X DO7 (Data maintained)

* For an instruction shift, 'H" is output when 1" is written to the bit corresponding to SCK of PDR,
and 'L' is output when '0' is written. (When SCOE=0 in external shift clock mode)

O Stop by STOP=1 (LSB first, internal clock)

Figure 18.4-6 Stop Timing when '1' is Written to the STOP Bit

1" output
SCK3 \—, \—, \—,

(Transfer start) (Transfer stop)
STRT J If MODE=0 |
BUSY o |
STOP ---- |
SOT3 -.-.-.-:>< DO3 >< DO4 >< DO5 (Data maintained)
Note:

DO7 to DOO indicate output data.

During serial data transfer, data is output from the serial output pin (SOT3) at the falling edge of
the shift clock, and input from the serial input pin (SIN3) at the rising edge.

267

CHAPTER 18 SERIAL I/O

268

Figure 18.4-7 Serial Data I/O Shift Timing
O LSB first (When the BDS bit is '0")

S s I s PO s I s S s Y e) ey O
SCK3 SIN Input .
SING { pto { b1t ¥ p12 J D13)Y D14 X D15 } D16 X D17
: SOT Output
SOT3 Y poo \ pot) po2 § Do3) Do4 { DOs f DOe X DO7

O MSB first (When the BDS bit is '1")

SCK3 L1 e r
: SIN Input .
SIN3 { D17 { bte) D15 | D14 X D13 { D12 { D11) D10
SOT Output
SOT3 { po7 | pos) Dos | Do4) DO3 X DO2 § DO1 X DOO

CHAPTER 18 SERIAL I/O

18.4.4 Interrupt Function of the Extended Serial I/O Interface

This block can issue an interrupt request to the CPU. At the end of data transfer, the
SIR bit is set as an interrupt flag. When “1" is written to the interrupt enable bit (SIE
bit) of SMCS, an interrupt request is issued to the CPU.

H Interrupt Function of the Extended Serial I/O Interface

Figure 18.4-8 Interrupt Signal Output Timing of the Extended Serial I/O Interface

I N
SCK3 (Transfer end) * When MODE=1
|
BUSY SIE=1 I |
SIR
SDR RD/WR

SOT3 DO6 >< DO7 (Data is maintained.)

269

CHAPTER 18 SERIAL I/O

18.5 Negative Clock Operation

The MB90590 Series supports the negative clock operation of the Serial I/O. In this
operation, the shift clock signal is simply negated by a inverter. Therefore the
definition of the shift clock signal in the proceeding sections of the Serial I/O is
inversed from the logic low level to logic high level, from the negative edge to the
positive edge and vise-versa. This is the same for both the serial clock input and
output.

Bl Negative Clock Operation

SES 7 6 5 4 3 2 1 0 N
Address : 00002Fy | | | | | | — Inea Initial value O
R/W

Table 18.5-1 Setting the NEG Bit

NEG Operation
0 Normal operation [default]
1 The shift clock signal is inverted

270

CHAPTER 19 CAN CONTROLLER

This chapter explains the functions and operations of the CAN controller.

19.1 "Features of CAN Controller"

19.2 "Block Diagram of CAN Controller"

19.3 "List of Overall Control Registers"

19.4 "List of Message Buffers (ID Registers)"

19.5 "List of Message Buffers (DLC Registers and Data Registers)"
19.6 "Classifying the CAN Controller Registers"

19.7 "Transmission of CAN Controller"

19.8 "Reception of CAN Controller"

19.9 "Reception Flowchart of CAN Controller"

19.10 "How to Use the CAN Controller"

19.11 "Procedure for Transmission by Message Buffer (x)"
19.12 "Procedure for Reception by Message Buffer (x)"
19.13 "Setting Configuration of Multi-level Message Buffer"
19.14 "Precautions when Using CAN Controller"

271

CHAPTER 19 CAN CONTROLLER

19.1 Features of CAN Controller

The CAN controller is a module built into a 16-bit microcontroller (F2MC-1 6LX). The
CAN (Controller Area Network) is the standard protocol for serial communication
between automobile controllers and is widely used in industrial applications.

H Features of CAN Controller

The CAN controller has the following features:

O Conforms to CAN Specification Version 2.0 Part A and B

Supports transmission/reception in standard frame and extended frame formats

O Supports transmitting of data frames by receiving remote frames

O 16 transmitting/receiving message buffers
29-bit ID and 8-byte data

Multi-level message buffer configuration

O Supports full-bit comparison, full-bit mask and partial bit mask filtering.

Two acceptance mask registers in either standard frame format or extended frame formats

O Bit rate programmable from 10 Kbps to 1 Mbps (A minimum 8 MHz machine clock is
required if 1 Mbps is used)

272

CHAPTER 19 CAN CONTROLLER

19.2 Block Diagram of CAN Controller

Figure 19.2-1 "Block Diagram of CAN Controller" shows a block diagram of the CAN
controller.

B Block Diagram of CAN Controller

Figure 19.2-1 Block Diagram of CAN Controller

TQ (Operating clock)

= F2MC-16LX bus
Prescaler o N
ook o fier m svN, TsEa, TeEG2
PSC g
l«—s{ BTR 181
TS2
RSJ
TOE
TS
RS
les| CSR| HALT IDLE, INT, SUSPND,
Bus state transmit, receive,
NIE =1 Node status change Node status machine ERR, OVRLD
NT interrupt generation [~ change interrupt 1
NS1,0
Error
RTEC control
Transmitting/receiving| b
sequencer Bl
i BVALR T
le— TBFx, cl t 1
et TREQR o cear Transmitting Error frame [~
buffer x decision [—— TBFX Data | Acceptance generation
counter| filter control
Overload |
frame
generation
TDLC RDLC IDSEL
TBFx BITER, STFER, Output
|| Tcanm L_| CRCER, FRMER, — ARBLOST driver —ETX
ACKER
S TRTRR I
Transmission
L] RFWTR ™1 shift register [~ I"
le— TBFX, set, clear l CRC ACK
[~ TCR Transmission DL generation| | generation[™]
[Transmission complete complete
interrupt generation [~ interrupt
e TIER CRCER
Le— RBFX, set
1 RCR - RDLC [cRe generation/error STFER
'[check
: Reception
Reception complete T T
e RIER i i | complete
| .| interrupt generation interrupt Receive shift Destuffinglljstuging Lt 4
1 t &
lLe— RBFx, TBFx, set, clear register error chec
g RRTRR T
Le— RBFX, set IDSEL
- ROVRR ;
Arbitration ¥
ARBLOST me—] check
[~ AMSR | 1_ -
BITER Bit error free—
—
et 0 —f check
AMRO 1 — Acce{:}tance Receiving buffer x| ? PH1
1 filter ™ decision ACKER Acknowledgment
L] ~<—| erorcheck [+
AMR1
RBF: FRMER Form error Input
X u
IDRO to 15 ~ check laich —@RX
DLCRO to 15
l«—{ DTROto 15
RAM
RAM address
le— "generation: [—— RBFx, TBFx, RDLC, TDLC, IDSEL
ot LEIR
1 LDER

273

CHAPTER 19 CAN CONTROLLER

19.3 List of Overall Control Registers

Table 19.3-1 "List of Overall Control Registers" lists overall control registers.

B List of Overall Control Registers

Table 19.3-1 List of Overall Control Registers

Address
Register Abbreviation Access Initial Value
CANO CAN1

000070y | 000080 ,

Me?‘iage buffer valid BVALR RIW 00000000 00000000
000071y | 000081, | register
000072 | 000082 ,

Transmit request TREQR R/W 00000000 00000000
000073, | 000083, | "egister
000074y, | 000084

Transmit cancel register TCANR w 00000000 00000000
000075y | 000085
000076 | 000086 ,

Tra.”fm't complete TCR RIW 00000000 00000000
0000774 | 000087, | register
000078 | 000088 :

Re‘?et"’e complete RCR R/W 00000000 00000000
000079y | 000089, | "egster
00007A, | 00008A

Remote request RRTRR RIW 00000000 00000000
OOOO7BH OOOOSBH receiving reglster
00007Cy | 00008Cy :

Re‘?et"’e overrn ROVRR RIW 00000000 00000000
00007Dy | 00008D, | "€gIster
00007E, | 00008E o

Receive interrupt enable RIER R/W 00000000 00000000
00007Fy | 00008F | fegister
001C00y | 001DO00y

Control status register CSR R/W, R 00---000 0----001
001C01y | 001DO1y4
001C02y4 | 001D02y .-

Lagt f[avent indicator LEIR BRW | e 000-0000
001C03, | 001DO3, | register
001C04y | 001D04y : :

Recelve/transmit error RTEC R 00000000 00000000
001C05, | 001DO05, | counter
001C06y | 001D0By

Bit timing register BTR R/W 1111111 11111111
001C07y | 001DO07y

274

CHAPTER 19 CAN CONTROLLER

Table 19.3-1 List of Overall Control Registers (Continued)

Address
Register Abbreviation Access Initial Value
CANO CAN1

001C08, | 001D08KH

IDE register IDER R/W XXXXXXXX XXXXXXXX
001C09y | 001D09y
001COAL | 001DOAY

Transmit RTR register TRTRR R/W 00000000 00000000

001COBy | 001DOBy

001C0CH 001D0CH Remote frame receive

") RFWTR R/W XXXXXXXX XXXXXXXX
001 CODH 001 DODH Waltlng reglster
001COE, | 001DOE S
Trart‘j‘m't '”.t‘i”“pt TIER R/W 00000000 00000000
001COFy | 001DOFy | ©nableregister
001C104 | 001D104
XXXXXXXX XXXXXXXX
001C11y4 | 001D114
Acqeptance mask select AMSR R/W
001C12y | 001D12, | register
XXXXXXXX XXXXXXXX
001C13, | 001D13y
001C14y | 001D14y
XXXXXXXX XXXXXXXX
001C154 | 001D15,
Acceptance mask AMRO R/W

001C16, | 001D16y | register0 XXX K- XXXXXXXX

001C17y | 001D174

001C18y | 001D18y

XXXXXXXX XXX XXXXX

001C19y | 001D19y | Acceptance mask AMR1 R/W

001C1Ay | 001D1A, | fegister XXXX K== XXXXXXXX

001C1By | 001D1By

275

CHAPTER 19 CAN CONTROLLER

19.4 List of Message Buffers (ID Registers)

Table 19.4-1 "List of Message Buffers (ID Registers)" lists message buffers (ID

registers).

B List of Message Buffers (ID registers)

276

Table 19.4-1 List of Message Buffers (ID Registers)

Address Register Abbreviation Access Initial Value
CANO CANA1
001A00 001B00y | General- - R/W XXXXXXXX
to to purpose to
001A1F 001B1Fy | RAM XXXXXXXX
001A21 001B21 XXXXXXXX
ID register 0 IDRO R/W
001A22,, 001B22, XXX K v
001A23, 001B23, XXXXXXXX
001A24y, 001B24y, XXXXXXXX
001A25y, 001B25,, XXXXXXXX
ID register 1 IDR1 R/W
001A26y, 001B26y, XXX N omv
001A27, 001B27, XXXXXXXX
001A29, 001B29y, XXXXXXXX
ID register 2 IDR2 R/W
001A2Ay 001B2Ay XXX K v
001A2By, 001B2By, XXXXXXXX
001A2Cy 001B2Cy XXXXXXXX
001A2Dy 001B2Dy XXXXXXXX
ID register 3 IDR3 R/W
001A2Ey 001B2E XXX K v
001A2F 001B2F XXXXXXXX
001A30 001B30y | ID register 4 IDR4 R/W XXXXXXXX
XXXXXXXX
001A31y 001B31y
001A32, 001B32, XXXXX---
XXXXXXXX
001A33y, 001B33y,

Table 19.4-1 List of Message Buffers (ID Registers) (Continued)

CHAPTER 19 CAN CONTROLLER

Address Register Abbreviation Access Initial Value
CANO CAN1
001A34y 001B34y ID register 5 IDR5 R/W XXXXXXXX
XXXXXXXX
001A354 001B35y
001A36H 001B36y XXXXX---
XXXXXXXX
001A37y 001B37y
001A38H 001B38y ID register 6 IDR6 R/W XXXXXXXX
XXXXXXXX
001A39y 001B39y
001A3AYH 001B3Ay XXXXX---
XXXXXXXX
001A3By 001B3By
001A3CH 001B3Cq ID register 7 IDR7 R/W XXXXXXXX
XXXXXXXX
001A3Dy 001B3Dy
001A3Ey 001B3Ey XXXXX---
XXXXXXXX
001A3Fy 001B3Fy
001A404 001B40y ID register 8 IDR8 R/W XXXXXXXX
XXXXXXXX
001A414 001B41y
001A42, 001B42 XXXXX---
XXXXXXXX
001A434 001B43y
001A44y 001B44y ID register 9 IDR9 R/W XXXXXXXX
XXXXXXXX
001A45y 001B45y
001A464 001B46y XXXXX---
XXXXXXXX
001A47y 001B474
001A48y 001B48y ID register IDR10 R/W XXXXXXXX
10 XXXXXXXX
001A49y 001B49y
001A4Ay 001B4Ay XXXXX---
XXXXXXXX
001A4By 001B4By
001A4CH 001B4CH YOO
XXXXXXXX
001A4Dy 001B4Dy ;
'ﬁ register IDR11 RIW
001A4E, 001B4Ey XXXXK---
001A4F4 001B4F XXXXXXXX

277

CHAPTER 19 CAN CONTROLLER

278

Table 19.4-1 List of Message Buffers (ID Registers) (Continued)

Address Register Abbreviation Access Initial Value
CANO CAN1
001A504 001B50y4 XXXXXXXX
001A51y 001B514 ID reqister XXXXXXXX
001A52,, 001Bs2, | 12 i bR AW N
001A534 001B53y XXXXXXXX
001A544 001B54H XXXXXXXX
XXXXXXXX
001A55, 001B55H |12 register DR13 -
001A56 001B564 XXX K onn
001A574 001B574 XXXXXXXX
001A58, 001B584 XXXXXXXX
001A59y 001B59y ID register DR14 - XXXXXXXX
001A5Ay 001B5A, | 14 N
001A5By 001B5By XXXXXXXX
001A5CH 001B5CyH IDR15 XXXXXXXX
001A5Dy 001B5Dy ID register -~ XXXXXXXX
001A5E 001BSE, | 19 N
001A5F 001B5Fy XXXXXXXX

CHAPTER 19 CAN CONTROLLER

19.5 List of Message Buffers (DLC Registers and Data Registers)

Table 19.5-1 "List of Message Buffers (DLC Registers and Data Registers)" lists
message buffers (DLC registers), and Table 19.5-2 "List of Message Buffers (Data
Registers)" lists message buffers (data registers).

B List of Message Buffers (DLC Registers and Data Registers)

Table 19.5-1 List of Message Buffers (DLC Registers and Data Registers)

Address
Register Abbreviation | Access Initial Value
CANO CAN1

001A604 001B60y

DLC register 0 DLCRO R/W --=-XXXX
001A61H 001B61H
001A62y 001B62y

DLC register 1 DLCR1 R/W --=-XXXX
001A63H 001B63y
001A64H 001B64y

DLC register 2 DLCR2 R/W --—-XXXX
001AB5y 001B65y
001A66H 001B66y

DLC register 3 DLCRS3 R/W --=-XXXX
001A67y 001B67H
001A68H 001B68Y

DLC register 4 DLCR4 R/W --=-XXXX
001A69y 001B69y
001ABAH 001B6AY

DLC register 5 DLCR5 R/W --—-XXXX
001A6BY 001B6BY
001A6CH 001B6CH

DLC register 6 DLCR6 R/W --—-XXXX
001A6Dy 001B6Dy
001A6EY 001B6EY

DLC register 7 DLCR7 R/W --=-XXXX
001A6FH 001B6FH
001A70y 001B70y

DLC register 8 DLCRS8 R/W --—-XXXX
001A71H 001B71H
001A72y 001B72y

DLC register 9 DLCR9 R/W --—-XXXX
001A73y 001B73y
001A74y 001B74y

DLC register 10 DLCR10 R/W -==-XXXX
001A754 001B754

279

CHAPTER 19 CAN CONTROLLER

Table 19.5-1 List of Message Buffers (DLC Registers and Data Registers) (Continued)

Address
Register Abbreviation | Access Initial Value
CANO CAN1

001A764 001B764

DLC register 11 DLCR11 R/W ----XXXX
001A774 001B774
001A78y 001B78y

DLC register 12 DLCR12 R/W ----XXXX
001A794 001B79y
001A7A4 001B7A4

DLC register 13 DLCR13 R/W ----XXXX
001A7By 001B7By
001A7CyH 001B7Ch

DLC register 14 DLCR14 R/W ----XXXX
001A7Dy 001B7Dy
001A7Ey 001B7Ey

DLC register 15 DLCR15 R/W ----XXXX
001A7FH 001B7FH

280

CHAPTER 19 CAN CONTROLLER

B List of Message Buffers (Data Registers)

Table 19.5-2 List of Message Buffers (Data Registers)

Address
Register Abbreviation | Access Initial Value
CANO CAN1
001A80y 001B80y XXXXXXXX
to to Data register 0 (8 bytes) DTRO R/W to
001A87y 001B87y XXXXXXXX
001A88y 001B88y XXXXXXXX
to to Data register 1 (8 bytes) DTR1 R/W to
001A8FH 001B8Fy XXXXXXXX
001A904 001B90y XXXXXXXX
to to Data register 2 (8 bytes) DTR2 R/W to
001A97y 001B974 XXXXXXXX
001A98y 001B98y XXXXXXXX
to to Data register 3 (8 bytes) DTRS3 R/W to
001A9Fy 001B9Fy XXXXXXXX
001AAOH 001BAOH XXXXXXXX
to to Data register 4 (8 bytes) DTR4 R/W to
001AA7Y 001BA7y XXXXXXXX
001AA8H 001BA8H XXXXXXXX
to to Data register 5 (8 bytes) DTR5 R/W to
001AAF 001BAFy XXXXXXXX
001ABOy 001BBOy XXXXXXXX
to to Data register 6 (8 bytes) DTR6 R/W to
001AB7y 001BB7y XXXXXXXX
001AB8H 001BB8y XXXXXXXX
to to Data register 7 (8 bytes) DTR7 R/W to
001ABF 001BBFy XXXXXXXX
001ACOH 001BCOy XXXXXXXX
to to Data register 8 (8 bytes) DTR8 R/W to
001AC74 001BC7y XXXXXXXX
001AC8y 001BC8y XXXXXXXX
to to Data register 9 (8 bytes) DTR9 R/W to
001ACFy 001BCFy XXXXXXXX
001,:)D0H 001E>D0H Data register 10 (8 TR W XXX)t(g(XXX
001AD7, | 001BD7, | V'S XXXXXXXX
001,:)D8H 001E>D8H Data register 11 (8 TR W XXX)t(g(XXX
001ADF,, | 001BDF, | °Yt®) XXXXXXXX
OOQEOH OO1E)EOH Data register 12 (8 TR A XXX)t(g(XXX
001AE7,, | 001BE7, | V'€ XXXXXXXX

281

CHAPTER 19 CAN CONTROLLER

Table 19.5-2 List of Message Buffers (Data Registers) (Continued)

Address
Register Abbreviation | Access Initial Value
CANO CAN1

oo1ﬁ;E8H 001 E)EBH Data register 13 (8 s - xxx>t<3<xxx
001AEF, | 001BEF, | ™' XXXXXXXX
001 QFOH 001 E;FOH Data register 14 (8 N - xxx>t<3<xxx
001AF7,, | 001BF7, | 2YeS) XXXXXXXX
001 tA(\)FSH 001 E;FSH Data register 15 (8 . -, xxx>t<c>)<xxx
001AFF, | 001BFF, | PVt XXXXXXXX

282

CHAPTER 19 CAN CONTROLLER

19.6 Classifying the CAN Controller Registers

There are three types of CAN controller registers:
¢ Overall control registers

* Message buffer control registers

¢ Message buffers

B Overall Control Registers

The overall control registers are the following four registers:

Control status register (CSR)

Last event indicator register (LEIR)
Receive and transmit error counter (RTEC)
Bit timing register (BTR)

B Message Buffer Control Registers

The message buffer control registers are the following 14 registers:

Message buffer valid register (BVALR)

IDE register (IDER)

Transmission request register (TREQR)
Transmission RTR register (TRTRR)

Remote frame receiving wait register (RFWTR)
Transmission cancel register (TCANR)
Transmission complete register (TCR)
Transmission interrupt enable register (TIER)
Reception complete register (RCR)

Remote request receiving register (RRTRR)
Receive overrun register (ROVRR)

Reception interrupt enable register (RIER)
Acceptance mask select register (AMSR)
Acceptance mask registers 0 and 1 (AMRO and AMR1)

B Message Buffers

The message buffers are the following three registers:

ID register x (x = 0 to 15) (IDRx)
DLC register x (x = 0 to 15) (DLCRXx)
Data register x (x = 0 to 15) (DTRXx)

283

CHAPTER 19 CAN CONTROLLER

19.6.1 Control Status Register (CSR)

Control status register (CSR) is prohibited from executing any bit manipulation
instructions (Read-modify-write instructions).

B Control Status Register (CSR)

15 14 13 12 11 10 9 8

Address: 001C01y (CANO) TS RS — — — NT NS1 NSO
001D01y (CANT1)

Read/write: (R) (R) (=) (=) (=) (R/W) (R) (R)

Initial value: (o) (0) (—) (—) (—) (0) (0) (0)

7 6 5 4 3 2 1 0

NIE Reserved HALT

Address: 001C00, (CANO) | TOE — — — —
001D00y (CANT)

Read/write: (R/W) =) =) =) =) (R/W) (W) (R/W)
Initial value: (0) (—) (—) (—) (—) (0) (0) (1)

[Bit 15] TS: Transmit status bit

This bit indicates whether a message is being transmitted.

0: Message not being transmitted

1: Message being transmitted

This bit is 0 even while error and overload frames are transmitted.
[Bit 14] RS: Receive status bit

This bit indicates whether a message is being received.

0: Message not being received

1: Message being received

While a message is on the bus, this bit becomes 1. Therefore, this bit is also 1 while a
message is being transmitted. This bit does not necessarily indicates whether a receiving

message passes through the acceptance filter.
As a result, when this bit is 0, it implies that the bus operation is stopped (HALT = 0); the bus
is in the intermission/bus idle or a error/overload frame is on the bus.
[Bit 10] NT: Node status transition flag
If the node status is changed to increment, or from Bus Off to Error Active, this bit is set to 1.

In other words, the NT bit is set to 1 if the node status is changed from Error Active (00) to
Warning (01), from Warning (01) to Error Passive (10), from Error Passive (10) to Bus Off
(11), and from Bus Off (11) to Error Active (00). Numbers in parentheses indicate the values

of NS1 and NSO bits.

284

CHAPTER 19 CAN CONTROLLER

When the node status transition interrupt enable bit (NIE) is 1, an interrupt is generated.
Writing O sets the NT bit to 0. Writing 1 to the NT bit is ignored. 1 is read when read-modify-
write instruction is performed.

[Bits 9 to 8] NS1 and NS0: Node status bits 1 and 0

These bits indicate the current node status.

Table 19.6-1 Correspondence between NS1 and NS0 and Node Status

NS1 NSO Node Status
0 0 Error active
0 1 Warning (error active)
1 0 Error passive
1 1 Bus off
Note:

Warning (error active) is included in the error active in CAN Specification 2.0B for the node
status, however, indicates that the transmit error counter or receive error counter has
exceeded 96. The node status change diagram is shown in Figure 19.6-1 "Node Status
Transition Diagram".

Figure 19.6-1 Node Status Transition Diagram
Hardware reset

l REC: Receive error counter
TEC: Transmit error counter

REC >= 96 After 0 has been written to theHALT bit of
or the register (CSR), continuous 11-bit High
TEC >=96 levels (recessive bits) are input 128 times
to the receive input pin (RX).
REC < 96
and
TEC < 96
Warning
(Error active)
REC >= 128
or
TEC >= y
REC < 128
and
TEC < 128
Error pas- Bus off
Sive HALT =1
TEC >= 256 ()

[Bit 7] TOE: Transmit output enable bit

Writing 1 to this bit switches from a general-purpose port pin to a transmit pin of the CAN
controller.

0: General-purpose port pin

1: Transmit pin of CAN controller

285

CHAPTER 19 CAN CONTROLLER

[Bit 2] NIE: Node status transition interrupt enable bit
This bit enables or disables a node status transition interrupt (when NT = 1).
0: Node status transition interrupt disabled
1: Node status transition interrupt enabled
[Bit 1] Reserved
The is a reserved bit. Do not write "1" to this bit.
[Bit 0] HALT: Bus operation stop bit

This bit sets or cancels bus operation stop, or displays its state.

286

CHAPTER 19 CAN CONTROLLER

19.6.2 Bus Operation Stop Bit (HALT =1)

The bus operation stop bit sets or cancels stopping of bus operation, or indicates its
status

B Conditions for Setting Bus Operation Stop (HALT=1)
There are three conditions for setting bus operation stop (HALT = 1):
* After hardware reset
¢ When node status changed to bus off
e By writing 1 to HALT

Note:

The bus operation should be stopped by writing 1 to HALT before the F?MC-16LX is
changed in low-power consumption mode (stop mode, clock mode, and hardware stand-by
mode).

If transmission is in progress when 1 is written to HALT, the bus operation is stopped (HALT
= 1) after transmission is terminated. If reception is in progress when 1 is written to HALT,
the bus operation is stopped immediately (HALT = 1). If received messages are being stored
in the message buffer (x), stop the bus operation (HALT = 1) after storing the messages.

To check whether the bus operation has stopped, always read the HALT bit.

B Conditions for Canceling Bus Operation Stop (HALT = 0)
e By writing 0 to HALT
Note:

Canceling the bus operation stop after hardware reset or by writing 1 to HALT as above
conditions is performed after 0 is written to HALT and continuous 11-bit High levels
(recessive bits) have been input to the receive input pin (RX) (HALT = 0).

Canceling the bus operation stop when the node status is changed to bus off as above
conditions is performed after 0 is written to HALT and continuous 11-bit High levels
(recessive bits) have been input 128 times to the receive input pin (RX) (HALT = 0). Then,
the values of both transmit and receive error counters reach 0 and the node status is
changed to error active.

B State during Bus Operation Stop (HALT = 1)
* The bus does not perform any operation, such as transmission and reception.
e The transmit output pin (TX) outputs a High level (recessive bit).
* The values of other registers and error counters are not changed.
Note:

The bit timing register (BTR) should be set during bus operation stop (HALT = 1).

287

CHAPTER 19 CAN CONTROLLER

19.6.3 Last Event Indicator Register (LEIR)

This register indicates the last event.
The NTE, TCE, and RCE bits are exclusive. When the corresponding bit of the last
event is set to 1, other bits are set to 0s.

B Last Event Indicator Register (LEIR)

7 6 5 4 3 2 1 0
Address: 001C02;; (CANO) | NTE TCE RCE — MBP3 | MBP2 | MBP1 MBPO
001D02, (CAN1)
Read/write: (R/W) (R/W) (R/W) =) (R/W) (R/W) (R/W) (R/W)
Initial value:) 0) (0) =) (0) (0) (0))

288

[Bit 7] NTE: Node status transition event bit

When this bit is 1, node status transition is the last event.
This bit is set to 1 at the same time the NT bit of the control status register (CSR) is set.

This bit is also set to 1 irrespective of the setting of the node status transition interrupt enable
bit (NIE) of CSR.

Writing 0O to this bit sets the NTE bit to 0. Writing 1 to this bit is ignored.

1 is read when read-modify-write instruction is executed.

[Bit 6] TCE: Transmit completion event bit

When this bit is 1, it indicates that transmit completion is the last event.

This bit is set to 1 at the same time as any one of the bits of the transmit completion register
(TCR). This bit is also set to 1, irrespective of the settings of the bits of the transmit interrupt
enable register (TIER).

Writing O sets this bit to 0. Writing 1 to this bit is ignored.
1 is read when read-modify-write instruction is performed.

When this bit is set to 1, the MBP3 to MBPO bits are used to indicate the message buffer
number completing the transmit operation.

[Bit 5] RCE: Receive completion event bit

When this bit is 1, it indicates that receive completion is the last event.

This bit is set to 1 at the same time as any one of the bits of the receive complete register
(RCR). This bit is also set to 1 irrespective of the settings of the bits of the receive interrupt
enable register (RIER).

Writing O sets this bit to 0. Writing 1 to this bit is ignored.
1 is read when read-modify-write instruction is performed.

When this bit is set to 1, the MBP3 to MBPO bits are used to indicate the message buffer
number completing the receive operation.

CHAPTER 19 CAN CONTROLLER

[Bits 3 to 0] MBP3 to MBPO: Message buffer pointer bits

When the TCE or RCE bit is set to 1, these bits indicate the corresponding numbers of the
message buffers (0 to 15). If the NTE bit is set to 1, these bits have no meaning.

Writing O sets these bits to 0s. Writing 1 to these bits is ignored.
1s are read when read-modify-write instruction is performed.

If LEIR is accessed within an CAN interrupt handler, the event causing the interrupt is not
neccessarily the same as indicated by LEIR. In the time from interrupt request to the LEIR
access by the interrupt handler there may occur other CAN events.

289

CHAPTER 19 CAN CONTROLLER

19.6.4 Receive and Transmit Error Counters (RTEC)

The receive and transmit error counters indicate the counts for transmission errors
and reception errors defined in the CAN specifications. These registers can only be

read.

Bl Receive and Transmit Error Counters (RTEC)

15 14 13 12 11 10 9 8
Address: 001C05y (CANO) TEC7 TEC6 TEC5 TEC4 TECS3 TEC2 TEC1 TECO
001D05, (CAN1)
Read/write: (R) (R) (R) (R) (R) (R) (R) (R)
Initial value: (0) (0) (0) (0) (0) (0) (0) (0)
7 6 5 4 3 2 1 0
Address: 001C04y (CANO) REC7 REC6 REC5 REC4 REC3 REC2 REC1 RECO
001D04, (CAN1)
Read/write: (R) (R) (R) (R) (R) (R) (R) (R)
Initial value: (0) (0) (0) (0) (0) (0) (0) (0)

[Bits 15 to 8] TEC7 to TECO: Transmit error counter
These are transmit error counters.

TEC7 to TECO values indicate 0 to 7 when the counter value is more than 256, and the
subsequent increment is not counted for counter value. In this case, Bus Off is indicated for
the node status (NS1 and NSO of control status register CSR = 11).

[Bits 7 to 0] REC7 to RECO0: Receive error counter
These are receive error counters.

REC7 to RECO values indicate 0 to 7 when the counter value is more than 256, and the
subsequent increment is not counted for counter value. In this case, Error Passive is
indicated for the node status (NS1 and NSO of control status register CSR = 10).

290

CHAPTER 19 CAN CONTROLLER

19.6.5 Bit Timing Register (BTR)

Bit timing register (BTR) stores the prescaler and bit timing setting.

B Bit Timing Register (BTR)

15 14 13 12 11 10 9 8
Address: 001C07, (CANO) — TS2.2 TS2.1 TS2.0 TS1.3 TS1.2 TS1.1 TS1.0
001D07; (CAN1)
Read/write: =) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value: —) (1) (1) (1) (1) (1) (1) (1)
7 6 5 4 3 2 1 0
Address: 001C06y (CANO) | RsJ1 RSJO PSC5 PSC4 PSC3 PSC2 PSC1 PSCO
001D06y, (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (1) (1) (1) (1) (1) (1) (1)

Note:
This register should be set during bus operation stop (HALT = 1).
[Bits 14 to 12] TS2.2 to TS2.0: Time segment 2 setting bits 2 to 0

(1)

These bits define the number of the time quanta (TQ’s) for the time segment 2 (TSEG2). The
time segment 2 is equal to the phase buffer segment 2 (PHASE_SEG2) in the CAN

specification.
[Bits 11 to 8] TS1.3 to TS1.0: Time segment 1 setting bits 3 to 0

These bits define the number of the time quanta (TQ’s) for the time segment 1 (TSEG1). The
time segment 1 is equal to the propagation segment (PROP_SEG) + phase buffer segment 1

(PHASE_SEG1) in the CAN specification.

[Bits 7 and 6] RSJ1 and RSJ0: Resynchronization jump width setting bits 1 and 0

These bits define the number of the time quanta (TQ’s) for the resynchronization jump width.

291

CHAPTER 19 CAN CONTROLLER

[Bits 5 to 0] PSC5 to PSCO0: Prescaler setting bits 5 to 0
These bits define the time quanta (TQ) of the CAN controller.

The bit time segments defined in the CAN specification, and the CAN controller are shown in
Figure 19.6-2 "Bit Time Segment in CAN Specification" and Figure 19.6-3 "Bit Time Segment
in CAN Controller" respectively.

Figure 19.6-2 Bit Time Segment in CAN Specification

i Nominal bit time i

SYNC_SEG | PROP_SEG |PHASE_SEG1|PHASE_SEG2

1

Sample point

Figure 19.6-3 Bit Time Segment in CAN Controller

i Nominal bit time i

SYNC_SEG TSEGH1 TSEG2

1

Sample point

The relationship between PSC = PSC5 to PSCO, TSI = TS1.3 to TS1.0, TS2 = TS2.2 to TS1.0,
and RSJ = RSJ1 and RSJO when the input clock (CLK), time quanta (TQ), bit time (BT),
synchronous segment (SYNC_SEG), time segment 1 and 2 (TSEG1 and TSEG2), and
resynchronization jump width [(RSJ1 and RSJO0) +1] frequency division is shown below.

The input clock is supplied with the machine clock.

TQ = (PSC + 1) x CLK

BT = SYNC_SEG + TSEG1 + TSEG2
=(1+(TS1+1)+(TS2 +1)) xTQ
=(3+TS1+TS2) xTQ

RSJW =(RSJ + 1) xTQ

292

CHAPTER 19 CAN CONTROLLER

For correct operation, the following conditions should be met.

- Device with "G" suffix:
For 1 = PSC = 63:
TSEG1 = 2TQ
TSEG1 RSJW
TSEG2 = 2TQ
TSEG2 = RSJW
For PSC = 0:
TSEG1 = 5TQ
TSEG2 = 2TQ
TSEG2 = RSJW

VIV IV

- Device without "G" suffix:
For 1 = PSC = 63:
TSEG1 = RSJW
TSEG2 = RSJW + 2TQ
For PSC = 0:
TSEG1 2 5TQ
TSEG2 = RSJW +2TQ

In order to meet the bit timing requirements defined in the CAN specification, additions have to
be met, e.g. the propagation delay has to be considered.

293

CHAPTER 19 CAN CONTROLLER

19.6.6 Message Buffer Valid Register (BVALR)

Message buffer valid register (BVALR) stores the validity of the message buffers or
displays their state.

B Message Buffer Valid Register (BVALR)

15 14 13 12 11 10 9 8

Address: 000071, (CANO) | BVAL15 | BVAL14 | BVAL13 | BVAL12 | BVAL11 | BVAL10 | BVAL9 BVALS8
000081y (CANT)

Read/write: (R/W) (R/W) (R/W) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value: 0) 0) 0) 0) 0) 0) 0) 0)
7 6 5 4 3 2 1 0

Address: 000070, (CANO) | BVAL7 | BVAL6 | BVAL5 | BVAL4 | BVAL3 | BVAL2 | BVAL1 | BVALO
000080y (CAN1)
Read/write: ~ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (0) (0) (0) (0) (0) (0) (0) (0)

0: Message buffer (x) invalid
1: Message buffer (x) valid
If the message buffer (x) is set to invalid, it will not transmit or receive messages.

If the buffer is set to invalid during transmission operating, it becomes invalid (BVALx = 0) after
the transmission is completed or terminated by an error.

If the buffer is set to invalid during reception operating, it immediately becomes invalid (BVALx =
0). If received messages are stored in a message buffer (x), the message buffer (x) is invalid
after storing the messages.

Note:
x indicates a message buffer number (x = 0 to 15).

When invaliding a message buffer (x) by writing 0 to a bit (BVALx), execution of a bit
manipulation instruction is prohibited until the bit is set to 0.

To invalidate the message buffer (by setting the BVALR: BVAL bit to 0) while CAN Controller
is participating in CAN communication (the read value of the CSR: HALT bit is 0 and CAN
Controller is ready to receive or transmit messages), follow the cautions in Section 19.14
"Precautions when Using CAN Controller".

294

CHAPTER 19 CAN CONTROLLER

19.6.7 IDE register (IDER)

This register stores the frame format used by the message buffers (x) during
transmission/reception.

B IDE Register (IDER)

15 14 13 12 11 10 9 8

Address: 001C09y, (CANO) | IDE15 IDE14 IDE13 IDE12 IDE11 IDE10 IDE9 IDE8
001D09y (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
7 6 5 4 3 2 1 0
Address: 001C08y (CANO) | IDE7 IDE6 IDE5 IDE4 IDE3 IDE2 IDE1 IDEO

001D08y (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)

0: The standard frame format (ID11 bit) is used for the message buffer (x).
1: The extended frame format (ID29 bit) is used for the message buffer (x).

Note:

This register should be set when the message buffer (x) is invalid (BVALx of the message
buffer valid register (BVALR) = 0). Setting when the buffer is valid (BVALx = 1) may cause
unnecessary received messages to be stored.

To invalidate the message buffer (by setting the BVALR: BVAL bit to 0) while CAN Controller
is participating in CAN communication (the read value of the CSR: HALT bit is 0 and CAN
Controller is ready to receive or transmit messages), follow the cautions in Section 19.14
"Precautions when Using CAN Controller".

295

CHAPTER 19 CAN CONTROLLER

19.6.8 Transmission Request Register (TREQR)

Transmission request register (TREQR) stores transmission requests to the message
buffers (x) or displays their state.

B Transmission Request Register (TREQR)

Address: 000072, (CANO) | TREQ7 TREQ6 TREQ5 TREQ4 TREQS3 TREQ2 TREQ1 TREQO
000082 (CAN1)

296

Address: 000073, (CANO) | TREQ15 | TREQ14 | TREQ13 | TREQ12 | TREQ11 | TREQ10 | TREQ9 | TREQS
000083, (CAN1)

15 14 13 12 11 10 9 8

Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value: (0) (0) (0) (0) (0) (0) () (0)
7 6 5 4 3 2 1 0

Read/write: (R/W) (R/W) (R/W) (R/W) (RIW) (RIW) (RIW) (RIW)
Initial value: 0) 0) 0) 0) 0) 0) 0) 0)

When 1 is written to TREQx, transmission to the message buffer (x) starts. If RFWTx of the
remote frame receiving wait register (RFWTR)*1 is 0, transmission starts immediately. However,
if RFWTx = 1, transmission starts after waiting until a remote frame is received (RRTRx of the
remote request receiving register (RRTRR)*1 becomes 1). Transmission starts*2 immediately
even when RFWTx = 1, if RRTRx is already 1 when 1 is written to TREQXx.

*1: For RFWTR and TRTRR, see 19.6.9 "Transmission RTR Register (TRTRR)" and 19.6.10
"Remote Frame Receiving Wait Register (RFWTR)".

*2: For cancellation of transmission, see 19.6.11 "Transmission Cancel Register (TCANR)" and
19.6.12 "Transmission Complete Register (TCR)".

Writing 0 to TREQx is ignored.
0 is read when read-modify-write instruction is performed.

If clearing (to 0) at completion of the transmit operation and setting by writing 1 are concurrent,
clearing is preferred.

If 1 is written to more than one bit, transmission is performed, starting with the lower-numbered
message buffer (x).

TREQx is 1 while transmission is pending, and becomes 0 when transmission is completed or
canceled.

CHAPTER 19 CAN CONTROLLER

19.6.9 Transmission RTR Register (TRTRR)

This register stores the RTR (Remote Transmission Request) bits for the message

buffers (x).

B Transmission RTR Register (TRTRR)

15 14 13 12 11 10 9 8
Address: 001C0OBy (CANO) | TRTR15 | TRTR14 | TRTR13 | TRTR12 | TRTR11 TRTR10 TRTR9 TRTR8
001DOBy (CAN1)
Read/write: ~ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value: (0) (0) (0) (0) (0) (0) (0) (0)
7 6 5 4 3 2 1 0
Address: 001COAy (CANO) | TRTR7 TRTR6 TRTR5 TRTR4 TRTR3 TRTR2 TRTR1 TRTRO
001DO0Ay; (CAN1)
Read/write: ~ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value: (0) (0) (0) (0) (0) (0) (0) (0)

0: Data frame
1: Remote frame

297

CHAPTER 19 CAN CONTROLLER

19.6.10 Remote Frame Receiving Wait Register (RFWTR)

Remote frame receiving wait register (RFWTR) stores the conditions for starting

transmission when a request for data frame transmission is set (TREQx of the

transmission request register (TREQR) is 1 and TRTRx of the transmitting RTR register

(TRTRR) is 0).

¢ 0: Transmission starts immediately

* 1: Transmission starts after waiting until remote frame received (RRTRx of remote
request receiving register (RRTRR) becomes 1)

H Remote Frame Receiving Wait Register (RFWTR)

15 14 13 12 11 10 9 8

Address: 001CODy (CANO) | RFWT15 | RFWT14 | RFWT13 | RFWT12 | RFWT11 | RFWT10 | RFWT9 RFWT8
001DODy (CANT1)

Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
7 6 5 4 3 2 1 0

Address: 001COCy (CANO) | RFWT7 RFWT6 RFWT5 RFWT4 RFWT3 RFWT2 RFWT1 RFWTO
001DOCy (CANT)

Read/write: (R/W) (R/W) (RW) (RW) (RW) (RW) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)

Note:
Transmission starts immediately if RRTRx is already 1 when a request for transmission is
set.

For remote frame transmission, do not set RFWTx to 1.

298

CHAPTER 19 CAN CONTROLLER

19.6.11 Transmission Cancel Register (TCANR)

When 1 is written to TCANYX, this register cancels a pending request for transmission
to the message buffer (x).

At completion of cancellation, TREQx of the transmission request register (TREQR)
becomes 0. Writing 0 to TCANXx is ignored.

This is a write-only register and its read value is always 0.

B Transmission Cancel Register (TCANR)

15 14 13 12 11 10 9 8

Address: 000075, (CANO) | TCAN15 | TCAN14 | TCAN13 | TCAN12 | TCAN11 | TCAN10 | TCAN9 | TCANS
000085y (CAN1)

Read/write: (W) (W) (W) (W) (W) (W) (W) (W)
Initial value: 0) 0) (0) 0) (0) (0) (0) (0)
7 6 5 4 3 2 1 0

Address: 000074 (CANO) | TCAN7 TCANG6 TCANS TCAN4 TCAN3 TCAN2 TCAN1 TCANO

000084y (CAN1)
Read/write: (W) (W) (W) W) W) (W) (W) (W)

Initial value: (0) (0) (0) (0) (0) 0) (0) (0)

299

CHAPTER 19 CAN CONTROLLER

19.6.12 Transmission Complete Register (TCR)

At completion of transmission by the message buffer (x), the corresponding TCx
becomes 1.

If TIEx of the transmission complete interrupt enable register (TIER) is 1, an interrupt
occurs.

Bl Transmission Complete Register (TCR)

15 14 13 12 11 10 9 8

Address: 000077, (CANO) | TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8
000087, (CAN1)
Read/write: ~ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (0) (0) (0) (0) (0) (0) (0) (0)
7 6 5 4 3 2 1 0
Address: 000076} (CANO) TC7 TC6 TC5 TC4 TC3 TC2 TCH TCO
000086y (CANT)

Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (0) (0) (0) (0) (0) (0) (0) (0)

O Conditions for TCx =0
e Write 0 to TCx.
* Write 1 to TREQXx of the transmission request register (TREQR).
After the completion of transmission, write 0 to TCx to set it to 0. Writing 1 to TCx is ignored.
1 is read when read-modify-write instruction is performed.
Note:

If setting to 1 by completion of the transmit operation and clearing to 0 by writing occur at the
same time, the bit is set to 1.

300

CHAPTER 19 CAN CONTROLLER

19.6.13 Transmission Interrupt Enable Register (TIER)

This register enables or disables the transmission interrupt by the message buffer (x).
The transmission interrupt is generated at transmission completion (when TCx of the

transmission complete register (TCR) is 1).

B Transmission Interrupt Enable Register (TIER)

15 14 13 12 11 10 9 8

Address: 001COF (CANO) TIE15 TIE14 TIE13 TIE12 TIE1 TIE10 TIE9 TIE8

001DOFy (CANT)
Read/write: ~ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (0) (0) (0) (0) (0) (0) (0) (0)
7 6 5 4 3 2 1 0
Address: 001COE (CANO) TIE7 TIE6 TIE5 TIE4 TIE3 TIE2 TIE1 TIEO
001DOEy (CAN1)

Read/write: (R/W) (R/W) (R/W) (RIW) (RIW) (RIW) (RIW) (R/W)

Initial value: (0) (0) (0) (0) (0) (0) (0) (0)

0: Transmission interrupt disabled
1: Transmission interrupt enabled

301

CHAPTER 19 CAN CONTROLLER

19.6.14 Reception Complete Register (RCR)

At completion of storing received message in the message buffer (x), RCx becomes 1.
If RIEX of the reception complete interrupt enable register (RIER) is 1, an interrupt
occurs.

B Reception Complete Register (RCR)

15 14 13 12 11 10 9 8

Address: 000079, (CANO) | Rc15 RC14 RC13 RC12 RC11 RC10 RC9 RC8
000089}, (CANT)
Read/write: ~ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (0) (0) 0) 0) (0) (0) (0) (0)
7 6 5 4 3 2 1 0
Address: 000078, (CANO) | RC7 RC6 RC5 RC4 RC3 RC2 RCH RCO

000088, (CAN1)
Read/write: ~ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (0) (0) (0) (0) (0) (0) (0) (0)

O Conditions for RCx =0
Write 0 to RCx.

After completion of handling received message, write 0 to RCx to set it to 0. Writing 1 to RCx is
ignored.

1 is read when read-modify-write instruction is performed.
Note:

If setting to 1 by completion of the receive operation and clearing to 0 by writing occur at the
same time, the bit is set to 1.

302

CHAPTER 19 CAN CONTROLLER

19.6.15 Remote Request Receiving Register (RRTRR)

After a remote frame is stored in the message buffer (x), RRTRx becomes 1 (at the
same time as RCx setting to 1).

H Remote Request Receiving Register (RRTRR)

15 14 13 12 11 10 9 8

Address: 00007By (CANO)
00008By (CANT)

Read/write: (R/W) (RIW) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

RRTR15 | RRTR14 | RRTR13 | RRTR12 | RRTR11 | RRTR10 | RRTR9 | RRTRS

Initial value: 0) 0) 0) 0) 0) (0) 0) (0)

Address: 00007A; (CANO) | prTR7 | RRTR6 | RRTR5 | RRTR4 | RRTR3 | RRTR2 | RRTR1 | RRTRO
00008A (CAN1)

Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (0) (0) (0) (0) (0) (0) (0) (0)

O Conditions for RRTRx =0
e Write 0 to RRTRx.

e After a received data frame is stored in the message buffer (x) (at the same time as RCx
setting to 1).

e Transmission by the message buffer (x) is completed (TCx of the transmission complete
register (TCR) is 1).

Writing 1 to RRTRx is ignored.
1 is read when read-modify-write instruction is performed.
Note:

If setting to 1 by completion of the receive operation and clearing to 0 by writing occur at the
same time, the bit is setto 1.

303

CHAPTER 19 CAN CONTROLLER

19.6.16 Receive Overrun Register (ROVRR)

If RCx of the reception complete register (RCR) is 1 when completing storing of a
received message in the message buffer (x), ROVRx becomes 1, indicating that
reception has overrun.

Bl Receive Overrun Register (ROVRR)

15 14 13 12 11 10 9 8

Address: 00007Dy (CANO) | ROVR15 | ROVR14 | ROVR13 | ROVR12 | ROVR11 | ROVR10 | ROVR9 | ROVR8
00008Dy; (CAN1)

Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value: 0) 0) 0) 0) 0) 0) 0) 0)
7 6 5 4 3 2 1 0

Address: 00007Cy (CANO) | ROVR7 | ROVR6 | ROVR5 | ROVR4 | ROVR3 | ROVR2 | ROVR1 | ROVRO
00008Cy; (CAN1)
Read/write: ~ (R/W) (R/W) (R'W) (R/W) (R/W) (R'W) (R/W) (R'W)

Initial value: (0) 0) (0) (0) (0) (0) (0) (0)

Writing 0 to ROVRXx results in ROVRx = 0. Writing 1 to ROVRX is ignored. After checking that
reception has overrun, write 0 to ROVRXx to set it to 0.

1 is read when read-modify-write instruction is performed.

Note:

If setting to 1 by completion of the receive operation and clearing to 0 by writing occur at the
same time, the bit is set to 1.

304

CHAPTER 19 CAN CONTROLLER

19.6.17 Reception Interrupt Enable Register (RIER)

Reception interrupt enable register (RIER) enables or disables the reception interrupt

by the message buffer (x).
The reception interrupt is generated at reception completion (when RCx of the
reception completion register (RCR) is 1).

H Reception Interrupt Enable Register (RIER)

15 14 13 12 11 10 9 8

Address: 00007Fy (CANO) RIE15 RIE14 RIE13 RIE12 RIE11 RIE10 RIE9 RIE8

00008Fy; (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (0) (0) (0) (0) (0) (0) (0) (0)
7 6 5 4 3 2 1 0
Address: 00007Ey (CANO) RIE7 RIE6 RIE5 RIE4 RIE3 RIE2 RIE1 RIEO

00008E,; (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (0) (0) (0) (0) (0) (0) (0) (0)

0: Reception interrupt disabled
1: Reception interrupt enabled

305

CHAPTER 19 CAN CONTROLLER

19.6.18 Acceptance Mask Select Register (AMSR)

This register selects masks (acceptance mask) for comparison between the received
message ID’s and the message buffer ID’s.

B Acceptance Mask Select Register (AMSR)

BYTEO 7 6 5 4 3 2 1 0

Address: 001C10y (CANO) | AMS3.1 | AMS3.0 | AMS2.1 | AMS2.0 | AMS1.1 | AMS1.0 | AMS0.1 | AMS0.0
001D10y (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)

BYTE1 15 14 13 12 11 10 9 8

Address: 001C11, (CANO) | AMS7.1 | AMS7.0 | AMS6.1 | AMS6.0 | AMS5.1 | AMS5.0 | AMS4.1 | AMS4.0
001D11y (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)

BYTE2 7 6 5 4 3 2 1 0

Address: 001C12 (CANO) | AMS11.1 | AMS11.0 | AMS10.1 | AMS10.0 | AMS9.1 | AMS9.0 | AMS8.1 | AMS8.0
001D12 (CAN1)

Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) X) (X) (X) (X) (X) (X))

BYTE3 15 14 13 12 11 10 9 8

Address: 001C13, (CANO) | AMS15.1 | AMS15.0 | AMS14.1 | AMS14.0 | AMS13.1 | AMS13.0 | AMS12.1 | AMS12.0
001D13, (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)

306

CHAPTER 19 CAN CONTROLLER

Table 19.6-2 Selection of Acceptance Mask

AMSXx.1 AMSXx.0 Acceptance Mask
0 0 Full-bit comparison
0 1 Full-bit mask
1 0 Acceptance mask register 0 (AMRO)
1 1 Acceptance mask register 1 (AMR1)
Note:

AMSx.1 and AMSx.0 should be set when the message buffer (x) is invalid (BVALx of the
message buffer valid register (BVALR) is 0). Setting when the buffer is valid (BVALx = 1)
may cause unnecessary received messages to be stored

To invalidate the message buffer (by setting the BVALR: BVAL bit to 0) while CAN Controller
is participating in CAN communication (the read value of the CSR: HALT bit is 0 and CAN
Controller is ready to receive or transmit messages), follow the cautions in Section 19.14
"Precautions when Using CAN Controller".

307

CHAPTER 19 CAN CONTROLLER

19.6.19 Acceptance Mask Registers 0 and 1 (AMRO and AMR1)

There are two acceptance mask registers, AMRO and AMR1, both of which are
available either in the standard frame format or extended frame format.

AM28 to AM18 (11 bits) are used for acceptance masks in the standard frame format
and AM28 to AMO (29 bits) are used for acceptance masks in the extended format.

B Acceptance Mask Registers 0 and 1 (AMRO and AMR1)

AMRO BYTEO 7 6 5 4 3 2 1 0

Address: 001C14y (CANO) | AM28 AM27 AM26 AM25 AM24 AM23 AM22 AM21
001D14y, (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)

AMRO BYTE1 15 14 13 12 11 10 9 8

Address: 001C15y (CANO) | AM20 AM19 AM18 AM17 AM16 AM15 AM14 AM13
001D15y (CAN1)
Read/write: ~ (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
AMRO BYTE2 7 6 5 4 3 2 1 0
Address: 001C16, (CANO) | AM12 AM11 AM10 AM9 AM8 AM7 AM6 AM5

001D16, (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
AMRO BYTE3 15 14 13 12 11 10 9 8
Address: 001C17 (CANO) AM4 AM3 AM2 AM1 AMO — — —
001D17y (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W))) =)
Initial value: (X) (X) (X) (X) (X) (—) =) (—)

308

CHAPTER 19 CAN CONTROLLER

AMR1 BYTEO 7 6 5 4 3 2 1 0

Address: 001C18y (CANO) AM28 AM27 AM26 AM25 AM24 AM23 AM22 AM21
001D18y (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: ~ (X) (X) (X) (X) (X) (X) (X) (X)

AMR1 BYTEH1 15 14 13 12 11 10 9 8

Address: 001C19y (CANO) | AM20 AM19 AM18 AM17 AM16 AM15 AM14 AM13
001D19y (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (RIW) (RIW) (RIW)

Initial value: (X)))))))
AMR1 BYTE2 7 6 5 4 3 2 1 0
Address: 001C1Ap (CANO) AM12 AM11 AM10 AM9 AM8 AM7 AM6 AM5

001D1Ay (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
AMR1 BYTES3 15 14 13 12 11 10 9 8
Address: 001C1By (CANO) | AM4 AM3 AM2 AMA1 AMO — — —
001D1By (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) =) =) =)
Initial value: (X) (X) (X) (X) (X) (—) (—) (=)
O 0: Compare

Compare the bit of the acceptance code (ID register IDRx for comparing with the received
message ID) corresponding to this bit with the bit of the received message ID. If there is no
match, no message is received.

O 1: Mask

Mask the bit of the acceptance code ID register (IDRx) corresponding to this bit. No comparison
is made with the bit of the received message ID.

Note:

AMRO and AMR1 should be set when all the message buffers (x) selecting AMRO and AMR1
are invalid (BVALx of the message buffer valid register (BVALR) is 0). Setting when the
buffers are valid (BVALx = 1) may cause unnecessary received messages to be stored.

To invalidate the message buffer (by setting the BVALR: BVAL bit to 0) while CAN Controller
is participating in CAN communication (the read value of the CSR: HALT bit is 0 and CAN
Controller is ready to receive or transmit messages), follow the cautions in Section 19.14
"Precautions when Using CAN Controller".

309

CHAPTER 19 CAN CONTROLLER

19.6.20 Message Buffers

There are 16 message buffers. Message buffer x (x = 0 to 15) consists of an ID register
(IDRx), DLC register (DLCRXx), and data register (DTRX).

B Message Buffers

310

O The message buffer (x) is used both for transmission and reception.

O The lower-numbered message buffers are assigned higher priority.

At transmission, when a request for transmission is made to more than one message buffer,
transmission is performed, starting with the lowest-numbered message buffer (See 19.7
"Transmission of CAN Controller").

At reception, when the received message ID passes through the acceptance filter
(mechanism for comparing the acceptance-masked ID of received message and message
buffer) of more than one message buffer, the received message is stored in the lowest-
numbered message buffer (See 19.8 "Reception of CAN Controller").

O When the same acceptance filter is set in more than one message buffer, the message buffers
can be used as a multi-level message buffer. This provides allowance for receiving time.

(See 19.12 "Procedure for Reception by Message Buffer (x)").

Note:

A write operation to message buffers and general-purpose RAM areas should be performed
in words to even addresses only. A write operation in bytes causes undefined data to be
written to the upper byte at writing to the lower byte. Writing to the upper byte is ignored.

When the BVALXx bit of the message buffer valid register (BVALR) is 0 (Invalid), the message
buffers x (IDRx, DLCRx, and DTRXx) can be used as general-purpose RAM.

During the receive/transmit operation of the CAN controller, the CAN Controller write/read to/
from the message buffers. If the CPU tries to write/read to/from the message buffers in this
period, the CPU has to wait a maximum time of 64 machine cycles.

This is also true for the general-purpose RAM area (address 001A004 to 001A1Fy and
address 001B00y to 001B1F).

19.6.21 ID Register x (x = 0 to 15) (IDRx)

CHAPTER 19 CAN CONTROLLER

ID Register x (x = 0 to 15) (IDRXx) is the ID register for message buffer (x).

B ID Register x (x = 0 to 15) (IDRx)

BYTEO 7 6 5 4 3 2 1 0
Address: 001A20, + 4 x (CANO) ID28 D27 ID26 ID25 D24 D23 D22 ID21
001B20, + 4 x (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
BYTE1 15 14 13 12 11 10 9 8
Address: 001A21y + 4 x (CANO) ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13
001B21, + 4 x (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
BYTE2 7 6 5 4 3 2 1 0
Address: 001A22, + 4 x (CANO) ID12 ID11 ID10 ID9 D8 ID7 D6 ID5
001B22 + 4 x (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
BYTE3 15 14 13 12 11 10 9 8
Address: 001A23y + 4 x (CANO) ID4 ID3 ID2 ID1 IDO — — —
001B23, + 4 x (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) ()) ()
Initial value: (X) (X) (X) (X) (X) [=) (—)

When using the message buffer (x) in the standard frame format (IDEx of the IDE register
(IDER) = 0), use 11 bits of ID28 to ID18. When using the buffer in the extended frame format

(IDEx = 1), use 29 bits of 1D28 to IDO.

ID28 to IDO have the following functions:

e Set transmitted message ID.

Note:

Set acceptance code (ID for comparing with the received message ID).

In the standard frame format, setting 1s to all bits of ID28 to ID22 is prohibited).

e Store the received message ID.

311

CHAPTER 19 CAN CONTROLLER

Note:

All received message ID bits are stored (even if bits are masked). In the standard frame
format, ID17 to IDO stores image of old message left in the receive shift register.

Note:

A write operation to this register should be performed in words. A write operation in bytes
causes undefined data to be written to the upper byte at writing to the lower byte. Writing to
the upper byte is ignored.

This register should be set when the message buffer (x) is invalid (BVALx of the message
buffer valid register (BVALR) is 0). Setting when the buffer is valid (BVALx = 1) may cause
unnecessary received messages to be stored.

To invalidate the message buffer (by setting the BVALR: BVAL bit to 0) while CAN Controller
is participating in CAN communication (the read value of the CSR: HALT bit is 0 and CAN
Controller is ready to receive or transmit messages), follow the cautions in Section 19.14
"Precautions when Using CAN Controller".

312

CHAPTER 19 CAN CONTROLLER

19.6.22 DLC Register x (x = 0 to 15) (DLCRXx)

DLC Register x (x = 0 to 15) (DLCRXx) is the DLC register for message buffer x.

B DLC Register x (x = 0 to 15) (DLCRXx)

7 6 5 4 3 2 1 0
Address: 001A60y + 2 x (CANO) —_ — — — DLC3 DLC2 DLC1 DLCO
001B60y + 2 x (CAN1)
Read/write: (—) (—) (—) (—) (R/W) (R/W) (R/W) (R/W)
Initial value: (—) (=) (=) (—) (X) (X) (X) (X)

O Transmission
Set the data length (byte count) of a transmitted message when a data frame is transmitted

(TRTRXx of the transmitting RTR register (TRTRR) is 0).
Set the data length (byte count) of a requested message when a remote frame is transmitted

(TRTRx = 1).

Note:
Setting other than 0000 to 1000 (0 to 8 bytes) is prohibited.

O Reception
Store the data length (byte count) of a received message when a data frame is received

(RRTRXx of the remote frame request receiving register (RRTRR) is 0).
Store the data length (byte count) of a requested message when a remote frame is received

(RRTRx = 1).

Note:
A write operation to this register should be performed in words. A write operation in bytes

causes undefined data to be written to the upper byte at writing to the lower byte. Writing to

the upper byte is ignored.

313

CHAPTER 19 CAN CONTROLLER

19.6.23 Data Register x (x = 0 to 15) (DTRXx)

Data register x (x = 0 to 15) (DTRXx) is the data register for message buffer (x).

This register is used only in transmitting and receiving a data frame but not in
transmitting and receiving a remote frame.

B Data Register x (x = 0 to 15) (DTRx)

Address:

Address:

Address:

Address:

314

BYTEO

001A804 + 8 x (CANO)
001B80 + 8 x (CANT)
Read/write:

Initial value:

BYTE1

001A81 + 8 x (CANO)
001B81 + 8 x (CANT1)
Read/write:

Initial value:

BYTE2

001A824 + 8 x (CANO)
001B82y + 8 x (CAN1)
Read/write:

Initial value:

BYTE3

001A83y + 8 x (CANO)
001B83y + 8 x (CAN1)
Read/write:

Initial value:

7 6 5 4 3 2 1 0
D7 D6 D5 D4 D3 D2 D1 DO
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
(X) (X) (X) (X) (X) (X) (X) (X)
15 14 13 12 11 10 9 8
D7 D6 D5 D4 D3 D2 D1 DO
(RIW) (RIW) (RIW) (RIW) (RW) (RW) (RW) (RW)
(X) (X) (X) (X) (X) (X) (X) (X)
7 6 5 4 3 2 1 0
D7 D6 D5 D4 D3 D2 D1 DO
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
(X) (X) (X) (X) (X) (X) (X) (X)
15 14 13 12 11 10 9 8
D7 D6 D5 D4 D3 D2 D1 DO
(RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
X) X) X) X) (X) (X) X) (X)

Address:

Address:

Address:

Address:

BYTE4

CHAPTER 19 CAN CONTROLLER

7 6 5 4 3 2 1 0
001A84 + 8 x (CANO) D7 D6 D5 D4 D3 D2 D1 DO
001B84, + 8 x (CAN1)

Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (RIW) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
BYTES 15 14 13 12 11 10 9 8
001A85,; + 8 x (CANO) D7 D6 D5 D4 D3 D2 D1 DO
001B85,; + 8 x (CAN1)

Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
BYTEG6 7 6 5 4 3 2 1 0
001A86, + 8 x (CANO) D7 D6 D5 D4 D3 D2 D1 DO
001B86} + 8 x (CAN1)

Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
BYTE7 15 14 13 12 11 10 9 8
001A87} + 8 x (CANO) D7 D6 D5 D4 D3 D2 D1 DO
001B87} + 8 x (CAN1)

Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value: (X) (X) (X) (X) (X) (X) (X) (X)

O Sets transmitted message data (any of 0 to 8 bytes).

Data is transmitted in the order of BYTEOQ, BYTET, ..., BYTE?7, starting with the MSB.

O Stores received message data.
Data is stored in the order of BYTEOQ, BYTET, ..., BYTE?7, starting with the MSB.

Even if the received message data is less than 8 bytes, the remaining bytes of the data register
(DTRx), to which data are stored, are undefined.

Note:

A write operation to this register should be performed in words. A write operation in bytes
causes undefined data to be written to the upper byte at writing to the lower byte. Writing to
the upper byte is ignored.

315

CHAPTER 19 CAN CONTROLLER

19.7 Transmission of CAN Controller

When 1 is written to TREQXx of the transmission request register (TREQR),
transmission by the message buffer (x) starts. At this time, TREQx becomes 1 and TCx
of the transmission complete register (TCR) becomes 0.

B Starting Transmission of the CAN Controller

If RFWTx of the remote frame receiving wait register (RFWTR) is 0, transmission starts
immediately. If RFWTx is 1, transmission starts after waiting until a remote frame is received
(RRTRXx of the remote request receiving register (RRTRR) becomes 1).

If a request for transmission is made to more than one message buffer (more than one TREQx
is 1), transmission is performed, starting with the lowest-numbered message buffer.

Message transmission to the CAN bus (by the transmit output pin TX) starts when the bus is
idle.

If TRTRx of the transmission RTR register (TRTRR) is 0, a data frame is transmitted. If TRTRx
is 1, a remote frame is transmitted.

If the message buffer competes with other CAN controllers on the CAN bus for transmission and
arbitration fails, or if an error occurs during transmission, the message buffer waits until the bus
is idle and repeats retransmission until it is successful.

B Canceling a Transmission Request from the CAN Controller

316

O Canceling by transmission cancel register (TCANR)

A transmission request for message buffer (x) having not executed transmission during
transmission pending can be canceled by writing 1 to TCANXx of the transmission cancel register
(TCANR). At completion of cancellation, TREQx becomes 0.

Canceling by storing received message

The message buffer (x) having not executed transmission despite transmission request also
performs reception.

If the message buffer (x) has not executed transmission despite a request for transmission of a
data frame (TRTRx = 0 or TREQx = 1), the transmission request is canceled after storing
received data frames passing through the acceptance filter (TREQx = 0).

Note:

A transmission request is not canceled by storing remote frames (TREQx = 1 remains
unchanged).

If the message buffer (x) has not executed transmission despite a request for transmission of a
remote frame (TRTRx = 1 or TREQx = 1), the transmission request is canceled after storing
received remote frames passing through the acceptance filter (TREQx = 0).

Note:

The transmission request is canceled by storing either data frames or remote frames.

CHAPTER 19 CAN CONTROLLER

B Completing Transmission of the CAN Controller

When transmission is successful, RRTRx becomes 0, TREQx becomes 0, and TCx of the
transmission complete register (TCR) becomes 1.

If the transmission complete interrupt is enabled (TIEx of the transmission complete interrupt
enable register (TIER) is 1), an interrupt occurs.

H Transmission Flowchart of the CAN Controller

Figure 19.7-1 "Transmission Flowchart of the CAN Controller" shows a transmission flowchart of
the CAN controller.

317

CHAPTER 19 CAN CONTROLLER
Figure 19.7-1 Transmission Flowchart of the CAN Controller

Transmission request
(TREQx :=1)

| TCx:=0 |

RRTRx?

If there are any other message buffers
meeting the above conditions, select
the lowest-numbered message buffer.

NO

Is the bus idle?

| A remote frame is transmitted.

A data frame is transmitted. |

NO

Is transmission

successful?
TCANXx?
RRTRx:=0 1
TREQx =0
TCx =1 TREQx := 0
1
TIEx ?
0 A transmission complete
interrupt occurs.

(End of transmission)

318

CHAPTER 19 CAN CONTROLLER

19.8 Reception of CAN Controller

Reception starts when the start of data frame or remote frame (SOF) is detected on the

CAN bus.

B Acceptance Filtering

The received message in the standard frame format is compared with the message buffer (x)
set in the standard frame format (IDEx of the IDE register (IDER) is 0). The received message in
the extended frame format is compared with the message buffer (x) set (IDEx is 1) in the
extended frame format.

If all the bits set to Compare by the acceptance mask agree after comparison between the
received message ID and acceptance code (ID register (IDRx) for comparing with the received
message D), the received message passes to the acceptance filter of the message buffer (x).

B Storing Received Message

When the receive operation is successful, received messages are stored in a message buffer x
including IDs passed through the acceptance filter.

When receiving data frames, received messages are stored in the ID register (IDRx), DLC
register (DLCRXx), and data register (DTRXx).

Even if received message data is less than 8 bytes, some data is stored in the remaining bytes
of the DTRx and its value is undefined.

When receiving remote frames, received messages are stored only in the IDRx and DLCRx,
and the DTRx remains unchanged.

If there is more than one message buffer including IDs passed through the acceptance filter, the
message buffer x in which received messages are to be stored is determined according to the
following rules.

¢ The order of priority of the message buffer x (x = 0 to 15) rises as its number lower; in other
words, message buffer 0 is given the highest and the message buffer 15 is given the lowest
priority.

¢ Basically, message buffers with the RCx bit of 0 in the receive completion register (RCR) are
preferred in storing received messages.

¢ If the bits of the acceptance mask select register (AMSR) are set to All Bits Compare (for
message buffers with the AMSx.1 and AMSx.0 bits set to 00), received messages are stored
irrespective of the value of the RCx bit of the RCR.

* If there are message buffers with the RCx bit of the RCR set to 0, or with the bits of the
AMSR set to All Bits Compare, received messages are stored in the lowest-number (highest-
priority) message buffer x.

* |f there are no message buffers above-mentioned, received messages are stored in a lower-
number message buffer x.

* Message buffers should be arranged in ascending numeric order. The lowest message
buffers should be with All Bits Compare, then AMRO or AMR1 masks. And The highest
message buffers should be with All Bits Mask.

319

CHAPTER 19 CAN CONTROLLER

Figure 19.8-1 "Flowchart Determining Message Buffer (x) where Received Messages Stored"
shows a flowchart for determining the message buffer (x) where received messages are to be
stored. It is recommended that message buffers be arranged in the following order: message
buffers in which each AMSR bit is set to All Bits Compare, message buffers using AMRO or
AMR1, and message buffers in which each AMSR bit is set to All Bits Mask.

Figure 19.8-1 Flowchart Determining Message Buffer (x) where Received Messages Stored

(Start)
!

Are message buffers with RCx set to 0 NO
or with AMSx.1 and AMSx.0 set to 00
found?

YES
Select the lowest-numbered Select the lowest-numbered
message buffer. message buffer.

=

H Receive Overrun

When a message is stored in the message buffer with the corresponding RCx being already set
to 1, it will results in receive overrun. In this case, the corresponding ROVRXx bit in the receive
overrun register ROVRR is set to 1.

B Processing for Reception of Data Frame and Remote Frame

320

O Processing for reception of data frame

RRTRx of the remote request receiving register (RRTRR) becomes 0.

TREQXx of the transmission request register (TREQR) becomes 0 (immediately before storing
the received message). A transmission request for message buffer (x) having not executed
transmission will be canceled.

Note:

A request for transmission of either a data frame or remote frame is canceled.

Processing for reception of remote frame
RRTRx becomes 1.

If TRTRx of the transmitting RTR register (TRTRR) is 1, TREQx becomes 0. As a result, the
request for transmitting remote frame to message buffer having not executed transmission will
be canceled.

Note:
A request for data frame transmission is not canceled.

For cancellation of a transmission request, see Figure 19.7-1 "Transmission Flowchart of the
CAN Controller".

CHAPTER 19 CAN CONTROLLER

H Completing Reception
RCx of the reception complete register (RCR) becomes 1 after storing the received message.

If a reception interrupt is enabled (RIEx of the reception interrupt enable register (RIER) is 1), an
interrupt occurs.

Note:

This CAN controller will not receive any messages transmitted by itself.

321

CHAPTER 19 CAN CONTROLLER

19.9 Reception Flowchart of CAN Controller

Figure 19.9-1 "Reception Flowchart of the CAN Controller" shows a reception
flowchart of the CAN controller.

Bl Reception Flowchart of the CAN Controller

Figure 19.9-1 Reception Flowchart of the CAN Controller

Detection of start of data frame
or remote frame (SOF)

Is any message buffer (x) passing to
the acceptance filter found?

NO

Is reception
successful?

Determine message buffer (x) where re-
ceived messages to be stored.

!

Store the received message
in the message buffer (x).

Data frame Remote frame

RRTRXx = RRTRx =1

TRTRx?

| RCx :=1 |
1

0

A reception interrupt
occurs.

(End of reception)

322

CHAPTER 19 CAN CONTROLLER

19.10 How to Use the CAN Controller

The following settings are required to use the CAN controller:

e Bit timing

¢ Frame format

* ID

e Acceptance filter
e Low-power consumption mode

B Setting Bit Timing

The bit timing register (BTR) should be set during bus operation stop (when the bus operation
stop bit (HALT) of the control status register (CSR) is 1).

After the setting completion, write 0 to HALT to cancel bus operation stop.

B Setting Frame Format

B Setting ID

Set the frame format used by the message buffer (x). When using the standard frame format,
set IDEXx of the IDE register (IDER) to 0. When using the extended frame format, set IDEx to 1.

This setting should be made when the message buffer (x) is invalid (BVALx of the message
buffer valid register (BVALR) is 0). Setting when the buffer is valid (BVALx = 1) may cause
unnecessary received messages to be stored.

Set the message buffer (x) ID to 1D28 to IDO of ID register (IDRx). The message buffer (x) ID
need not be set to ID11 to IDO in the standard frame format. The message buffer (x) ID is used
as a transmission message at transmission and is used as an acceptance code at reception.

This setting should be made when the message buffer (x) is invalid (BVALx of the message
buffer valid register (BVALR) is 0). Setting when the buffer is valid (BVALx = 1) may cause
unnecessary received messages to be stored.

B Setting Acceptance Filter

The acceptance filter of the message buffer (x) is set by an acceptance code and acceptance
mask set. It should be set when the acceptance message buffer (x) is invalid (BVALx of the
message buffer enable register (BVALR) is 0). Setting when the buffer is valid (BVALx = 1) may
cause unnecessary received messages to be stored.

Set the acceptance mask used in each message buffer (x) by the acceptance mask select
register (AMSR). The acceptance mask registers (AMRO and AMR1) should also be set if used
(For the setting details, see 19.6.18 "Acceptance Mask Select Register (AMSR)" and 19.6.19
"Acceptance Mask Registers 0 and 1 (AMRO and AMR1)").

The acceptance mask should be set so that a transmission request may not be canceled when
unnecessary received messages are stored. For example, it should be set to a full-bit
comparison if only one specific ID is used for the transmission.

323

CHAPTER 19 CAN CONTROLLER

B Setting Low-power Consumption Mode

To set the FPMC-16LX in a low-power consumption mode (Stop, Watch, Hardware Standby,
etc.), write 1 to the bus operation stop bit (HALT) of the control status register (CSR), and then
check that the bus operation has stopped (HALT = 1).

324

CHAPTER 19 CAN CONTROLLER

19.11 Procedure for Transmission by Message Buffer (x)

After setting the bit timing, frame format, ID, and acceptance filter, set BVALx to 1 to
activate the message buffer (x).

B Procedure for Transmission by Message Buffer (x)

O Setting transmit data length code
Set the transmit data length code (byte count) to DLC3 to DLCO of the DLC register (DLCRXx).

For data frame transmission (when TRTRx of the transmission RTR register (TRTRR) is 0), set
the data length of the transmitted message.

For remote frame transmission (when TRTRx = 1), set the data length (byte count) of the
requested message.

Note:
Setting other than 0000 to 1000 (0 to 8 bytes) is prohibited.

O Setting transmit data (only for transmission of data frame)

For data frame transmission (when TRTRx of the transmission register (TRTRR) is 0), set data
as the count of byte transmitted in the data register (DTRXx).

Note:

Transmit data should be rewritten while the TREQx bit of the transmission request register
(TREQR) set to 0. There is no need for setting the BVALx bit of the message buffer valid
register (BVALR) to 0. Setting the BVALXx bit to 0 may cause incoming remote frame to be
lost.
O Setting transmission RTR register
For data frame transmission, set TRTRx of the transmission RTR register (TRTRR) to 0.

For remote frame transmission, set TRTRx to 1.

O Setting conditions for starting transmission (only for transmission of data frame)

Set RFWTx of the remote frame receiving wait register (RFWTR) to 0 to start transmission
immediately after a request for data frame transmission is set (TREQx of the transmission
request register (TREQR) is 1 and TRTRx of the transmission RTR register (TRTRR) is 0).

Set RFWTx to 1 to start transmission after waiting until a remote frame is received (RRTRx of
the remote request receiving register (RRTRR) becomes 1) after a request for data frame
transmission is set (TREQx = 1 and TRTRx = 0).

Note:

Remote frame transmission can not be made, if RFWTx is set to 1.

325

CHAPTER 19 CAN CONTROLLER

326

O Setting transmission complete interrupt

When generating a transmission complete interrupt, set TIEx of the transmission complete
interrupt enable register (TIER) to 1.

When not generating a transmission complete interrupt, set TIEx to O.

Setting transmission request

For a transmission request, set TREQx of the transmission request register (TREQR) to 1.

Canceling transmission request

When canceling a pending request for transmission to the message buffer (x), write 1 to TCANXx
of the transmission cancel register (TCANR).

Check TREQx. For TREQx = 0, transmission cancellation is terminated or transmission is
completed. Check TCx of the transmission complete register (TCR). For TCx = 0, transmission
cancellation is terminated. For TCx = 1, transmission is completed.

Processing for completion of transmission

If transmission is successful, TCx of the transmission complete register (TCR) becomes 1.

If the transmission complete interrupt is enabled (TIEx of the transmission complete interrupt
enable register (TIER) is 1), an interrupt occurs.

After checking the transmission completion, write 0 to TCx to set it to 0. This cancels the
transmission complete interrupt.

In the following cases, the pending transmission request is canceled by receiving and storing a
message.

* Request for data frame transmission by reception of data frame
* Request for remote frame transmission by reception of data frame
* Request for remote frame transmission by reception of remote frame

Request for data frame transmission is not canceled by receiving and storing a remote frame. ID
and DLC, however, are changed by the ID and DLC of the received remote frame. Note that the
ID and DLC of data frame to be transmitted become the value of received remote frame.

CHAPTER 19 CAN CONTROLLER

19.12 Procedure for Reception by Message Buffer (x)

After setting the bit timing, frame format, ID, and acceptance filter, make the settings
described below.

B Procedure for Reception by Message Buffer (x)

O Setting reception interrupt
To enable reception interrupt, set RIEx of the reception interrupt enable register (RIER) to 1.

To disable reception interrupt, set RIEx to 0.

O Starting reception
When starting reception after setting, set BVALx of the message buffer valid register (BVALR) to
1 to make the message buffer (x) valid.

O Processing for reception completion

If reception is successful after passing to the acceptance filter, the received message is stored
in the message buffer (x) and RCx of the reception complete register (RCR) becomes 1. For
data frame reception, RRTRx of the remote request receiving register (RRTRR) becomes 0. For
remote frame reception, RRTRx becomes 1.

If a reception interrupt is enabled (RIEx of the reception interrupt enable register (RIER) is 1), an
interrupt occurs.

After checking the reception completion (RCx = 1), process the received message.

After completion of processing the received message, check ROVRXx of the reception overrun
register (ROVRR).

If ROVRx = 0, the processed received message is valid. Write 0 to RCRx to set it to 0 (the
reception complete interrupt is also canceled) to terminate reception.

If ROVRx = 1, a reception overrun occurred and the next message may have overwritten the
processed message. In this case, received messages should be processed again after setting
the ROVRXx bit to 0 by writing 0 to it.

Figure 19.12-1 "Example of Receive Interrupt Handling" shows an example of receive interrupt
handling.

327

CHAPTER 19 CAN CONTROLLER

Figure 19.12-1 Example of Receive Interrupt Handling

Clnterrupt with RCx = 1)

Read received messages.

!

A: = ROVRx
ROVRx :=0

<

YES

| RCx := 0 |

=)

328

CHAPTER 19 CAN CONTROLLER

19.13 Setting Configuration of Multi-level Message Buffer

If the receptions are performed frequently, or if several different ID’s of messages are
received, in other words, if there is insufficient time for handling messages, more than
one message buffer can be combined into a multi-level message buffer to provide
allowance for processing time of the received message by CPU.

B Setting Configuration of Multi-level Message Buffer

To provide a multi-level message buffer, the same acceptance filter must be set in the combined
message buffers.

If the bits of the acceptance mask select register (AMSR) are set to All Bits Compare ((AMSx.1,
AMSx.0) = (0, 0)), multi-level message configuration of message buffers is not allowed. This is
because All Bits Compare causes received messages to be stored irrespective of the value of
the RCx bit of the receive completion register (RCR), so received messages are always stored
in lower-numbered (lower-priority) message buffers even if All Bits Compare and identical
acceptance code (ID register (IDRx)) are specified for more than one message buffer.
Therefore, All Bits Compare and identical acceptance code should not be specified for more
than one message buffer.

Figure 19.13-1 "Examples of Operation of Multi-level Message Buffer" shows operational
examples of multi-level message buffers.

329

CHAPTER 19 CAN CONTROLLER

Figure 19.13-1 Examples of Operation of Multi-level Message Buffer

Initialization |_|_|_ AMS15, AMS14, AMS13
AmsRl 10l 10f 1o ... |
[1 |
Select AMRO. AM28 to AM1 8—\
L Amso| 0000 1111 111 |
ID28 to ID18—\ o /— IDE |_|_|_ RC15, RC14, RC13
Message buffer 13] 0101 0000 000 | o --- RCRj 0] o] 0
Message buffer 14] 0101 0000 000 | O] - -- ROVRRp ojojoy ...
Message buffer 15] 0101 0000 000 0 e I I I ROVR15, ROVR14, ROVR13
L1 was
* Message receiving "The received message is stored in message buffer 13.
ID28 to ID18—\ /— IDE
Message receiving| 0101 1111 000 | of ... |
Message buffer 13| 0101 1111 000 | o] - - RCR 1
Message buffer 14] 0101 0000 000 | O] --- ROVRRj 0] 0} O

Message buffer 15] 0101 0000 000

* Message receiving "The received message is stored in message buffer 14.

Message receivingl 0101 1111 001 I OI I
Message buffer 13| 0101 1111 000 | of - -- RCR 1
Message buffer 14f 0101 1111 001 J O] --- ROVRRj 0oJ 0f O

Message buffer 15] 0101 0000 000

* Message receiving "The received message is stored in message buffer 15.

Message receiving| 0101 1111 010 [o ... |
Message buffer 13| 0101 1111 000 | of - -- RCRp 1 1] 1
Message buffer 14 0101 1111 001 J O] --- ROVRRj 0oJ 0o O

Message buffer 15§ 0101 1111 010

* Message receiving "An overrun occurs (ROVR13 = 1) and the received message is stored in message buffer 13.

Message receiving| 0101 1111 011 J o ... |

Message buffer 13 0101 1111 o11 | o] .- RCRp 1§ 1] 1

Message buffer 14 0101 1111 001 J O} - -- ROVRRj oj o] 1

Message buffer 15] 0101 1111 010 [o] - .. t
Note:

Four messages are received with the same acceptance filter set in message buffers 13, 14
and 15.

330

CHAPTER 19 CAN CONTROLLER

19.14 Precautions when Using CAN Controller

Use of the CAN Controller requires the following cautions.

B Caution for Disabling Message Buffers by BVAL bits

The use of BVAL bits may affect malfunction of CAN Controller when messages buffers are set
disabled while CAN Controller is participating in CAN communication (read value of HALT bit is
0 and CAN Controller is ready to receive or transmit messages). This section shows the work
around of this malfunction.

O Condition

When following two conditions occur at the same time, CAN Controller will not perform to
receive or transmit messages normally.

¢ CAN Controller is participating in the CAN communication. (i.e. The read value of HALT bit is
0 and CAN Controller is ready to receive or transmit messages)

* Message buffers are read or written when the message buffers are disabled by BVAL bits.

O Work around
Operation for re-configuring receiving message buffers

While CAN Controller is participating in CAN communication (the read value of HALT bit is 0
and CAN Controller is ready to receive or transmit messages), it is necessary to following
one from the two operations described below to re-configure message buffers by ID, AMS
and AMRO/1 register-settings.

e Use of HALT bit

e Write 1 to HALT bit and read it back for checking the result is 1. Then change the settings
for ID/AMS/AMRO/1 registers.

* No Use of Message Buffer 0

¢ Don't use the message buffer 0. In other words, disable message buffer (BVAL0=0),
prohibit receive interrupt (RIE0O=0) and do not request transmission (TREQO0=0).

Operation for processing received message

Don't use the receiving prohibition by BVAL bit to avoid over-written of next message. Use
the ROVR bit for checking if over-write has been performed. For details, refer to sections
19.6.16 "Receive Overrun Register (ROVRR)" and 19.12 "Procedure for Reception by
Message Buffer (x)".

Operation for suppressing transmission request
Don't use BVAL bit for suppressing transmission request, use TCAN bit instead of it.
Operation for composing transmission message

For composing a transmission message, it is necessary to disable the message buffer by
BVAL bit to change contents of ID and IDE registers. In this case, BVAL bit should reset
(BVAL=0) after checking if TREQ bit is O or after completion of the previous message
transmission (TC=1).

331

CHAPTER 19 CAN CONTROLLER

332

CHAPTER 20 STEPPING MOTOR CONTROLLER

This chapter explains the functions and operations of the stepping motor controller.

20.1 "Outline of Stepping Motor Controller"
20.2 "Stepping Motor Controller Registers"

333

CHAPTER 20 STEPPING MOTOR CONTROLLER

20.1 Outline of Stepping Motor Controller

The Stepping Motor Controller consists of two PWM Pulse Generators, four motor
drivers and Selector Logic. The four motor drivers have high output drive capabilities
and they can be directly connected to the four ends of two motor coils. The
combination of the PWM Pulse Generators and Selector Logic is designed to control
the rotation of the motor. A Synchronization mechanism assures the synchronous
operations of the two PWMs. The following sections describe the Stepping Motor
Controller 0 only. The other controllers have the same functions. The register
addresses are found in the I/O map.

B Block Diagram of Stepping Motor Controller
Figure 20.1-1 "Block Diagram of Stepping Motor Controller" shows a block diagram of the
stepping motor controller.
Figure 20.1-1 Block Diagram of Stepping Motor Controller

Machine Clock
| OE1 [— Output enable

CK
& L PWMIPO
Prescaler Selector
PWM1 pulse generator
| | EN PWM ————— PWM1IMO
P1 PO
T = o T
PWM1 Compare register PWM1 Select register
OE2 [— Output enable
—| CK
PWM2P0O
PWM2 pulse generator Selector
CE -
® EN PWM PWM2MO

T R ey = T

PWM2 Compare register BS PWM2 Select register

334

CHAPTER 20 STEPPING MOTOR CONTROLLER

20.2 Stepping Motor Controller Registers

The stepping motor controller has the following five types of registers:
¢ PWM control 0 register (PWMCO0)

e PWM1 compare 0 register (PWC10)

e PWM2 compare 0 register (PWC20)

¢ PWM1 select register (PWS10)

e PWM2 select register (PWS20)

B Stepping Motor Controller Registers

PWM Control 0 register

7 6 5 4 3 2 1 0 <5 Bit number
Address: 000062+
OE2 | OFE1 P1 PO | CE | — | — |Resemed PWCO0
Read/write o (RW) (RW) (RW) (RW) RW) — — (RW)
Initial value = (0) 0) @ (0 o — — 0)
PWM1 Compare O register
7 6 5 4 3 2 1 0 & Bit number

Address: 001950n

D7 D6 | D5 D4 D3 | D2 D1 DO PWC10
Readiwrite .y (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Intialvalue >~ X X X X X X K X
PWM2 Compare 0 register 15 14 13 12 11 10 9 8 . Bitnumber
Address: 001951n PWC20
D7 D6 | D5 D4 D3| D2 D1 DO
Readiwrite . (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Intialvalue o> (X)X X)X X X X (X
PWM1 Select register
7 6 5 4 3 2 1 0 <:,Bit number
Address: 0019524
PWS10
— | — P2 P1 PO | M2 | Mi MO
Readiwrite ., — — (RW) (RW) (RW) (RW) ([RW) [RW)
Initial value o =~ — — 0) (0) 0) 0) (0) (0)
PWM2 Select register 15 14 13 12 11 10 9 8 . Bitnumber
Address: 001953+
PWS20

- BS P2 P1 PO M2 M1 Mo

Readiwrite ., — (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value = — o 0 0 0 0 (0 (0)

335

CHAPTER 20 STEPPING MOTOR CONTROLLER

20.2.1 PWM Control 0 register

The PWM control 0 register starts and stops the stepping motor controller, controls

interrupts, and sets the external output pins.

H PWM Control 0 Register

PWM Control O register

7 6 5 4 3 2 1 0
Address: 000062+
OE2 OE1 P1 PO CE —_— —— | Reserved
Read/write o> (RW) (RW) (RW) (R/W) (R/W) —_— —_— (R/W)
Initial value &> (0) (0) (0) (0) (0) _ — (0)

[bits 7] OE2: Output enable bit

When this bit is set to "1", the external pins are assigned as PWM2P0 and PWM2MO

outputs. Otherwise they can be used as general purpose 10.
[bits 6] OE1: Output enable bit

When this bit is set to "1", the external pins are assigned as PWM1P0 and PWM1MO

outputs. Otherwise they can be used as general purpose 10.
[bits 5 to 4] P1 to P0: Operation clock select bits
These bits specify the clock input signal for the PWM pulse generators.

b= Bit number
PWCO

P1 PO Clock input

0 0 Machine clock

0 1 1/2 Machine clock
1 0 1/4 Machine clock
1 1 1/8 Machine clock

[bits 3] CE: Count enable bit

This bit enables the operation of the PWM pulse generators. When it is set to "1", the PWM
pulse generators start their operation. Note that the PWM2 pulse generator starts the
operation one machine clock cycle after the PWM1 pulse generators is started. This is to

help reduce the switching noise from the output drivers.
[bits 0] Reserved bit

This is a reserved bit. Always write "0" to this bit.

336

CHAPTER 20 STEPPING MOTOR CONTROLLER

20.2.2 PWM1&2 Compare Registers

The contents of the two 8-bit compare registers determine the widths of PWM pulses.
The stored value of "00H" represents the PWM duty of 0% and "FFy" represents the

duty of 99.6%.

B PWM1&2 Compare Registers

PWM1&2 compare registers are accessible at any time, however the modified values are
reflected to the pulse width at the end of the current PWM cycle after the BS bit of the PWM2
Select register is set to "1".

PWM1 Compare O register
7 6 5 4 3 2 1 0 o Bitnumber

Address: 001950+
D7 D6 D5 D4 D3 D2 D1 DO PWC10

Read/write o> (RW) (RW) (RW) (RW) (RW) (RW) (RW) (R/W)
Initial value => (X) (X) (X) (X) (X) (X) (X) (X)

PWM2 Compare 0 register 15 14 13 12 11 10 9 8 < Bit number
Address: 001951H

D7 D6 D5 D4 D3 | D2 D1 DO PWC20

Read/write . (RW) (RW) (RW) (RW) (RW) (RW) (RW) (R/W)
Initial value => X)) X))))))

One PWM Cycle

256 input clock cycles
Register value B -
00h
80h |

128 input clock cycles

FFh L

255 input clock cycles

337

CHAPTER 20 STEPPING MOTOR CONTROLLER

20.2.3 PWM1&2 Select Registers

The PWM1 and PWM2 select registers select 0, 1, the PWM pulse, or high impedance
for the external pin output of the stepping motor controller.

B PWM1&2 Select Registers

PWM1 Select register

7 6 5 4 3 2 1 0 < Bit number
Address: 001952+
PWS10
— | — P2 P1 PO M2 M1 Mo
Read/write .. — — (RW) (RW) (RW) [RW) [RW) RW)
Initial value & — — (0) (0) (0) (0) (0) (0)
PWM2 Select register 15 14 13 12 11 10 9 8 < Bit number
Address: 001953+
— BS | P2 P1 PO | M2 | w1 MO PWS20
Read/write ., — (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value = —— (0) (0) (0) (0) (0) (0) (0)

[bits 14] BS: Update bit

This bit is prepared to synchronize the settings for the PWM outputs. Any modifications in

the two compare registers and two select registers are not reflected to the output signals
until this bit is set.

When this bit is set to "1", the PWM pulse generators and selectors load the register
contents at the end of the current PWM cycle. The BS bit is reset to "0" automatically at the
beginning of the next PWM cycle. If the BS bit is set to "1" by software at the same time as

this automatic reset, the BS bit is set to "1" (or remains unchanged) and the automatic reset
is cancelled.

[bits 13 to 11] P2 to PO: Output Select bits

These bits selects the output signal at PWM2PO.
[bits 10 to 8] M2 to MO: Output Select bits

These bits selects the output signal at PWM2MO.
[bits 5 to 3] P2 to PO: Output Select bits

These bits selects the output signal at PWM1PO.

338

[bits 2 to 0] M2 to MO: Output Select bits
These bits selects the output signal at PWM1MO.

CHAPTER 20 STEPPING MOTOR CONTROLLER

The following table shows the relationship between the output levels and select bits.

P2 P1 PO PWMnPO M2 M1 Mo PWMnMoO

0 0 0 L 0 0 0 L

0 0 1 H 0 0 1 H

0 1 PWM pulses 0 1 PWM pulses

1 X High impedance 1 X High impedance

339

CHAPTER 20 STEPPING MOTOR CONTROLLER

340

CHAPTER 21 SOUND GENERATOR

This chapter explains the functions and operations of the sound generator.

21.1 "Outline of Sound Generator"

21.2 "Sound Generator Registers"

341

CHAPTER 21 SOUND GENERATOR

21.1 Outline of Sound Generator

The Sound Generator consists of the Sound Control register, Frequency Data register,
Amplitude Data register, Decrement Grade register, Tone Count register, PWM pulse
generator, Frequency counter, Decrement counter and Tone Pulse counter.

B Block Diagram of Sound Generator
Figure 21.1-1 "Block Diagram of Sound Generator" shows a block diagram of the sound

generator.
Figure 21.1-1 Block Diagram of Sound Generator
Clock input
Prescaler 8bit PWM pulse Frequency Toggle
Generator cO cl Counter Flip-flop
EN CO D Q
S1 | SO PWM EN EN
< reload < reload 1/d ®
Amplitude Data Frequency data
register register
/- DEC
DEC {
Decrement ®
Counter cl Py
Co®
EN ®e SGA
E1
OE1 ©
DecrementGrade v
register X SGO
Tone Pulse TONE] OE2 | OE2
Counter ol
CoO
EN ®
Tone Count [INTE [INT [ST |
register

) IRQ

342

CHAPTER 21 SOUND GENERATOR

21.2 Sound Generator Registers

The sound generator has the following types of registers:
¢ Sound control register (SGCR)

¢ Frequency data register (SGFR)

¢ Amplitude data register (SGAR)

¢ Decrement grade register (SGDR)

e Tone count register (SGTR)

B Sound Generator Registers

Sound Control register

7 6 5 4 3 2 1 0 < Bit number
Address: 00005EH
| S1 ‘ S0 ‘TONE ‘ OE2 ‘ OE1 ‘INTE ‘ INT ‘ ST | SGCR
Read/write _, (RW) (RW) (RW) (RW) (RW) RwW) [RW) (RW)
Initial value => (0) (0) (0) (0) (0) (0) 0) (0)
15 14 13 12 11 10 9 8 < Bit number
Address: 00005FH
|Reserved‘ — ‘ — ‘ — ‘— ‘ — ‘BUSY‘ DEC | SGCR
R'e'ad/write = (R/W) N N _ N N (R) (R/W)
Initial value —>) _ — = — — (0) (0)
Frequecny Data register
7 6 5 4 3 2 1 0 < Bit number
Address: 001946+
| D7 ‘ D6 ‘ D5 ‘ D4 ‘ D3 ‘ D2 ‘ D1 ‘ DO | SGFR
Read/write ., (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value => (X) X) (X) (X) X) (X) (X) (X)
Amplitude Data register 15 14 13 12 11 10 9 8 < Bit number
Address: 001947n
| D7 ‘ D6 ‘ D5 ‘ D4 ‘ D3 ‘ D2 ‘ D1 ‘ DO | SGAR
Read/write . (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value > (0) (0) (0) (0) (0) (0) (0) (0)
Decrement Grade register
7 6 5 4 3 2 1 0 < Bit number
Address: 001948+
SGDR
| D7 ‘ D6 ‘ D5 ‘ D4 ‘ D3 ‘ D2 ‘ D1 ‘ DO |
Read/write o, (RW) (RW) (RW) (RW) (RW) (RW) (RW) (R/W)
Initial value 2> (X) (X) (X) (X) (X) (X) (X) (X)
Tone Count register 15 14 13 12 11 10 9 8 . Bitnumber
Address: 001949+
| D7 ‘ D6 ‘ D5 ‘ D4 ‘ D3 ‘ D2 ‘ D1 ‘ DO | SGTR

Read/write N (RW) (RMW) ((RW) (RW) ((RW) (RW) (RW) (R/W)
Initial value => (X) (X) (X) (X) (X) (X) (X) (X)

343

CHAPTER 21 SOUND GENERATOR

21.2.1 Sound Control Register

The sound control register controls the operation status of the sound generator by
controlling interrupts and setting the external output pins.

H Sound Control Register

Sound Control register

7 6 5 4 3 2 1 0 <o Bit number
Address: 00005EH
S1 S0 | TONE | OE2 OE1 | INTE INT ST SGCR
Read/write o (RW) (RW) (RW) (RW) [RW) ((RW) [RW) (RW)
Initial value &> (0) (0) (0) (0) (0) (0) (0) (0)
15 14 13 12 11 10 9 8 @Bitnumber
Address: 00005FH
Reserved| —— o o — — | BUSY | DEC SGCR
R.e.ad/write o> (R/W) N N N N - (R) (RIW)
Initial value => (0) e —_— (0) (0)

[bits 15] Reserved bit
This is a reserved bit. Always write "0" to this bit.
[bits 9] BUSY: Busy bit

This bit indicates whether the Sound Generator is in operation. This bit is set to "1" upon the
ST bit is set to "1". It is reset to "0" when the ST bit is reset to "0" and the operation is
completed at the end of one tone cycle. Any write instructions performed on this bit has no
effect.

[bits 8] DEC: Auto-decrement enable bit

The DEC bit is prepared for an automatic de-gradation of the sound in conjunction with the
Decrement Grade register.

If this bit is set to "1", the stored value in the Amplitude Data register is decremented by
1(one), every time when the Decrement counter counts the number of tone pulses from the
toggle flip-flop specified by the Decrement Grade register.

[bits 7 to 6] S1 to S0: Operation clock select bits

These bits specify the clock input signal for the Sound Generator.

S1) Clock input

0 0 Machine clock

0 1 1/2 Machine clock
1 0 1/4 Machine clock
1 1 1/8 Machine clock

344

CHAPTER 21 SOUND GENERATOR

[bits 5] TONE: Tone output bit

When this bit is set to "1", the SGO signal becomes a simple square-waveform (tone pulses)
from the toggle flip-flop. Otherwise it is the mixed (AND logic) signal of the tone and PWM
pulses.

[bits 4] OE2: Sound output enable bit

When this bit is set to "1", the external pin is assigned as the SGO output. Otherwise the pin
can be used as a general purpose I0. To enable the SGO output, the corresponding bit of
the Port Direction register should also be set to "1".

[bits 3] OE1: Amplitude output enable bit

When this bit is set to "1", the external pin is assigned as the SGA output. Otherwise the pin
can be used as a general purpose 10. To enable the SGA output, the corresponding bit of
the Port Direction register should also be set to "1".

The SGA signal is the PWM pulses from the PWM pulse generator representing the
amplitude of the sound.

[bits 2] INTE: Interrupt enable bit

This bit enables the interrupt signal of the Sound Generator. When this bit is "1" and the INT
bit is set to "1", the Sound Generator signals an interrupt.

[bits 1] INT: Interrupt bit

This bit is set to "1" when the Tone Pulse counter counts the number of the tone pulses
specified by the Tone Count register and Decrement Grade register.

This bit is reset to "0" by writing "0". Writing "1" has no effect and Read-Modify-Write
instructions always result in reading "1".

[bits 0] ST: Start bit

This bit is for starting the operation of the Sound Generator. While this bit is "1", the Sound
Generator perform its operation.

When this bit is reset to "0", the Sound Generator stops its operation at the end of the current
tone cycle. The BUSY bit indicates whether the Sound Generator is fully stopped.

When this bit is changed from "0" to "1", the value of Frequency Data register, Amplitude
Data register, Decrement Grade register, and Tone Count register is loaded into each
counter.

345

CHAPTER 21 SOUND GENERATOR

21.2.2 Frequency Data register

The Frequency Data register stores the reload value for the Frequency counter. The
stored value represents the frequency of the sound (or the tone signal from the toggle
flip-flop). The register value is reloaded into the counter at Frequency counter
underflow and PWM pulse generator underflow.

The following figure shows the relationship between the tone signal and the register
value.

B Frequency Data Register

346

Address:

Frequency Data register

7 6 5 4 3 2 1 0 < Bit number
001946+

D7 D6 D5 D4 D3 D2 D1 DO SGFR

Read/write o, (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value => (X) *) *) X) X) X) X) X)

Figure 21.2-1 "Relationship between Tone Signal and Register Value" shows the relationship
between a tone signal and a register value.
Figure 21.2-1 Relationship between Tone Signal and Register Value

One Tone Cycle
-] P

Tone signal

(register value+1) x | (register value+1) x
One PWMcycle | One PWM cycle
P

It should be noted that modifications of the register value while operation may alter the duty
cycle of 50% depending on the timing of the modification.

CHAPTER 21 SOUND GENERATOR

21.2.3 Amplitude Data Register

The Amplitude Data register stores the reload value for the PWM pulse generator. The
register value represents the amplitude of the sound. The register value is reloaded
into the PWM pulse generator at falling edge of tone signal.

B Amplitude Data Register

Amplitude Data register 15 14 13 12 11 10

9 8 < Bit number
Address: 0019474

D7 D6 D5 D4 D3 | D2 D1 DO SGAR

Readiwrite . (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value => (0) (0) (0) (0) (0) (0) (0))

When the DEC bit is "1" and the Decrement counter reaches its reload value, this register value
is decremented by 1(one). And when the register value reaches "00", further decrements are
not performed. However the sound generator continues its operation until the ST bit is cleared.

Figure 21.2-2 "Relationship between Register Value and PWM Pulse" shows the relationship
between the register value and the PWM pulse.

Figure 21.2-2 Relationship between Register Value and PWM Pulse

One PWM Cycle
256 input clock cycles

Register value -

on _[1

One input clock cycles

80h |
129 input clock cycles

FEh L

255 input clock cycles

FFh

256 input clock cycles

When the register value is set to "FF", the PWM signal is always "1".

347

CHAPTER 21 SOUND GENERATOR

21.2.4 Decrement Grade Register

The Decrement Grade register stores the reload value for the Decrement counter. They
are prepared to automatically decrement the stored value in the Amplitude Data
register. The register value is reloaded into the counter at Decrement counter
underflow and falling edge of tone signal.

B Decrement Grade Register

Decrement Grade register
7 6 5 4 3 2 1 0 <o Bit number

SGDR

Address: 001948n

D7 D6 D5 D4 D3 D2 D1 DO

Read/write ., (RW) (RW) (RW) (RW) (RW) (RW) (RW) (R/W)
Initial value => (X) (X) (X) (X) (X) (X) (X) (X)

When the DEC bit is "1" and the Decrement counter counts the number of tone pulses up to the
reload value, the stored value in the Amplitude Data register is decremented by 1(one) at the
end of the tone cycle.

This operation realizes automatic de-gradation of the sound with fewer number of CPU
interventions.

It should be noted that the number of the tone pulses specified by this register equals to
"register value +1". When the Decrement Grade register is set to "00", the decrement operation
is performed every tone cycle.

348

CHAPTER 21 SOUND GENERATOR

21.2.5 Tone Count Register

The Tone Count register stores the reload value for the Tone Pulse counter. The Tone
Pulse counter accumulate the number of tone pulses (or number of decrement
operations) and when it reaches the reload value it sets the INT bit. They are intended
to reduce the frequency of interrupts. The register value is reloaded into the counter at
Tone Pulse counter underflow, Decrement counter underflow, and falling edge of tone
signal.

Bl Tone Count Register

Tone Count register 15 14 13 12 11 10 9 8 <« Bit number
Address: 001949H

D7 D6 D5 D4 D3 | D2 D1 DO SGTR

Read/write = (RW) (RW) (RW) ([RW) (RW) [RW) (RW) [RW)
Initial value => (X) (X) X) X) X))))

The count input of the Tone Pulse counter is connected to the carry-out signal from the
Decrement counter. And when the Tone count register is set to "00", the Tone Pulse counter
sets the INT bit every carry-out from the Decrement counter. Thus the number of accumulated
tone pulses is;

((Decrement Grade register) +1) x ((Tone Count register) +1)

i.e. When the both registers are set to "00", the INT bit is set every tone cycle.

349

CHAPTER 21 SOUND GENERATOR

350

CHAPTER 22 ADDRESS MATCH DETECTION FUNCTION

This chapter explains the address match detection function and operation.

22.1
22.2
22.3
22.4

"Outline of the Address Match Detection Function"
"Registers of the Address Match Detection Function”
"Operation of the Address Match Detection Function"

"Example of the Address Match Detection Function"

351

CHAPTER 22 ADDRESS MATCH DETECTION FUNCTION

22.1 Outline of the Address Match Detection Function

When an address matches the value set in the address detection register, the
instruction code to be read by the CPU is replaced with the INT9 instruction code
(01H). Consequently, the CPU executes the INT9 instruction when executing a
specified instruction. The address match detection function can be achieved using the
INT9 interrupt routine for processing.

There are two address detection registers, each with an interrupt permission bit. When
an address matches the value set in the address detection register and the interrupt
permission bit is 1, the instruction code to be read by the CPU is replaced with the
INT9 instruction code.

B Block Diagram of the Address Match Detection Function

Figure 22.1-1 Block Diagram of the Address Match Detection Function

Address latch §
H
Q.
Address detection % INT9
register o instruction
Permission bit F2MC-16LX
CPU core

F2MC-16LX bus

352

CHAPTER 22 ADDRESS MATCH DETECTION FUNCTION

22.2 Registers of the Address Match Detection Function

The two types of registers for the address match detection function are as follows:
¢ Program address detection registers (PADRO and PADR1)
e Program address detection control status register (PACSR)

B Program Address Detection Registers (PADRO and PADR1)

The program address detection registers 0 and 1 (PADRO and PADR1) compare the address
with the value written in each register. If they match when the interrupt permission bit
corresponding to ADCSR is 1, the CPU is requested to issue the INT9 instruction.

When the corresponding interrupt bit is 0, nothing occurs.

Figure 22.2-1 Program Address Detection Registers (PADRO and PADR1)

Program address detection registers byte

byte byte Access

PADRO 1FF21/1FF11/1FFOH

PADR1 1FF51/1FF41/1FF3H

Initial value
R/W Not defined
R/W Not defined

Table 22.2-1 "Correspondence between PADRO and PADR1 Registers and PACSR" lists the
correspondence between the program address detection registers (PADRO and PADR1) and

PACSR.

Table 22.2-1 Correspondence between PADRO and PADR1 Registers and PACSR

Address detection register

Interrupt permission bit

PADRO

ADOE

PADR1

AD1E

B Program Address Detection Control Status Register (PACSR)

The program address detection control status register (PACSR) controls the operation of the

address detection function.

Figure 22.2-2 Program Address Detection Control Status Register (PACSR)

Program address detection

PACSR

Bit No.
control status register 7 6 S 4 3 2 1 0 <=
Address: 009EH Reserved |Reserved|Reserved|Reserved| AD1E |Reserved| ADOE [Reserved
Read/write = (R/W) (R/W) (R/W) (R/W)

Initial value = (0) (0) (0)

[Bits 7 to 4] Reserved bits

(0)

(R/W) (R/W) (R/W) (R/W)
© © () 0)

Bits 7 to 4 are reserved. Set these bits to 0 before setting PACSR.
[Bit 3] AD1E (Address detect register 1 enable)
The AD1E bit is the operation permission bit of ASIE ADR1.

When this bit is 1, the address is compared with the PADR1 register. If they match, the INT9

instruction is issued.

353

CHAPTER 22 ADDRESS MATCH DETECTION FUNCTION

[Bit 2] Reserved bit

Bit 2 is reserved. Set this bit to 0 before setting PACSR.
[Bit 1] ADOE (Address Detect register 0 Enable)

The ADOE bit is the operation permission bit of ADRO.

When this bit is 1, the address is compared with the PADRO register. If they match, the INT9
instruction is issued.

[Bit 0] Reserved bit
Bit 0 is reserved. Set this bit to 0 before setting PACSR.

354

CHAPTER 22 ADDRESS MATCH DETECTION FUNCTION

22.3 Operation of the Address Match Detection Function

If the program counter specifies the same address as the address match detection
register, the INT9 instruction is executed. The address match detection function can
be achieved by processing the INT9 instruction routine.

H Operation of the Address Match Detection Function

There are two address detection registers with a compare enable bit. When the value set in the
address detection register and the value of the program counter match and the compare enable
bit is set to 1, the CPU executes the INT9 instruction.

Note:

If the value of the address detection register and the value of the program counter match, the
contents of internal data bus is changed to 01y. Consequently, the INT9 instruction is
executed. Before changing the contents of the address detection register, always set the
compare enable bit to 0. While the compare enable bit is set to 1, changing the contents of
the address detection register may result in a malfunction.

355

CHAPTER 22 ADDRESS MATCH DETECTION FUNCTION

22.4 Example of the Address Match Detection Function

Figure 22.4-1 "System Configuration Example of the Address Match Detection
Function" shows a system configuration example of the address match detection
function. Table 22.4-1 "EEPROM Memory Map" lists the EEPROM memory map.

Bl System Configuration Example of the Address Match Detection Function

Figure 22.4-1 System Configuration Example of the Address Match Detection Function

EEPROM

MCU
F2MC16LX

Pull-up resistor
SIN o (O Connector (UART)

Table 22.4-1 EEPROM Memory Map

Address Description

0000y Number of bytes of patch program No.0 (If 0, no
program error exists.)

00014 Program address No.0 bits 7 to O

0002y Program address No.0O bits 15t0 8

0003y Program address No.0 bits 24 to 16

0004y Number of bytes of patch program No.1 (If 0, no
program error exists.)

00054 Program address No.1 bits 7to 0

0006y Program address No.1 bits 15 to 8

0007y Program address No.1 bits 24 to 16

0010y or higher Main body of patch program No. 0

O Initial status
EEPROM is set to all Os.

O When a program error occurs:

The main body of the patch program and program address are transferred to the MCU through
the connector (UART). The MCU writes the information to EEPROM.

356

CHAPTER 22 ADDRESS MATCH DETECTION FUNCTION

O Reset sequence

The MCU reads the value of EEPROM after reset. If the number of bytes of the patch program
is not 0, the main body of the patch program is read from EEPROM and written to RAM. The
MCU then uses either PADRO or PADR1 to set the patch address and sets the compare enable
bit. If the relocatable patch program is required, the first address of the patched program can be
written to the RAM area. In this case, the INT9 routine accesses this user-defined RAM area
and jumps to the patched program.

O INT9 interrupt

The interrupt routine can know the address where the interrupt occurs by checking the value of
the stack program counter. The information that has been placed on the stack during the
interrupt is discarded.

B Example of program patch processing

Figure 22.4-2 Example of program patch processing

N FFFFFFh
Abnormal program
ROM e
S
it External EEPROM
é O Number of program bytes
g Register set for O Address where the interrupt occurs
K program patch O Corrected program
Il
O
o
N
Data transfer using UART
RAM 1@ Corrected program f&—
,,,,,,,,,,,,,, 9
Voo 000000h

357

CHAPTER 22 ADDRESS MATCH DETECTION FUNCTION

358

YES

Figure 22.4-3 Flow of program patch processing

Reset

Reads 00h of EEPROM

0000h(EEPROM)=0

Read address

0001h to 0003h (EEPROM)
l MOV
PADRO (MCU)

Read patch program
0010h to 0090h (EEPROM)
| MoV
000400h to 000480h (MCU)

Enable compare
MOV PACSR, #02h

To patch program
JMP 000400h

Execute patch program
000400h to 000480h

Terminate patch program
JMP FF0050h

FFFFh

0090h

0010h

0003h

0002h

0001h

0000h

Execute normal program

PC=PADRO

YES

EEPROM

Patch program

Program address
low-order: 00

Program address
middle-order: 00

Program address
high-order: FF

Number of bytes of
the patch program: 80

NO

ROM

RAM

FFFFFFh
FFO050h
Abnormal program

FFO000h
FEOO0OOh
001100h

Stack area

RAM area
000480h

Patch program
000400h
RAM and register area
000100h
I/O area

000000h

CHAPTER 23 ROM MIRRORING MODULE

This chapter explains the ROM mirroring module.

23.1 "Outline of ROM Mirroring Module"
23.2 "ROM Mirroring Register (ROMM)"

359

CHAPTER 23 ROM MIRRORING MODULE

23.1 Outline of ROM Mirroring Module

The ROM Mirroring module switches whether to mirror the image of the FF bank of the
ROM to the 00 bank.

B Block Diagram of ROM Mirroring Module

Figure 23.1-1 Block Diagram of ROM Mirroring Module
F2MC-16LX BUS

ROM Mirrroring Register

Address Area

| FF bank 00 bank

< ROM

360

CHAPTER 23 ROM MIRRORING MODULE

23.2 ROM Mirroring Register (ROMM)

Do not access the ROM mirroring register (ROMM) when addresses 004000y to
OOFFFFy are being accessed.

B ROM Mirroring Register (ROMM)

15 14 13 12 11 10 9 8 <3 Bit number

Address : 0006F, | __ _ — — — — — Mi ROMM

)) W)
)) (1)

)
) =

—_
|

Read/write &>
Initial value &

=)
=)

~ ~—

[bit 8]: MI

The image of the ROM data in the FF bank can also be found in the 00 bank when "1" is
written to this bit. However, this memory mapping will not be done when this bit is written to
"0". This bit is write only.

Note:

Only FF4000 to FFFFFF is mirrored to 004000 to OOFFFF when ROM mirroring function is
activated. Therefore, addresses FF0000 to FF3FFF will not be mirrored to 00 bank.

361

CHAPTER 23 ROM MIRRORING MODULE

362

CHAPTER 24 2M/3M-BIT FLASH MEMORY

This chapter explains the functions and operation of the 2M/3M-bit flash memory. The

following three methods are available for writing data to and erasing data from the
flash memory:

* Parallel programmer

* Serial programmer

e Executing programs to write/erase data

This chapter explains "Executing programs to write/erase data".

24.1 "Outline of 2M/3M-bit Flash Memory"

24.2 "Block Diagram of the Entire Flash Memory and Sector Configuration of
the Flash Memory"

24.3 "Write/Erase Modes"

24.4 "Flash Memory Control Status Register (FMCS)"

24.5 "Starting the Flash Memory Automatic Algorithm"

24.6 "Confirming the Automatic Algorithm Execution State"

24.7 "Detailed Explanation of Writing to and Erasing Flash Memory"
24.8 "Notes on Using 2M/3M-bit Flash Memory"

24.9 "Reset Vector Address in Flash Memory"

24.10 "Example of Programming 2M/3M-bit Flash Memory"

363

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.1 Overview of 2M/3M-bit Flash Memory

The 2M/3M-bit flash memory is mapped to the FC (F9) to FF bank in the CPU memory
map. The functions of the flash memory interface circuit enable read-access and
program-access from the CPU in the same way as mask ROM. Instructions from the
CPU can be used via the flash memory interface circuit to write data to and erase data
from the flash memory. Internal CPU control therefore enables rewriting of the flash
memory while it is mounted. As a result, improvements in programs and data can be
performed efficiently.

B 2M/3M-bit Flash Memory Features

Use of automatic program algorithm (Embedded Algorithm: Equivalent to MBM29LV200)
Erase pause/restart functions provided

Detection of completion of writing/erasing using data polling or toggle bit functions
Detection of completion of writing/erasing using CPU interrupts

Sector erase function (any combination of sectors)

Minimum of 10,000 write/erase operations

Flash memory read cycle time (minimum): 2 machine cycles

Embedded Algorithm is a trademark of Advanced Micro Device, Inc.

Note:

The manufacturer code and device code do not have the reading function. These codes
cannot be accessed by the command.

B Writing to/Erasing Flash Memory

The flash memory cannot be written to and read at the same time. That is, when data is written
to or erased data from the flash memory, the program in the flash memory must first be copied
to RAM. The entire process is then executed in RAM so that data is simply written to the flash
memory. This eliminates the need for the program to access the flash memory from the flash
memory itself.

364

CHAPTER 24 2M/3M-BIT FLASH MEMORY

B Flash Memory Register

O Flash Memory Control Status Register (FMCS)

7 6 5 4 3 2 1 0 & Bit No.
Address: 0000AEy INTE RDYINT WE RDY Reserved | LPM1 | Reserved | LPMO JFMCS
Read/write = (RIW) (RIW) (RIW) (R) (RIW) (R/W) (R/W) (R/W)
Initial value = 0) (0) 0) (X) 0) (0) (0) (0)

365

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.2 Block Diagram of the Entire Flash Memory and Sector
Configuration of the Flash Memory

Figure 24.2-1 "Block Diagram of the Entire Flash Memory" shows a block diagram of
the entire flash memory with the flash memory interface circuit included. Figure 24.2-2
“Sector Configuration of the 2M/3M-bit Flash Memory" shows the sector configuration
of the flash memory.

B Block Diagram of the Entire Flash Memory

Figure 24.2-1 Block Diagram of the Entire Flash Memory

Flash memory 2Mbit/3Mbit
interface circuit Flash memory

BYTE[D————] BYTE

éu
F]
m
w

WEQ——((we

N AQO to AQ17
AQO to AQ18 - AQ-1

O
m
3
m

DQO to DQ15 N—————/ DQO to DQ15

INT RY/BY * RY/BY

F?MC-16
bus

@)

RESET

L. Write enable interrupt signal
NS (to CPU)

RY/BY write

External reset signal enable signal

B Sector Configuration of the 2M/3M-bit Flash Memory

Figure 24.2-2 "Sector Configuration of the 2M/3M-bit Flash Memory" shows the sector
configuration of the 2M/3M-bit flash memory. The addresses in the figure indicate the high-order
and low-order addresses of each sector.

366

CHAPTER 24 2M/3M-BIT FLASH MEMORY

Figure 24.2-2 Sector Configuration of the 2M/3M-bit Flash Memory

MB90F594A/MB90F594G (2M-bit flash memory) MB90F591A/MB90F591G (3M-bit flash memory)

Programmer address* CPU address Programmer address* CPU address
7FFFFy FFFFFFy TFFFFH FFFFFFy
SA6 (16 Kbytes) SA11 (16 Kbytes)
7BFFFy FFBFFFy 7BFFFy4 FFBFFFy
SA5 (8 Kbytes) SA10 (8 Kbytes)
79FFFy FFOFFFy 79FFFy FFOFFFy
SA4 (8 Kbytes) SA8 (8 Kbytes)
77FFFy FF7FFFy 77FFFy FF7FFFy
SA3 (32 Kbytes) SA8 (32 Kbytes)
6FFFFy FEFFFFy 6FFFFy FEFFFFy
SA2 (64 Kbytes) SA7 (64 Kbytes)
5FFFFy FDFFFFy 5FFFFy FDFFFFy
SA1 (64 Kbytes) SAG6 (64 Kbytes)
4FFFFy FCFFFFy 4FFFFy FCFFFFyH
SAO0 (64 Kbytes) Unused
40000y FCO0000y 3FFFFH FBFFFF4
SA5 (16 Kbytes)
3BFFFy FBBFFFyH
SA4 (8 Kbytes)
39FFFy FBOFFFy
SA3 (8 Kbytes)
37FFFy FB7FFFy4
SA2 (32 Kbytes)
2FFFFy FAFFFFy
SA1(64 Kbytes)
1FFFFy FOFFFFy
SAO (64 Kbytes)
OFFFFy F8FFFFy
Unused
000004 F80000y

is used for writing/erasing.

*: The programmer address is equivalent to the CPU address when data is written to the flash mema
using a parallel programmer. When a general programmer is used for writing/erasing, this addres

367

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.3 Write/Erase Modes

The flash memory can be accessed in two different ways: Flash memory mode and
alternative mode. Flash memory mode enables data to be directly written to or erased
from the external pins. Alternative mode enables data to be written to or erased from
the CPU via the internal bus. Use the mode external pins to select the mode.

B Flash Memory Mode

The CPU stops when the mode pins are set to 111 while the reset signal is asserted. The flash
memory interface circuit is connected directly to ports 0, 2, 3, and 4, enabling direct control from
the external pins. This mode makes the MCU seem like a standard flash memory to the external
pins, and write/erase can be performed using a flash memory programmer.

In flash memory mode, all operations supported by the flash memory automatic algorithm can
be used.

H Alternative Mode

The flash memory is located in the FC (F9) to FF banks in the CPU memory space, and like
ordinary mask ROM, can be read-accessed and program-accessed from the CPU via the flash
memory interface circuit.

Since writing/erasing the flash memory is performed by instructions from the CPU via the flash
memory interface circuit, this mode allows rewriting even when the MCU is soldered on the
target board.

Sector protect operations cannot be performed in these modes.

B Flash Memory Control Signals

368

Table 24.3-1 "Flash Memory Control Signals" lists the flash memory control signals in flash
memory mode.

There is almost a one-to-one correspondence between the flash memory control signals and the
external pins of the MBM29LV200. The V|p (12 V) pins required by the sector protect operations

are MDO, MD1, and MD2 instead of A9, RESET, and OE for the MBM29LV200.
In flash memory mode, the external data bus signal width is limited to 8 bits, enabling only one-

byte access. The DQ15 to DQ8 pins are not supported. The BYTE pin should always be set to
0.

Table 24.3-1 Flash Memory Control Signals

CHAPTER 24 2M/3M-BIT FLASH MEMORY

MB90F594A/MB90F594G/MB90F591A/MB90F591G
MBM29LV200
Pin number Normal function Flash memory mode
1to8 P20 to P27 AQO to AQ7 A-1, AO to A6
9 P30 AQ16 A15
10 P31 CE CE
12 P32 OE OE
13 P33 WE WE
14 (15) P34 (P35) AQ17 (AQ18) A16
16 P36 BYTE BYTE
17 P37 RY/BY RY/BY
18 to 22 P40 to P44 AQ8 to AQ12 A7 to A1
24 to 26 P45 to P47 AQ13to AQ15 A12to A14
49 MDO MDO A9 (V|p)
50 MD1 MD1 RESET (V)p)
51 MD2 MD2 OE (V|p)
85 to 92 P00 to PO7 DQO to DQ7 DQO to DQ7
77 RST RESET RESET
Not supported DQ8 to DQ15

369

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.4 Flash Memory Control Status Register (FMCS)

The flash memory control status register (FMCS), together with the flash memory
interface circuit, is used to write data to and erase data from the flash memory.

B Flash Memory Control Status Register (FMCS)

7 6 5 4 3 2 1 0 « Bit No.
Address: 0000AEy INTE RDYINT WE RDY | Reserved| LPM1 | Reserved| LPMO [FMCS
Read/write = (RW) (RW) (RW) (R) (RW) (RW) (RW) (R/W)
Initial value = (0) (0) (0) (X) (0) 0) (0) (0)

O Explanation of bits
[Bit 7] INTE (interrupt enable)
This bit generates an interrupt to the CPU when flash memory write/erase terminates.

An interrupt to the CPU is generated when the INTE and RDYINT bits are 1. No interrupt is
generated when the INTE bit is 0.

¢ 0: Disables interrupts when write/erase terminates.
¢ 1: Enables interrupts when write/erase terminates.
[Bit 6] RDYINT (ready interrupt)
This bit indicates the operating state of the flash memory.

This bit is set to 1 when flash memory write/erase terminates. Data cannot be written to or
erased from the flash memory while this bit is O after a flash memory write/erase. Flash
memory write/erase is enabled when write/erase terminates and this bit is set to 1.

Writing O clears this bit to 0. Writing 1 is ignored. This bit is set to 1 at the termination timing
of the flash memory automatic algorithm (see Section 24.5 "Starting the Flash Memory
Automatic Algorithm"). When the read-modify-write (RMW) instruction is used, 1 is always
read.

e 0: Write/erase is being executed.
e 1: Write/erase has terminated (interrupt request generated).
[Bit 5] WE (write enable)

This bit enables writing to the flash memory area.

When this bit is 1, writing after the command sequence (see Section 24.5 "Starting the Flash
Memory Automatic Algorithm") is issued to the FC (F9) to FF bank writes to the flash
memory area. When this bit is 0, the write/erase signal is not generated. This bit is used
when the flash memory Write/Erase command is started.

370

CHAPTER 24 2M/3M-BIT FLASH MEMORY

If write/erase is not performed, it is recommended that this bit be set to 0 to prevent data
from being mistakenly written to the flash memory.

¢ 0: Disables flash memory write/erase.
¢ 1: Enables flash memory write/erase.
[Bit 4] RDY (ready)
This bit enables flash memory write/erase.

Flash memory write/erase is disabled while this bit is 0. However, Suspend commands, such
as the Read/Reset command and Sector Erase Suspend command, can be accepted even if
this bit is 0.

¢ 0: Write/erase is being executed.
¢ 1: Write/erase has terminated (next data write/erase enabled).
[Bits 3 and 1] Reserved bits
These bits are reserved for testing. During regular use, they should always be set to 0.
[Bits 2 and 0] LPM1 and LPMO (low power mode)

These bits control the current consumed by the flash memory when the flash memory is
accessed. Since the access time to the flash memory from the CPU is largely dependent on
this setting, select a setting value based on the operating frequency of the CPU.

e 01: Low power consumption mode (Operates at an internal operating frequency up to 4
MHz.)

e 10: Low power consumption mode (Operates at an internal operating frequency up to 8
MHz.)

¢ 11: Low power consumption mode (Operates at an internal operating frequency up to 10
MHz.)

00: Regular power consumption mode (Operates at an internal operating frequency up to 16
MHz.)

For the MB90OF591A and the MB90F591G, these bits must be set to 00. For settings other than
00, there will be no access to the Flash Memory.

Note:

The RDYINT and RDY bits cannot be changed at the same time. Create a program so that
decisions are made using one or the other of these bits.

Automatic algorithm
Termination timing
RDYINT bit

RDY bit

<+—>

1 machine cycle

371

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.5 Starting the Flash Memory Automatic Algorithm

Four types of commands are available for starting the flash memory automatic
algorithm: Read/Reset, Write, and Chip Erase. Control of suspend and restart is
enabled for sector erase.

B Command Sequence Table

Table 24.5-1 "Command Sequence Table" lists the commands used for flash memory write/
erase. All of the data written to the command register is in bytes, but use word access to write.
The data of the high-order bytes at this time is ignored.

Table 24.5-1 Command Sequence Table

372

*1:

B 1st bus write 2nd bus write 3rd bus write 4th bus write 5th bus write 6th bus write
Command wrli‘tse cycle cycle cycle cycle cycle cycle
sequence access
Address Data Address Data Address Data Address Data Address Data Address Data
Rea?ff)eset 1 FXXXXX | XXFO
Reagf;eset 4 FXAAAA | XXAA | Fx5554 | XX55 | FXAAAA | XXFO RA RD
Write PA PD
program 4 FXAAAA XXAA Fx5554 XX55 | FXAAAA | XXAO0 (even) (word)
Chip Erase 6 FXAAAA | XXAA Fx5554 XX55 | FXAAAA | XX80 | FXAAAA | XXAA Fx5554 XX55 | FXAAAA | XX10
Sector Erase 6 FXAAAA XXAA Fx5554 XX55 | FXAAAA | XX80 | FxAAAA | XXAA Fx5554 XX55 (e?/: n) XX30
Sector Erase Suspend Entering address FxXXXX data (xxBOH) suspends erasing during sector erase.
Sector Erase Restart Entering address FxXXXX data (xx30H) restarts erasing after erasing is suspended during sector erase.
Auto-select ‘ 3 | FxXAAA XXAA ‘ Fx5554 | XX55 | FxAAAA | XX90 ‘ - ‘ - ‘ - | - | - |
Note:

The addresses Fx in the table mean FF, FE, FD, and FC for 2M-bit Flash Memory and FF,
FE, FD, FB, FA and F9 for 3M-bit Flash Memory. Use these addresses as the access target
bank values for operations.

The addresses in the table are the values in the CPU memory map. All addresses and data
are represented using hexadecimal notation. However, the letter X is an optional value.

RA: Read address
PA: Write address. Only even addresses can be specified.

SA: Sector address. See Section 24.2 "Block Diagram of the Entire Flash Memory and
Sector Configuration of the Flash Memory".

RD: Read data
PD: Write data. Only word data can be specified.

Both of the two types of Read/Reset commands can reset the flash memory to read mode.

CHAPTER 24 2M/3M-BIT FLASH MEMORY

The Auto-select command shown in Table 24.5-1 "Command Sequence Table" is used to know
the state of sector protection. When using the Auto-select command, set the address as follows.

Table 24.5-2 Address Setting at Auto-select

AQ13 to AQ17 (,AQ18) AQ7 AQ2 AQ1 AQO DQ7 to DQO

Sector protection Sector Address L H L L CODE’

*: When the sector address is protected, the output is "01H".
When the sector address is not protected, the output is "O0H".

373

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.6 Confirming the Automatic Algorithm Execution State

Because the write/erase flow of the flash memory is controlled using the automatic
algorithm, the flash memory has hardware for posting its internal operating state and
completion of operation. This automatic algorithm enables confirmation of the
operating state of the built-in flash memory using the following hardware sequences.

B Hardware Sequence Flags

374

The hardware sequence flags are configured from the five-bit output of DQ7, DQ6, DQ5, DQ3
and DQ2. The functions of these bits are those of the data polling flag (DQ7), toggle bit flag
(DQ6), timing limit exceeded flag (DQ5), sector erase timer flag (DQ3) and toggle bit-2 flag
(DQ2). The hardware sequence flags can therefore be used to confirm that writing or chip sector
erase has been completed or that erase code write is valid.

The hardware sequence flags can be accessed by read-accessing the addresses of the target
sectors in the flash memory after setting of the command sequence (see Table 24.5-1
"Command Sequence Table" in Section 24.5 "Starting the Flash Memory Automatic Algorithm".
Table 24.6-1 "Bit Assignments of Hardware Sequence Flags" lists the bit assignments of the
hardware sequence flags.

Table 24.6-1 Bit Assignments of Hardware Sequence Flags

Bit No. 7 6 5 4 3 2 1 0

Hardware sequence flag | DQ7 | DQ6 | DQ5 - DQ3 | DQ2 - -

To determine whether automatic writing or chip sector erase is being executed, the hardware
sequence flags can be checked or the status can be determined from the RDY bit of the flash
memory control register (FMCS) that indicates whether writing has been completed. After
writing/erasing has terminated, the state returns to the read/reset state. When creating a
program, use one of the flags to confirm that automatic writing/erasing has terminated. Then,
perform the next processing operation, such as data read. In addition, the hardware sequence
flags can be used to confirm whether the second or subsequent sector erase code write is valid.
The following sections describe each hardware sequence flag separately. Table 24.6-2
"Hardware Sequence Flag Functions" lists the functions of the hardware sequence flags.

CHAPTER 24 2M/3M-BIT FLASH MEMORY

Table 24.6-2 Hardware Sequence Flag Functions
State DQ7 DQ6 DQ5 DQ3 DQ2
State Write --> Write completed (write DQ7 --> Toggle --> | 0--> 0--> 1-->
change for | address specified) DATA:7 DATA:6 DATA:5 DATA:3 DATA:2
normal
operation Chip/sector erase --> Erase 0> 1 Toggle --> 0> 1 1 Toggle -->
completed Stop Stop
Sector erase wait --> Erase started 0 Toggle 0 0-->1 Toggle
Erase --> Sector erase suspended 0> 1 Toggle --> 0 150 Toggle
(sector being erased) 1
Sector erase suspend --> Erase 1-->
restarted (sector being erased) 1->0 Toggle 0 0->1 Toggle
Sector erase suspended (sectornot | para7 | DATA® | DATA5 | DATA3 | DATA2
being erased)
Abnormal Write DQ7 Toggle 1 0 1
operation
Chip/sector erase 0 Toggle 1 1 *1

*1: If the DQS5 outputs "1" (exceed the timing limit), successive reads from a writing or erasing sector cause DQ2 to

toggle. DQ2 does not toggle when the successive reads are executed from other sectors.

375

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.6.1 Data Polling Flag (DQ7)

The data polling flag (DQ7) uses the data polling function to post that the automatic
algorithm is being executed or has terminated

B Data Polling Flag (DQ7)

Table 24.6-3 "Data Polling Flag State Transitions (State Change for Normal Operation)" and
Table 24.6-4 "Data Polling Flag State Transitions (State Change for Abnormal Operation)" list
the state transitions of the data polling flag.

Table 24.6-3 Data Polling Flag State Transitions (State Change for Normal Operation)
Sector erase Sector erase Sector erase
. . Chip/sector | Sector --> Erase suspend -->
Operating | Write --> . suspended
erase --> erase wait suspend Restarted
state Completed . . (sector not
Completed | --> Started | (sector being (sector being being erased)
erased) erased) 9
DQ7 DQ7 --> 0-->1 0 0-->1 1-->0 DATA:7

Table 24.6-4 Data Polling Flag State Transitions (State Change for Abnormal Operation)

Operating Write Chip/sector
state erase
DQ7 DQ7 0

O Write

Read-access during execution of the automatic write algorithm causes the flash memory to
output the opposite data of bit 7 last written, regardless of the value at the address specified by
the address signal. Read-access at the end of the automatic write algorithm causes the flash
memory to output bit 7 of the read value of the address specified by the address signal.

O Chip/sector erase

For a sector erase, read-access during execution of the chip erase/sector erase algorithm
causes the flash memory to output 0 from the sector currently being erased. For a chip erase,
read-access causes the flash memory to output O regardless of the value at the address
specified by the address signal. Read-access at the end of the automatic write algorithm causes
the flash memory to output 1 in the same way.

O Sector erase suspend

376

Read-access during a sector erase suspend causes the flash memory to output 1 if the address
specified by the address signal belongs to the sector being erased. The flash memory outputs
bit 7 (DATA: 7) of the read value at the address specified by the address signal if the address
specified by the address signal does not belong to the sector being erased. Referencing this
flag together with the toggle bit flag (DQ6) enables a decision to be made on whether the flash
memory is in the erase suspended state and which sector is being erased.

CHAPTER 24 2M/3M-BIT FLASH MEMORY

Note:

When the automatic algorithm is being started, read-access to the specified address is
ignored. Since termination of the data polling flag (DQ7) can be accepted for a data read and
other bits output, data read after the automatic algorithm has terminated should be
performed after read-access has confirmed that data polling has terminated.

377

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.6.2 Toggle Bit Flag (DQ6)

Like the data polling flag, the toggle bit flag (DQ6) uses the toggle bit function to post
that the automatic algorithm is being executed or has terminated.

H Toggle Bit Flag (DQ6)

Table 24.6-5 "Toggle Bit Flag State Transitions (State Change for Normal Operation)" and Table
24.6-6 "Toggle Bit Flag State Transitions (State Change for Abnormal Operation)" list the state

transitions of the toggle bit flag.

Table 24.6-5 Toggle Bit Flag State Transitions (State Change for Normal Operation)

Sector erase Sector erase
. Sector erase
. . Chip/sector | Sector --> Erase suspend -->
Operating | Write --> . suspended
erase --> erase wait | suspend Restarted
state Completed . . (sector not
Completed | --> Started | (sector being (sector being i
being erased)
erased) erased)
Toggle --> | Toggle -->
DQ6 DATA6 Stop Toggle Toggle --> 1 1 --> Toggle DATA:6

378

Table 24.6-6 Toggle Bit Flag State Transitions (State Change for Abnormal Operation)

Operating Write Chip/sector
state erase
DQ6 Toggle Toggle

Write/chip sector erase

Continuous read-access during execution of the automatic write algorithm and chip/sector erase
algorithm causes the flash memory to toggle the 1 or O state for every read cycle, regardless of
the value at the address specified by the address signal. Continuous read-access at the end of
the automatic write algorithm and chip/sector erase algorithm causes the flash memory to stop
toggling bit 6 and output bit 6 (DATA: 6) of the read value of the address specified by the
address signal.

Sector erase suspend

Read-access during a sector erase suspend causes the flash memory to output 1 if the address
specified by the address signal belongs to the sector being erased. The flash memory outputs
bit 6 (DATA: 6) of the read value at the address specified by the address signal if the address
specified by the address signal does not belong to the sector being erased.

Note:

For a write, if the sector where data is to be written is rewrite-protected, the toggle bit
terminates the toggle operation after approximately 2us without any data being rewritten. For
an erase, if all of the selected sectors are write-protected, the toggle bit performs toggling for
approximately 100us and then returns to the read/reset state without any data being
rewritten.

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.6.3 Timing Limit Exceeded Flag (DQ5)

The timing limit exceeded flag (DQ5) is used to post that execution of the automatic
algorithm has exceeded the time (internal pulse count) prescribed in the flash memory.

B Timing Limit Exceeded Flag (DQ5)

Table 24.6-7 "Timing Limit Exceeded Flag State Transitions (State Change for Normal
Operation") and Table 24.6-8 "Timing Limit Exceeded Bit Flag State Transitions (State Change
for Abnormal Operation)" list the state transitions of the timing limit exceeded flag.

Table 24.6-7 Timing Limit Exceeded Flag State Transitions (State Change for Normal Operation)

Sector erase Sector erase
. Sector erase
. . Chip/sector | Sector --> Erase suspend -->
Operating | Write --> . suspended
erase --> erase wait | suspend Restarted
state Completed . . (sector not
Completed | --> Started | (sector being (sector being i
being erased)
erased) erased)
DQ5 0--> 0-->1 0 0 0 DATA:5
DATA:5

Table 24.6-8 Timing Limit Exceeded Bit Flag State Transitions (State Change for
Abnormal Operation)

Operating Write Chip/sector
state erase
DQ5 1 1

Write/chip sector erase

Read-access after write or chip/sector erase automatic algorithm activation causes the flash
memory to output 0O if the time is within the prescribed time (time required for write/erase) or to
output 1 if the prescribed time has been exceeded. Because this is done regardless of whether
the automatic algorithm is being executed or has terminated, it is possible to determine whether
write/erase was successful or unsuccessful. That is, when this flag outputs 1, writing can be
determined to have been unsuccessful if the automatic algorithm is still being executed by the
data polling function or toggle bit function.

For example, writing 1 to a flash memory address where 0 has been written will cause the fail
state to occur. In this case, the flash memory will lock and execution of the automatic algorithm
will not terminate. As a result, valid data will not be output from the data polling flag (DQ7). In
addition, the toggle bit flag (DQ6) will exceed the time limit without stopping the toggle operation
and the timing limit exceeded flag (DQ5) will output 1. Note that this state indicates that the flash
memory is not faulty, but has been used correctly. When this state occurs, execute the Reset
command.

379

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.6.4 Sector Erase Timer Flag (DQ3)

The sector erase timer flag (DQ3) is used to post whether the automatic algorithm is
being executed during the sector erase wait period after the Sector Erase command
has been started.

B Sector Erase Timer Flag (DQ3)

Table 24.6-9 "Sector Erase Timer Flag State Transitions (State Change for Normal Operation)"
and Table 24.6-10 "Sector Erase Timer Flag State Transitions (State Change for Abnormal

Operation)" list the state transitions of the sector erase timer flag.

Table 24.6-9 Sector Erase Timer Flag State Transitions (State Change for Normal Operation)

Sector erase Sector erase
. Sector erase
. . Chip/sector | Sector --> Erase suspend -->
Operating | Write --> . suspended
erase --> erase wait | suspend Restarted
state Completed . . (sector not
Completed | --> Started | (sector being (sector being i
being erased)
erased) erased)
DQ3 0--> 1 0-->1 1-->0 0-->1 DATA:3
DATA:3

380

Table 24.6-10 Sector Erase Timer Flag State Transitions (State Change for Abnormal
Operation)

Operating Write Chip/sector
state erase
DQ3 0 1

Sector erase

Read-access after the Sector Erase command has been started causes the flash memory to
output O if the automatic algorithm is being executed during the sector erase wait period,
regardless of the value at the address specified by the address signal of the sector that issued
the command. The flash memory outputs 1 if the sector erase wait period has been exceeded.

If the data polling function or toggle bit function indicates that the erase algorithm is being
executed, internally controlled erase has already started if this flag is 1. Continuous write of the
sector erase codes or commands other than the Sector Erase Suspend command will be
ignored until erase is terminated.

If this flag is 0, the flash memory will accept write of additional sector erase codes. To confirm
this, it is recommended that the state of this flag be checked before continuing to write sector
erase codes. If this flag is 1 after the second state check, it is possible that additional sector
erase codes may not be accepted.

CHAPTER 24 2M/3M-BIT FLASH MEMORY

O Sector erase

Read-access during execution of sector erase suspend causes the flash memory to output 1 if
the address specified by the address signal belongs to the sector being erased. The flash
memory outputs bit 3 (DATA: 3) of the read value of the address specified by the address signal

if the address specified by the address signal does not belong to the sector being erased.

381

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.6.5 Toggle Bit-2 Flag (DQ2)

The toggle bit-2 flag (DQ2) is a flag that uses the toggle bit function to indicate that the
sector is in the erase-suspended state.

H Toggle Bit-2 Flag (DQ2)

Table 24.6-11 "Toggle Bit-2 Flag State Transitions (State Change for Normal Operation)" and
Table 24.6-12 "Toggle Bit-2 Flag State Transitions (State Change for Abnormal Operation)" list
the state transitions of the toggle bit flag.

Table 24.6-11 Toggle Bit-2 Flag State Transitions (State Change for Normal Operation)
Sector erase Sector erase Sector erase
. . Chip/sector | Sector --> Erase suspend -->
Operating | Write --> . suspended
erase --> erase wait | suspend Restarted
state Completed . . (sector not
Completed | --> Started | (sector being (sector being being erased)
erased) erased) 9
1--> Toggle --> .
DQ2 DATA:2 Stop Toggle Toggle Toggle DATA:2
Table 24.6-12 Toggle Bit-2 Flag State Transitions (State Change for Abnormal Operation)
Operating Write Chip/sector
state erase
DQ2 1 1

*1: If the DQ5 outputs "1" (exceed the timing limit), successive reads from a writing or erasing sector cause DQ2
to toggle. DQ2 does not toggle when the successive reads are executed from other sectors.

O During a sector erase operation

382

If successive reads are executed during the execution of the chip sector erase algorithm, a flash
memory toggles to output "1" and "0" to addresses alternately at every read access regardless
of the location indicated by the addresses. If successive reads are executed after the chip
sector erase algorithm is completed, the flash memory stops the toggle operation of the bit 2

and outputs the read value of the bit 2 (DATA: 2) to the location indicated by the address.

CHAPTER 24 2M/3M-BIT FLASH MEMORY

O While a sector erase operation is suspended

If successive reads are executed while a sector erase operation is suspended, and if the
address indicates the sector to be erased, the flash memory toggles to alternately output "1"
and "0". If the address indicates the sector is not to be erased, the flash memory outputs the
read value of the bit 2 (DATA: 2) to the location indicated by the address.

In the erase-suspend-program mode, successive reads from the non-erase suspended sector
causes the flash memory to output "1".

Both DQ2 and DQ6 are used for detecting an erase-suspended sector (DQ2 toggles, but DQ6
does not).

DQ2 is also used for detecting an erasing sector. While erasing a sector, if a read access is
executed from the erasing sector, DQ2 toggles.

Reference:

If all sectors selected for erasing are write-protected, the toggle bit-2 toggles for about
100us, and then returns to the read/reset mode without writing the data.

383

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.7 Detailed Explanation of Writing to and Erasing Flash
Memory

This section describes each operation procedure of flash memory Read/Reset, Write,
Chip Erase, Sector Erase, Sector Erase Suspend, and Sector Erase Restart when a
command that starts the automatic algorithm is issued.

B Detailed Explanation of Flash Memory Write/Erase

The flash memory executes the automatic algorithm by issuing a command sequence (see
Table 24.5-1 "Command Sequence Table" in Section 24.5 "Starting the Flash Memory
Automatic Algorithm") for a write cycle to the bus to perform Read/Reset, Write, Chip Erase,
Sector Erase, Sector Erase Suspend, or Sector Erase Restart operations. Each bus write cycle
must be performed continuously. In addition, whether the automatic algorithm has terminated
can be determined using the data polling or other function. At normal termination, the flash
memory is returned to the read/reset state.

Each operation of the flash memory is described in the following order:
* Setting the read/reset state

* Writing data

* Erasing all data (erasing chips)

» Erasing optional data (erasing sectors)

* Suspending sector erase

* Restarting sector erase

384

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.7.1 Setting The Read/Reset State

This section describes the procedure for issuing the Read/Reset command to set the
flash memory to the read/reset state.

B Setting the Flash Memory to the Read/Reset State

The flash memory can be set to the read/reset state by sending the Read/Reset command in
the command sequence table (see Table 24.5-1 "Command Sequence Table" in Section 24.5
"Starting the Flash Memory Automatic Algorithm") continuously to the target sector in the flash
memory.

The Read/Reset command has two types of command sequences that execute the first and
third bus operations. However, there are no essential differences between these command
sequences.

The read/reset state is the initial state of the flash memory. When the power is turned on and
when a command terminates normally, the flash memory is set to the read/reset state. In the
read/reset state, other commands wait for input.

In the read/reset state, data is read by regular read-access. As with the mask ROM, program
access from the CPU is enabled. The Read/Reset command is not required to read data by a
regular read. The Read/Reset command is mainly used to initialize the automatic algorithm in
such cases as when a command does not terminate normally.

385

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.7.2 Writing Data

This section describes the procedure for issuing the Write command to write data to
the flash memory.

B Writing Data to the Flash Memory

The data write automatic algorithm of the flash memory can be started by sending the Write
command in the command sequence table (see Table 24.5-1 "Command Sequence Table" in
Section 24.5 "Starting the Flash Memory Automatic Algorithm") continuously to the target sector
in the flash memory. When data write to the target address is completed in the fourth cycle, the
automatic algorithm and automatic write are started.

Specifying addresses

Only even addresses can be specified as the write addresses specified in a write data cycle.
Odd addresses cannot be written correctly. That is, writing to even addresses must be done in
units of word data.

Writing can be done in any order of addresses or even if the sector boundary is exceeded.
However, the Write command writes only data of one word for each execution.

Notes on writing data

Writing cannot return data O to data 1. When data 1 is written to data 0, the data polling
algorithm (DQ7) or toggle operation (DQ6) does not terminate and the flash memory elements
are determined to be faulty. If the time prescribed for writing is thus exceeded, the timing limit
exceeded flag (DQ5) is determined to be an error. Otherwise, the data is viewed as if dummy
data 1 had been written. However, when data is read in the read/reset state, the data remains O.
Data 0 can be set to data 1 only by erase operations.

All commands are ignored during execution of the automatic write algorithm. If a hardware reset
is started during writing, the data of the written addresses will be unpredictable.

Bl Writing to the Flash Memory

386

Figure 24.7-1 "Example of the Flash Memory Write Procedure" is an example of the procedure
for writing to the flash memory. The hardware sequence flags (see Section 24.6 "Confirming the
Automatic Algorithm Execution State") can be used to determine the state of the automatic
algorithm in the flash memory. Here, the data polling flag (DQ7) is used to confirm that writing
has terminated.

The data read to check the flag is read from the address written to last.

The data polling flag (DQ7) changes at the same time that the timing limit exceeded flag (DQ5)
changes. For example, even if the timing limit exceeded flag (DQS5) is 1, the data polling flag bit
(DQ7) must be rechecked.

Also for the toggle bit flag (DQ6), the toggle operation stops at the same time that the timing
limit exceeded flag bit (DQ5) changes to 1. The toggle bit flag (DQ6) must therefore be
rechecked.

CHAPTER 24 2M/3M-BIT FLASH MEMORY

Figure 24.7-1 Example of the Flash Memory Write Procedure

FMCS: WE (bit 5)
Enable flash memory write

[
[

Write command sequence

(1) FXAAAA <-- XXAA

(2) Fx5554 <-- XX55

(3) FXAAAA <-- XXAO0

(4) Write address <-- Write data

>

Read internal address Next address

Data polling (DQ7)

Timing limit (DQ5)

Read internal address

Data

Data polling (DQ7)

\ 4

@ Final address

FMCS: WE (bit 5)
Disable flash memory write

sequence flags.

387

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.7.3 Erasing All Data (Erasing Chips)

This section describes the procedure for issuing the Chip Erase command to erase all
data in the flash memory.

B Erasing all Data in the Flash Memory (Erasing Chips)

388

All data can be erased from the flash memory by sending the Chip Erase command in the
command sequence table (see Table 24.5-1 "Command Sequence Table" in Section 24.5
"Starting the Flash Memory Automatic Algorithm") continuously to the target sector in the flash
memory.

The Chip Erase command is executed in six bus operations. When writing of the sixth cycle is
completed, the chip erase operation is started. For chip erase, the user need not write to the
flash memory before erasing. During execution of the automatic erase algorithm, the flash
memory writes 0 for verification before all of the cells are erased automatically.

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.7.4 Erasing Optional Data (Erasing Sectors)

This section describes the procedure for issuing the Sector Erase command to erase
optional data (erase sector) in the flash memory. Individual sectors can be erased.
Multiple sectors can also be specified at one time.

B Erasing Optional Data (Erasing Sectors) in the Flash Memory

Optional sectors in the flash memory can be erased by sending the Sector Erase command in
the command sequence table (see Table 24.5-1 "Command Sequence Table" in Section 24.5
"Starting the Flash Memory Automatic Algorithm") continuously to the target sector in the flash
memory.

O Specifying sectors

The Sector Erase command is executed in six bus operations. Sector erase wait of 50us is
started by writing the sector erase code (30h) to an accessible even-numbered address in the
target sector in the sixth cycle. To erase multiple sectors, write the erase code (30h) to the
addresses in the target sectors after the above processing operation.

O Notes on specifying multiple sectors

Erase is started when the sector erase wait period of 50us terminates after the final sector erase
code has been written. That is, to erase multiple sectors at one time, an erase code (sixth cycle
of the command sequence) must be written within 50us of writing of the address of a sector and
the address of the next sector must be written within 50us of writing of the previous erase code.
Otherwise, the address and erase code may not be accepted. The sector erase timer (hardware
sequence flag DQ3) can be used to check whether writing of the subsequent sector erase code
is valid. At this time, specify so that the address used for reading the sector erase timer
indicates the sector to be erased.

B Erasing Sectors in the Flash Memory

The hardware sequence flags (see Section 24.6 "Confirming the Automatic Algorithm Execution
State") can be used to determine the state of the automatic algorithm in the flash memory.
Figure 24.7-2 "Example of the Flash Memory Sector Erase Procedure" is an example of the
procedure for erasing sectors in the flash memory. Here, the toggle bit flag (DQ6) is used to
confirm that erasing has terminated.

The data that is read to check the flag is read from the sector to be erased.

The toggle bit flag (DQ6) stops the toggle operation at the same time that the timing limit
exceeded flag (DQ5) is changed to 1. For example, even if the timing limit exceeded flag (DQ5)
is 1, the toggle bit flag (DQ6) must be rechecked.

The data polling flag (DQ7) also changes at the same time that the timing limit exceeded flag bit
(DQ5) changes. As a result, the data polling flag (DQ7) must be rechecked.

389

CHAPTER 24

2M/3M-BIT FLASH MEMORY

Figure 24.7-2 Example of the Flash Memory Sector Erase Procedure

Start erasing

FMCS: WE (bit 5)
Enable flash memory erase

|
>

Sector erase timer (DQ3)

Read internal address |<—

Erase command sequence
(1) FXAAAA <-- XXAA

(2) Fx5554 <-- XX55

(3) FxAAAA <-- XX80

(4)

(5)

(6) Enter code to erase sector
(30H)

Another erase sector

>l

390

-

Read internal address 1 |

Read internal address 2 |

Toggle bit (DQ6)
data 1(DQ6) = data 2(DQ6

Timing limit (DQ5)

| Read internal address 1 |

| Read internal address 2 |

Toggle bit (DQ6)

data 1(DQ6) = data 2(DQ6

Next sector

v

Erase error

FMCS: WE (bit 5)
Disable flash memory erase

Complete erasing

i Confirm with the hardware
<+ sequence flags.

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.7.5 Suspending Sector Erase

This section describes the procedure for issuing the Sector Erase Suspend command
to suspend erasing of flash memory sectors. Data can be read from sectors that are
not being erased.

B Suspending Erasing of Flash Memory Sectors

Erasing of flash memory sectors can be suspended by sending the Sector Erase Suspend
command in the command sequence table (see Table 24.5-1 "Command Sequence Table" in
Section 24.5 "Starting the Flash Memory Automatic Algorithm") continuously to the target sector
in the flash memory.

The Sector Erase Suspend command suspends the sector erase operation being executed and
enables data to be read from sectors that are not being erased. In this state, only reading is
enabled; data cannot be written. This command is valid only during sector erase operations that
include the erase wait time. The command will be ignored during chip erase or write operations.

This command is implemented by writing the erase suspend code (BOh). At this time, specify an
optional address in the flash memory for the address. An Erase Suspend command issued
again during erasing of sectors will be ignored.

Entering the Sector Erase Suspend command during the sector erase wait period will
immediately terminate sector erase wait, cancel the erase operation, and set the erase stop
state. Entering the Erase Suspend command during the erase operation after the sector erase
wait period has terminated will set the erase suspend state after a maximum period of 15us has
elapsed.

391

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.7.6 Restarting Sector Erase

This section describes the procedure for issuing the Sector Erase Restart command to
restart suspended erasing of flash memory sectors.

B Restarting Erasing of Flash Memory Sectors

392

Suspended erasing of flash memory sectors can be restarted by sending the Sector Erase
Restart command in the command sequence table (see Table 24.5-1 "Command Sequence
Table" in Section 24.5 "Starting the Flash Memory Automatic Algorithm") continuously to the
target sector in the flash memory.

The Sector Erase Restart command is used to restart erasing of sectors from the sector erase
suspend state set using the Sector Erase Suspend command. The Sector Erase Restart
command is implemented by writing the erase restart code (30h). At this time, specify an
optional address in the flash memory area for the address.

If a Sector Erase Restart command is issued during sector erase, the command will be ignored.

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.8 Notes on using 2M-bit Flash Memory

This section contains notes on using 2M-bit flash memory.

Bl Notes on using flash memory

O Input of a hardware reset (RST)

To input a hardware reset when the automatic algorithm has not been started and reading is in
progress, a minimum low-level width of 500 ns must be maintained. In this case, a maximum of
500 ns is required until data can be read from the flash memory after a hardware reset has been
activated.

Similarly, to input a hardware reset when the automatic algorithm has been activated and writing
or erasing is in progress, a minimum low-level width of 50 ns must be maintained. In this case,
20 (s are required until data can be read after the operation for initializing the flash memory has
terminated.

A hardware reset during writing the data being written to be undefined. A hardware reset during
erasing may make the sector being erased unusable.

O Canceling of a software reset, watchdog timer reset, and hardware standby

When the flash memory is being written to or erased with CPU access and if reset conditions
occur while the automatic algorithm is active, the CPU may run out of control. This occurs
because these reset conditions cause the automatic algorithm to continue without initializing the
flash memory unit, possibly preventing the flash memory unit from entering the read state when
the CPU starts the sequence after the reset has been deasserted. These reset conditions must
be disabled during writing to or erasing of the flash memory.

O Program access to flash memory

When the automatic algorithm is operating, read access to the flash memory is disabled. With
the memory access mode of the CPU set to internal ROM mode, writing or erasing must be
started after the program area is switched to another area such as RAM. In this case, when
sectors (SA6/SA11) containing interrupt vectors are erased, writing or erasing interrupt
processing cannot be executed. For the same reason, all interrupt sources other than the flash
memory are disabled while the automatic algorithm is operating.

Also, while the automatic algorithm is being executed, all interrupt sources except flash memory
are disabled.
O Hold function

When the CPU accepts a hold request, the Write signal WE of the flash memory unit may be
skewed, causing erroneous writing or erasing due to an erroneous write. When the acceptance
of a hold request is enabled (HDE bit of EPCR set to 1), ensure that the WE bit of the control
status register (FMCS) is 0.

O Extended intelligent I/O service (EIZOS)

Because write and erase interrupts issued to the CPU from the flash memory interface circuit
cannot be accepted by the EI20S, they should not be used.

393

CHAPTER 24 2M/3M-BIT FLASH MEMORY

O Applying Vip

Applying V|p required for the sector protect operation should always be started and terminated
when the supply voltage is on.

394

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.9 Reset Vector Address in Flash Memory

The MB90F594A, MB90F594G, MB90F591A, and MB90F591G supports a hard-wired
reset vector.
When the addresses FFFFDCy to FFFFDFy are accessed for reading data in internal

vector mode, the values that have been determined by the hard-wired logic in advance
are read. However, in flash memory mode, as mentioned in the previous chapter, all
addresses can be accessed.

Consequently, it is meaningless to write data to these addresses. Especially when
programming flash memory from the CPU (that is, not in flash memory mode), do not
read these addresses for software polling. Otherwise, the flash memory returns a fixed
reset vector instead of the hardware sequence flag value.

B Reset vector address in flash memory

The following table shows the reset vector and mode data values determined in advance.

Reset vector FFAO00y

Mode data 00y

Note:

Because of the hard-wired reset vector, it is not necessary to specify the reset vector in the
software. However it is recommended to specify the same vector and the same mode data in
the program, this will prevent the Mask ROM device to behave differently from the Flash
device when the same program is used.

395

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.10 Example of Programming 2M/3M-bit Flash Memory

This section presents a programming example of 2M/3M-bit flash memory.

B Programming example of 2M/3M-bit flash memory

Flash Memory Sample Program

NAME FLASHWE
TITLE FLASHWE

;2M/3M-bit-FLASH test program

;1: Transmits the program (address: FFBCOOH, sector: SA6) from FLASH to RAM
; (address: 001500H) .

2: Executes the program on RAM.

3: Writes the PDR1 value to FLASH (address: FIO000H, sector: SAl).

;4: Reads the written value (address: FDO0O0OOH, sector: SAl) and outputs it to PDR2.
5: Erases the written sector (SAl).

6: Checks and outputs erase data.

;Conditions

;- Number of bytes transmitted to RAM: 100H (256B)

; - Write/erase termination judgment

; Judgment according to DQ5 (timing limit excess flag)

; Judgment according to DQ6 (toggle bit flag)

: Judgment according to RDY (FMCS)

;- Error handling

; Hi output to P00 to P07

; Reset command issuance

RESOUS IOSEG ABS=00 ; "RESOUS" I/O segment definition

ORG 0000H
PDRO RB 1
PDR1 RB 1
PDR2 RB 1
PDR3 RB 1

ORG 0010H
DDRO RB 1
DDR1 RB 1
DDR2 RB 1
DDR3 RB 1

ORG 00A1lH
CKSCR RB 1

ORG 00AEH
FMCS RB 1

ORG 006FH
ROMM RB 1

RESOUS ENDS

7

SSTA SSEG
RW 0127H

STA_T RW 1

SSTA ENDS

DATA DSEG ABS=0FFH ;FLASH command address
ORG 5554H

COMADR2 RW 1
ORG 0OAAAAH

COMADR1 RW 1

DATA ENDS

396

CHAPTER 24 2M/3M-BIT FLASH MEMORY

NN NN NN NSNS,
;Main program (FFAOO0OH)
NN NN NN NN,
CODE CSEG

START:
; [177777 7770777777 777777777777777777777777777777777777
; Initialization
; 1177777777777 77
MOV CKSCR, #0BAH ;3-multiple setting
MOV RP, #0
MOV A, #!STA_T
MOV SSB,A
MOVW A, #STA_T
MOVW SP,A
MOV ROMM, #00H ;Mirror OFF
MOV PDRO, #00H ;For error check
MOV DDRO, #0FFH
MOV PDR1, #00H ;Port for data input
MOV DDR1, #00H
MOV PDR2, #00H ;Port for data output
MOV DDR2, #0FFH
i 1177777777777 777
; Transfer of "FLASH write erase program (FFBCOOH)" to RAM (1500H address)
i 1777777777777 777
MOVW A, #1500H ;Transfer destination RAM area
MOVW A, #0BCOOH ;Transfer source address (program position)
MOVW RWO, #100H ;Number of bytes to be transferred
MOVS ADB, PCB ;Transfer of 100H from FFBCOOH to 001500H
CALLP 001500H ;Jump to the address containing the transferred
; program
; 1777777777777 77
; Data output
; [171777
ouT MOV A, #0FDH
MOV ADB, A
MOVW RW2, #0000H
MOVW A,QRW2+00
MOV PDR2,A
END JMP *
CODE ENDS

NN NN NNV,
;FLASH write erase program (SA6)
NN NN NN,
RAMPRG CSEG ABS=0FFH

ORG 0BCOOH
i 1177777777777 7777777777777777777777777777777
Initialization
; 17777777777 777777777777777777777777777777777
MOVW RWO, #0500H ;RWO:RAM space for input data acquisition
From 00:0500
MOVW RW2, #0000H ;RW2:Flash memory write address
From FD:0000
MOV A, #00H ;DTB modification
MOV DTB, A ;Bank specification for @RWO
MOV A, #0FDH ;ADB modification 1
MOV ADB, A ;Bank specification for write mode specification
; address
MOV PDR3, #00H ;Switch initialization
MOV DDR3, #00H

WAIT1 BBC PDR3:0,WAIT1 ;PDR3: 0 (write start at high level)

NN NN NN NN NN
;Write (SAl)
NN NN NN NN NN

MOV A, PDR1
MOVW @QRWO+00,A ;PDR1 data allocation to RAM
MOV FMCS, #20H ;Write mode setting

MOVW ADB:COMADR1, #00AAH ;Flash write command 1

CHAPTER 24 2M/3M-BIT FLASH MEMORY

398

MOvwW ADB:COMADR2, #0055H ;Flash write command 2

MOVW ADB:COMADRI1, #00A0H ;Flash write command 3

MOVW A,@QRWO0+00 ;Input data (RW0) write to flash memory (RW2)
MOVW @RW2+00,A

WRITE ;Wait time check
H L1171 7770 7077777777777 777
; ERROR when the time limit excess check flag is set and toggle operation is
; in progress
; L1177 7070777777777 777
MOVW A, @QRW2+00

AND A, #20H ;DQ5 time limit check

BZ NTOW ;Time limit over

MOVW A, QRW2+00 ;AH

MOVW A,@RW2+00 ;AL

XORW A ;XOR of AH and AL (1 when the values differ)
AND A, #40H ;Is the DQ6 toggle bit different?

BNZ ERROR ;To ERROR when the DQ6 toggle bit is different

H L1171 7070777777777777777777777777777777
: Write termination check (FMCS-RDY)

; [11717070777777777777777777777777777777
; L1177 70 777777777777777777777777777777
NTOW MOVW A,FMCS

AND A, #10H ;Extraction of FMCS RDY bit (bit 4)
BZ WRITE ;End of write?
MOV FMCS, #00H ;Write mode release

; L1170 70 7770777777777 777777777777777777777777777777777
: Write data output
; L1170 70 7777777777777 777777777777777777777777777777777

MOVW RW2, #0000H ;Write data output
MOVW A,@RW2+00
MOV PDR2,A

WAIT2 BBC PDR3:1,WAIT2 ;PDR3: 1 (sector erase start at high level)
NN NN NN NN,

;Sector erase (SAl)

NN NN,

MOV @RW2+00, #0000H ;Address initialization

MOV FMCS, #20H ;Erase mode setting

MOVW ADB:COMADRL1, #00AAH ;Flash erase command 1

MOovwW ADB:COMADR2, #0055H ;Flash erase command 2

MOVW ADB:COMADR1, #0080H ;Flash erase command 3

MOVW ADB:COMADRL, #00AAH ;Flash erase command 4

MOVW ADB:COMADR2, #0055H ;Flash erase command 5

MOV @RW2+00, #0030H ;Issuance of erase command 6 to the sector

to be erased
ELS ;Wait time check
; L1177 7070777777777 777
; ERROR when the time limit excess check flag is set and toggle operation is
: in progress
H [11777770177
MOVW A, QRW2+00

AND A, #20H ;DQ5 time limit check
Bz NTOE ;Time limit over
MOVW A,@RW2+00 ;AH High and Low are alternately output from
MOVW A,@RW2+00 ;AL DQ6 per read during write operation.
XORW A ;XOR of AH and AL (If the DQ6 value differs,
: write operation is in progress (1)).
AND A, #40H ;Is the DQ6 toggle bit High?
BNZ ERROR ;ERROR when the DQ6 toggle bit is High

; [11717771777777777777777777777777777777
; Erase termination check (FMCS-RDY)
; 11107707777 7777777777777777777777777777

NTOE MOVW A,FMCS ;
AND A, #10H ;Extraction of FMCS RDY bit (bit 4)
BZ ELS ;End of sector erase?
MOV FMCS, #00H ;FLASH erase mode release
RETP ;Return to the main program

CHAPTER 24 2M/3M-BIT FLASH MEMORY

NN NN,

;Error
NN NN NN YNNI,
ERROR MOV FMCS, #00H ;FLASH mode release

MOV PDRO, #0FFH ;Error handling check

MOV ADB:COMADRL1, #0F0H ;Reset command (read is enabled)

RETP ;Return to the main program
RAMPRG ENDS
NN NN NN NN,

VECT CSEG ABS=0FFH
ORG OFFDCH
DSL START
DB 00H

VECT ENDS

7

399

CHAPTER 24 2M/3M-BIT FLASH MEMORY

400

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/
MB90F591A/MB90F591G SERIAL
PROGRAMMING CONNECTION

This chapter provides examples of F2MC-16LX MB90F594A/MB90F594G/MB90F591A/
MB90F591G serial programming connection.

25.1 "Basic Configuration of F2MC-16LX MB90F594A/MB90F594G/
MB90F591A/MB90F591G Serial Programming Connection”

25.2 "Example of Serial Programming Connection (User Power Supply Used)"

25.3 "Example of Serial Programming Connection (Power Supplied from the
Programmer)"

25.4 "Example of Minimum Connection to the Flash Microcomputer
Programmer (User Power Supply Used)"

25.5 "Example of Minimum Connection to the Flash Microcomputer
Programmer (Power Supplied from the Programmer)"

401

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

25.1 Basic Configuration of MB90F594A/MB90F594G/
MB90F591A/MB90F591G Serial Programming Connection

The MB90F594A/MB90F594G/MB90F591A/MB90F591G supports flash ROM serial
onboard programming (Fujitsu standard). This section describes the specifications.

B Basic Configuration of MB90F594A/MB90F594G/MB90F591A/MB90F591G Serial Programming
Connection

The AF220/AF210/AF120/AF110 flash microcomputer programmer from Yokogawa Digital
Computer Corporation is used for Fujitsu standard serial onboard programming.

Host interface cable (AZ201) General-purpose

AF220/AF210/ common cable (AZ210)
AF120/AF110 /
flash MB90F594A/
B | microcomputer CLK synchronous serial | MB90OF594G/
< » programmer < > MBIOF591A/
+ MB90F591G
memory card user system
— _

Stand-alone operation enabled

* The MB90F591G is under development.
Note:

Ask the company representative from Yokogawa Digital Computer Corporation for details
about the functions and operations of the AF220/AF210/AF120/AF110 flash microcomputer
programmer, general-purpose common cable for connection (AZ210), and connectors.

Table 25.1-1 Pins Used for Fujitsu Standard Serial Onboard Programming

Pin Function Additional information
MD2, MD1 Mode pins Controls programming mode from the flash microcomputer
MDO programmer.
X0, X1 Oscillation pins In programming mode, the CPU internal operation clock

signal is one multiple of the PLL clock signal frequency.
Therefore, the oscillation clock frequency becomes the
internal operation clock signal.

P00, PO1 programming activation pins -
RST Reset pin -
SIN3 Serial data input pin

SOT3 Serial data output pin Serial input-output is used.
SCK3 Serial clock signal input pin

402

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

Table 25.1-1 Pins Used for Fujitsu Standard Serial Onboard Programming (Continued)

Pin

Function

Additional information

C pin

This external capacitor pin is used to stabilize the power
supply. Connect a ceramic capacitor of approximately
0.1uF to the outside.

Power voltage supply pin

If the programming voltage (5 V = 10%) is supplied from
the user system, the flash microcomputer programmer
need not be connected. Connect so that the power supply
of the user side is not short-circuited.

GND pin

Common to the ground of the flash microcomputer
programmer.

Hardware standby pin

Input high level during serial programming mode.

Even if the P00, SIN3, SOT3, and SCK3 pins are used for the user system, the control circuit
shown in the figure below is required. The /TICS signal of the flash microcomputer programmer
can be used to disconnect the user circuit during serial programming.

Sections 25.2 "Example of Serial Programming Connection (User Power Supply Used)" to 25.5
"Example of Minimum Connection to the Flash Microcomputer Programmer (Power Supplied
from the Programmer)" present examples the following four types of serial programming
connection. See each Section as required.

e Serial programming connection (user power supply used)

e Serial programming connection (power supplied from the programmer)

e Minimum connection to the flash microcomputer programmer (user power supply used)

e Minimum connection to the flash microcomputer programmer (power supplied from the

programmer)

AF220/AF210/
AF120/AF110
write control pin

AF220/AF210/
AF120/AF110
TICS pin

10 KQ

MB90F594A/MB90F594G/
MB90F591A/MB90F591G
write control pin

User

403

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

Table 25.1-2 System configuration of flash microcomputer programmers (manufactured
by Yokogawa Digital Computer Corporation)

Model Function

Main unit AF220/AC4P | Ethernet interface built-in model and 100 to 220 V AC power
adapter

AF210/AC4P | Standard model and 100 to 220 V AC power adapter

AF120/AC4P | Single-key Ethernet interface built-in model and 100 to 220 V
AC power adapter

AF110/AC4P | Single-key model and 100 to 220 V AC power adapter

AZ221 PC/AT RS232C cable for programmer

AZ210 Standard target probe (a) with a 1 m cable

FF201 Fujitsu F2MC-16LX flash microcomputer control module
AZ290 Remote controller

/P2 2 MB PC card (optional) for flash memory sizes up to 128 KB
/P4 4 MB PC card (optional) for flash memory sizes up to 512 KB

Inquiries: Yokogawa Digital Computer Corporation
Telephone number: (81)-42-333-6224

Note:

Although the AF200 flash microcomputer programmer is no longer manufactured, the
programmer still can be used in combination with the FF201 control module.

Examples of serial programming connection are given in Sections 25.2 "Example of Serial
Programming Connection (User Power Supply Used)" and 25.3 "Example of Serial
Programming Connection (Power Supplied from the Programmer)".

404

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

B Oscillating Clock Frequency and Serial Clock Input Frequency

The equation listed below can be used to calculate the serial clock frequencies that can be used
for the MB90F594A, MB90F594G, MB90OF591A, and MBO0OF591G. Set an appropriate serial

clock input frequency in the flash microcomputer programmer according to the oscillating clock
frequency in use.

Serial clock frequency that can be used = 0.125 x oscillating clock frequency

Table 25.1-3 Examples of serial clock frequencies that can be used

. . Maximum serial clock

Maximum serial clock . .

A frequency that can be Maximum serial clock
Oscillating clock frequency that can be
frequency used for used for the AF220, frequency that can be
. AF210, AF120, and used for the AF200
microcomputers
AF110

4 MHz 500 kHz 500 kHz 500 kHz

8 MHz 1 MHz 850 kHz 500 kHz

16 MHz 2 MHz 1.25 MHz 500 kHz

405

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

25.2 Example of Serial Programming Connection (User Power
Supply Used)

Figure 25.2-1 "Example of Serial Programming Connection for MB90F594A/
MB90F594G/MB90F591A Internal Vector Modes (User Power Supply Used)"

is an example of a serial programming connection for internal vector modes (single-
chip mode) when the user power supply is used.

The value 1 and 0 are input to mode pins MD2 and MDO from TAUX3 and TMODE of the
AF220/AF210/AF120/AF110 programmer.

Serial reprogramming mode: MD2, MD1, MDO = 110.

B Example of Serial Programming Connection (User Power Supply Used)

Figure 25.2-1 Example of Serial Programming Connection for MBO90F594A/MB90F594G/MB90F591A/
MB90F591G Internal Vector Modes (User Power Supply Used)

AF220/AF210/AF120/AF110 User system
flash microcomputer Connector MB9OF594A /MBOOF594G/

programmer DX10-28S or DX20-28S MB90F591A/MBYOF591G

TAUX3 (19) MD2
g /%10 KQ
10KQ

L2 | MD1

%10 KQ
TMODE (12) : MDO

X0
:]
— X

TAUX (23) —] ‘ P00
10KQZ T L?Z
/TICS (10)
User
10 KQ%
Usei’{: HST

%10 KQ

/TRES ®) ~§ RST
4% §1O KQ

User ‘

PO1
/% 0.1pF c
TTXD (13) SIN3
TRXD (27)
TCK 6) 28;2
TVce 2) Vce
- User power
,8, suppl!
GND 14,15, PRy Vss
21,22
1, 28)
Pin 14 Pin 1
Pins 3, 4,9, 11,16, 17, 18, 20, DX10-28S
24, 25, and 26 are open. DX20-28S
DX10-28S: Right-angle type . .
DX20-28S: Straight type Pin 28 Pin 15

Connector (Hirose Electronics Ltd.)
pin arrangement

406

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

Even if the SIN3, SOT3, and SCKS3 pins are used for the user system, the control circuit
shown in the figure below is required in the same way that it is for PO0. The /TICS signal of
the flash microcomputer programmer can be used to disconnect the user circuit during serial
programming.

Connect the AF220/AF210/AF120/AF110 while the user power is off.

AF220/AF210/
AF120/AF110
write control pin MB90F594A/MB90F594G/
MB90F591A/MB90F591G
10 KQ write control pin
AF220/AF210/
AF120/AF110
TICS pin T
User

407

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

25.3 Example of Serial Programming Connection (Power
Supplied from the Programmer)

Figure 25.3-1 "Example of Serial Programming Connection for MB90F594A/
MB90F594G/MB90F591 A/MB90F591G Internal Vector Modes (Power Supplied from the
Programmer)"

is an example of a serial programming connection for internal vector modes (single-
chip mode) when power is supplied from the programmer.

The value 1 and 0 are input to mode pins MD2 and MDO from TAUX3 and TMODE of the
AF220/AF210/AF120/AF110 programmer.

Serial reprogramming mode: MD2, MD1, MDO = 110.

B Example of Serial Programming Connection (Power Supplied from the Programmer)

Figure 25.3-1 Example of Serial Programming Connection for MB90F594A/MB90F594G/MB90F591A/
MB90F591G Internal Vector Modes (Power Supplied from the Programmer)

AF220/AF210/AF120/AF110 User system

flash microcomputer Connector MB90F594A /MB90F594G/
programmer DX10-28S or DX20-28S MB90F591A/MB90F591G
TAUX3 (19) MD2
g /%10 KQ
10 KQ
L~ | MD1
%1 0 KQ
TMODE (12) : MDO
X0
]
e X1

TAUX (29) [~ P00
10KQ
/TICS (10)
User

10 KQ %
User[: ST

/TRES (5) RST
4% éo KQ
User L Po1
0.1uF c
A
TTXD (13) 7 SIN3
TRXD (27)
TCK ©) SoT3
TVce 2) SCK3
Vce) —
TVPP1 (16) Vce
% Userlpower
7,8, s
GND 24,15, eey Vss
21,22
1, 28)
Pin 14 Pin 1
Pins 4, 9, 11, 17, 18, 20, DX10-28S
24, 25, and 26 are open. DX20-28S

DX10-28S: Right-angle type .

DX20-28S: Straight type Pin 28 Pin 15
Connector (Hirose Electronics Ltd.)
pin arrangement

408

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

Even if the SIN3, SOT3, and SCK3 pins are used for the user system, the control circuit
shown in the figure below is required in the same way that it is for PO0. The /TICS signal of
the flash microcomputer programmer can be used to disconnect the user circuit during serial

programming.

Connect the AF220/AF210/AF120/AF110 while the user power is off.

When the programming power is supplied from the AF220/AF210/AF120/AF110, be careful
not to short-circuit the user power supply.

AF220/AF210/
AF120/AF110
write control pin

AF220/AF210/
AF120/AF110
TICS pin

10 KQ

MB90F594A/MB90F594G/
MB90F591A/MB90F591G
write control pin

User

409

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

25.4 Example of Minimum Connection to the Flash
Microcomputer Programmer (User Power Supply Used)

Figure 25.4-1 "Example of Minimum Connection to the Flash Microcomputer
Programmer (User Power Supply Used)" is an example of the minimum connection to
the flash microcomputer programmer when the user power supply is used.

Serial reprogramming mode: MD2, MD1, MDO = 110.

B Example of Minimum Connection to the Flash Microcomputer Programmer (User Power Supply Used)

For a flash memory write, the MD2, MD1, MDO, and P00 pins and flash microcomputer
programmer need not be connected if the pins are set as described below.

Figure 25.4-1 Example of Minimum Connection to the Flash Microcomputer Programmer (User Power

Supply Used)
AF220/AF210/AF120/AF110 User system
flash microcomputer MB90F594A/MB90F594G/
1 for serial MB90F591A/MB90F591G
programmerf reprogramming ; oK ——— — —
MD2
1‘for serial ém KQ 10 KQ
reprogramming
Jﬂo—r MD1

% 10 KQ %1 0 KQ
—— MDO
0 for serial
reprogramming 10 KQ

L == X0
o X1
77 1%

10 KQ P00

0 for serial il 10 KQ
reprogramming o
User circuit PO1

1 for serial reprogramming ﬂi

%10 KQ use(t
clrcul rr—
HST
Connector N — C
DX10-28S or /% 0.1uF
DX20-28S
% 10 KQ
/TRES (5) RST
TTXD (13) SIN3
TRXD (27) SOT3
TCK (6)
SCK3
2
TVce (2) Voo
o u |
14,15, ser power supply
GND 21, 22| Vss
1, 28)
Pin 14 Pin 1
Pins 3, 4, 9, 10, 11, 12, 16, 17, 18, 19, DX10-28S
20, 23, 24, 25, and 26 are open. DX20-28S
DX10-28S: Right-angle type Pin 28 Pin 15

DX20-28S: Straight type Connector (Hirose Electronics Ltd.)

pin arrangement

410

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

¢ Even if the SIN3, SOT3, and SCK3 pins are used for the user system, the control circuit
shown in the figure below is required. The /TICS signal of the flash microcomputer

programmer can be used to disconnect the user circuit during serial programming.

e Connect the AF220/AF210/AF120/AF110 while the user power is off.

AF220/AF210/
AF120/AF110

write control pin
10KQ

AF220/AF210/
AF120/AF110
TICS pin

MB90F594A/MB90F594G/
MB90F591A/MB90F591G
write control pin

User

411

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

25.5 Example of Minimum Connection to the Flash

Microcomputer Programmer (Power Supplied from the
Programmer)

Figure 25.5-1 "Example of Minimum Connection to the Flash Microcomputer
Programmer (Power Supplied from the Programmer)" is an example of the minimum

connection to the flash microcomputer programmer when power is supplied from the
Programmer.

Serial reprogramming mode: MD2, MD1, MDO = 110.

B Example of Minimum Connection to the Flash Microcomputer Programmer (Power Supplied from the
Programmer)

For a flash memory write, the MD2, MD1, MDO, and P00 pins and flash microcomputer
programmer need not be connected if the pins are set as described below.

Figure 25.5-1 Example of Minimum Connection to the Flash Microcomputer Programmer (Power
Supplied from the Programmer)

AF220/AF210/AF120/AF110 User system

flash microcomputer MB90F594A/MB90F594G/
programmer 1 for serial §10Kn MB90F591A/MB90F591G
E— reprogramming —
L MD2

1 for serial 10 KQ
reprogramming §10 KQ/%

% 10 KQ % 10 KQ
77

0 for serial
reprogramming

Fﬁi X0

4 X1
777 177

10K9gu P00
i

10 KQ%
77 User circuit {07 PO1

1 for serial reprogramming)f

+ MD1

MDO
10 KQ

7

0 for serial
reprogramming

User
g 10 KQ circuit
L — — | HST
Connector [— C
DX10-28S or % 0.1uF
DX20-28S % 10K
ITRES 2 RST
TTXD 27) SIN3
TRXD ® SOT3
2
TeK ® SCK3
(16)
TVee Vee
(7.8,
GND 14,15, Vss
21,22,
1,28)
Pin 14 Pin 1
Pins 4,9, 10, 11,12, 17, 18, 19, DX10-28S

20, 23, 24, 25., and 26 are open. DX20-28S
DX10-28S: Right-angle type)
DX20-28S: Straight type Pin 28 Pin 15

Connector (Hirose Electronics Ltd.)
pin arrangement

412

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

¢ Even if the SIN3, SOT3, and SCK3 pins are used for the user system, the control circuit
shown in the figure below is required. The /TICS signal of the flash microcomputer

programmer can be used to disconnect the user circuit during serial programming.

e Connect the AF220/AF210/AF120/AF110 while the user power is off.

e When the programming power is supplied from the AF220/AF210/AF120/AF110, be careful

not to short-circuit the user power supply.

AF220/AF210/
AF120/AF110
write control pin

AF220/AF210/
AF120/AF110
TICS pin

10 KQ

User

MB90F594A/MB90F594G/
MB90F591A/MB90F591G
write control pin

413

CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION

414

APPENDIX

The appendixes provide I/0O maps, instructions, and other information.

APPENDIX A "I/O Maps"

APPENDIX B "Instructions"

APPENDIX C "Timing Diagrams in Flash Memory Mode"
APPENDIX D "List of MB90590 Interrupt Vectors"

415

APPENDIX

APPENDIX A

I/0 Maps

Table A-1 "I/O Map" lists addresses to be assigned to the registers in the peripheral

blocks.

M 1/0 Maps

Table A-1 1/O Map

Address Register Abbreviation | Access Peripheral Initial value
00 { Port 0 Data Register PDRO R/W Port 0 XXXXXXXXg
01y Port 1 Data Register PDR1 R/W Port 1 XXXXXXXXg
02 4 Port 2 Data Register PDR2 R/W Port 2 XXXXXXXXg
03 {4 Port 3 Data Register PDRS3 R/W Port 3 XXXXXXXXg
04 Port 4 Data Register PDR4 R/W Port 4 XXXXXXXXg
05 1 Port 5 Data Register PDR5 R/W Port 5 XXXXXXXXg
06 { Port 6 Data Register PDR6 R/W Port 6 XXXXXXXXg
07 4 Port 7 Data Register PDR7 R/W Port 7 ---XXXXXg
08 1 Port 8 Data Register PDRS8 R/W Port 8 XXXXXXXXg
09 {4 Port 9 Data Register PDR9 R/W Port 9 XXXXXXXXg

0A to OFy Use prohibited
10 Port O Direction Register DDRO R/W Port 0 000000005
11 4 Port 1 Direction Register DDR1 R/W Port 1 00000000g
12 4 Port 2 Direction Register DDR2 R/W Port 2 00000000g
13 1 Port 3 Direction Register DDR3 R/W Port 3 000000005
14 4 Port 4 Direction Register DDR4 R/W Port 4 00000000g
154 Port 5 Direction Register DDR5 R/W Port 5 00000000g
16 H Port 6 Direction Register DDR6 R/W Port 6 000000005
17 H Port 7 Direction Register DDR7 R/W Port 7 00000000g
18 Port 8 Direction Register DDR8 R/W Port 8 00000000g
19 4 Port 9 Direction Register DDR9 R/W Port 9 --000000g
1A 4 Use prohibited
1B H Analog Input Enable Register ADER R/W Port 6, A/D 11111111

1Cto 1F Use prohibited

416

Table A-1 1/0 Map (Continued)

APPENDIX A /O Maps

Address Register Abbreviation | Access Peripheral Initial value
20 4 Serial Mode Control Register 0 UMCO R/W 00000100
21Q Status Register 0 USRO R/W 00010000
22 Input/Output Data Register 0 UIDRO/ R/W VARTO XXXXXXXX

H UODRO B
23 4 Rate/Data Register 0 URDO R/W 0000000Xg
24 4 Serial Mode Control Register 1 UMC1 R/W 00000100g
254 Status Register 1 USR1 R/W 00010000
. UIDR1/ UART1
26 4 Input/Output Data Register 1 R/W XXXXXXXXg
UODR1
27 H Rate/Data Register 1 URD1 R/W 0000000Xg
28 4 Serial Mode Control Register 2 umMC2 R/W 00000100
29 4 Status Register 2 USR2 R/W 00010000
2A Input/Output Data Register 2 UIDR2/ R/W VART2 XXXXXXXX
H puvbutp 9 UODR2 B
2By Rate/Data Register 2 URD2 R/W 0000000Xg
2C Serial Mode Control Register SMCS R/W ----0000g
2D Serial Mode Control Register SMCS R/W 00000010g
Serial /0
2E Serial Data Register SDR R/W XXXXXXXXg
2F 4 Edge Selector Register SES RW |] e 0g
30 4 External Interrupt Enable Register ENIR R/W 00000000g
External Interrupt Request
314 Register EIRR R/W External XXXXXXXXg
interrupt
324 External Interrupt Level Register ELVR R/W 00000000g
334 External Interrupt Level Register ELVR R/W 00000000g
34 4 A/D Control Status Register 0 ADCSO0 R/W 00000000
354 A/D Control Status Register 1 ADCS1 R/W 00000000
A/D converter
36 4 A/D Data Register 0 ADCRO R XXXXXXXXg
374 A/D Data Register 1 ADCR1 R/W 000010XXg
38 EPQO Operation Mode Control PPGCO R/W 0-000-15
egister .
16-bit
39 PPQ1 Operation Mode Control PPGC1 R/W programmable 0-0000015
Register pulse
PPGO, 1 Output Pin Contorol generator O/
3A 4 et et PPCO1 RIW 000000--5
Register
3By Use prohibited

417

APPENDIX

Table A-1 1/0 Map (Continued)

Address Register Abbreviation | Access Peripheral Initial value
3C 4 ;PQ2 Operation Mode Control PPGC2 R/W 0-000--1g
egister .
16-bit
3D 4 PPQS Operation Mode Control PPGC3 R/W programmable 0-000001g
Register pulse
PPG2, 3 Output Pin Contorol generator2/3
3E <, o DUipul Fin Lontoro PPG23 R/W 000000--g
Register
3F { Use prohibited
40 4 PPG4 Operation Mode Control PPGC4 R/W 0-000--1g
Register .
16-bit
414 PPGS Operation Mode Control PPGCS5 R/W programmable | o 515044 5
Register pulse
PPG4, 5 Output Pin Contorol generator 45
42 Rogisiy | PHL TR oMM PPG45 R/W 000000--g
egister
43 Use prohibited
44 PPQG Operation Mode Control PPGC6 R/W 0-000--1g
Register :
16-bit
45 PPG7 Operation Mode Control PPGC7 R/W programmable 0-000001g
Register pulse
PPG6, 7 Output Pin Contorol generator /7
46 Rogistey | PUTIn oMM PPG67 R/W 000000--g
gister
47 4 Use prohibited
48, ;PQS Operation Mode Control PPGCS R/W 0-000--1g
egister .
16-bit
19, PPGO Operation Mode Control PPGCY Rw | Programmable |4 555001,
Register pulse
PPG8, 9 Output Pin Contorol generator 8/9
4A 4 1S, 9 Dutpul Fin Lontoro PPG89 R/W 000000--g
Register
4B Use prohibited
4C 4 PPQA Operation Mode Control PPGCA R/W 0-000--1g
Register .
16-bit
4Dy PPGB Operation Mode Control PPGCB R/W programmable | o 510054 5
Register pulse
PPGA, B Output Pin Contorol generator A/B
4EN | Rogister TN OMOTO PPGAB R/W 00000000g
egister
4F 4 Use prohibited
50 1 Timer Control Status Register 0 TMCSRO R/W 16-bit reload 00000000g
51 Timer Control Status Register 0 TMCSRO R/W timer 0 ----0000g

418

Table A-1 1/0 Map (Continued)

APPENDIX A /O Maps

Address Register Abbreviation | Access Peripheral Initial value
. . 16-bit reload
52 4 Timer Control Status Register 1 TMCSR1 R/W timer 1 00000000g
53 4 Timer Control Status Register 1 TMCSR1 R/W ----0000g
Input Capture Control Status Input capture
54 4 Register 0/1 ICS01 R/W 0/ 000000005
55 Input Capture Control Status 1CS23 R/W Input capture 00000000
H Register 2/3 2/3 B
Input Capture Control Status Input capture
56 H Register 4/5 ICS45 R/W 4/5 00000000
57 H Use prohibited
58 |y gutputt Cgmpare Control Status 0CS0 R/W 0000--00g
compare 0/1
59 Output Compare Control Status 0CS1 R/W 000005
Register 1
BA gutputt Cgmpare Control Status 0CS2 R/W 0000--00g
compare 2/3
5B 4 Output Compare Control Status 0CS3 R/W 000005
Register 3
5C gutputt szpare Control Status 0cs4 R/W 0000--00g
egister Output
compare 4/5
5D | Output Compare Control Status 0CS5 R/W 000005
Register 5
5E H Sound Control Register SGCR R/W Sound 00000000g
5F 4 Sound Control Register SGCR R/W generator 0------0g
60 4 Timer Control Register WTCR R/W 000--000g
Watch timer
614 Timer Control Register WTCR R/W 00000000
Stepping
62 H PWM Control Register 0 PWCO R/W motor 00000--0g
controller 0
63 4 Use prohibited
Stepping
64 4 PWM Control Register 1 PWCH R/W motor 00000--0g
controller 1
65 4 Use prohibited
Stepping
66 H PWM Control Register 2 PWC2 R/W motor 00000--0g
controller 2
67 1 Use prohibited

419

APPENDIX

Table A-1 1/0 Map (Continued)

Address Register Abbreviation | Access Peripheral Initial value
Stepping
68 PWM Control Register 3 PWC3 R/W motor 00000--0g
controller 3
69 4 Use prohibited
6Ato6C Use prohibited
. . Prescaler
6D Serial I/O Prescaler Register CDCR R/W (Serial 1/0) 0---1111g
6E 4 Timer Control Status Register TCCS R/W I/O timer 00000000g
6F, | ROM Mirror Function Select ROMM w ROM mirror | XXXXXXX1g
Register
70to 8F y | Reserved for CAN interface 0/1. See the "CAN Controller Hardware Manual".
90to 9D Use prohibited
Address
Program Address Detection Match
9EH Control Status Register PACSR RIW Detection 000000005
Function
oF Delgyed Interrupt/Release DIRR R/W _Delayed _______ Og
Register interrupt
A0 Low-power Mode Control Register LPMCR R/W Low-power 00011000g
Aty Clock Selection Register CKSCR R/W control circuit | 11111100
A2 to A7y Use prohibited
A8, | Watch-dog Timer Control Register WDTC R/W W‘"’;ti‘;:‘;og XXXXX111g
A9, | Timebase Timer Control Register TBTC R/W T"Ii‘r‘f]'ﬁse 1--00100g
AAto AD (4 Use prohibited
Flash Memory Control Status
Register (only for MB90OF594A/
AE 4 MB90F594G/MB90591A/ FMCS R/W Flash memory | 000X0000g
MB90F591G. Use prohibited for
other controllers.)
AF 4 Use prohibited

420

APPENDIX A /O Maps

Table A-1 1/0 Map (Continued)

Address Register Abbreviation | Access Peripheral Initial value
BO 4 Interrupt Control Register 00 ICR00 R/W 00000111
B1 H Interrupt Control Register 01 ICRO1 R/W 00000111g
B2 4 Interrupt Control Register 02 ICR02 R/W 00000111
B3y Interrupt Control Register 03 ICRO3 R/W 00000111
B4 4 Interrupt Control Register 04 ICR0O4 R/W 00000111g
B5 {4 Interrupt Control Register 05 ICR05 R/W 00000111
B6 Interrupt Control Register 06 ICR06 R/W 00000111
B7 H Interrupt Control Register 07 ICRO7 R/W Interrupt 00000111g
B8 | Interrupt Control Register 08 ICRO8 R/W controller 00000111
B9y Interrupt Control Register 09 ICR09 R/W 00000111
BA { Interrupt Control Register 10 ICR10 R/W 00000111g
BB { Interrupt Control Register 11 ICR11 R/W 00000111
BC 4 Interrupt Control Register 12 ICR12 R/W 00000111g
BD {4 Interrupt Control Register 13 ICR13 R/W 00000111g
BE {4 Interrupt Control Register 14 ICR14 R/W 00000111
BF Interrupt Control Register 15 ICR15 R/W 00000111g

COto FF 4 Use prohibited
Table A-2 1/0 Map (19XX Address)

Address Register Abbreviation | Access Peripheral Initial value
1900 4 Reload Register L PRLLO R/W XXXXXXXXg
1901 4 Reload Register H PRLHO R/W 16-bit programmable XXXXXXXXg
1902, | Reload Register L PRLL1 RW | Pulsegenerator O/1 | xxxxxxXXg
1903 Reload Register H PRLH1 R/W XXXXXXXXg
1904 4 Reload Register L PRLL2 R/W XXXXXXXXg
1905 { Reload Register H PRLH2 R/W 16-bit programmable XXXXXXXXg
1906 ; | Reload Register L PRLL3 RW | Pulsegenerator2/3 | yyxxxxxXg
1907 Reload Register H PRLH3 R/W XXXXXXXXg

421

APPENDIX

Table A-2 1/0 Map (19XX Address) (Continued)

Address Register Abbreviation | Access Peripheral Initial value
1908 Reload Register L PRLL4 R/W XXXXXXXXg
1909 {4 Reload Register H PRLH4 R/W 16-bit programmable XXXXXXXXg
190A ; | Reload Register L PRLL5 R/W | Pulse generator4/5 | yyxxxxxXg
190B Reload Register H PRLH5 R/W XXXXXXXXg
190C 4 Reload Register L PRLL6 R/W XXXXXXXXg
190D 4 Reload Register H PRLH6 R/W 16-bit programmable XXXXXXXXg
190E ; | Reload Register L PRLL7 R/W | Pulsegenerator6/7 | xxxxxxXXg
190F Reload Register H PRLH7 R/W XXXXXXXXg
1910 4 Reload Register L PRLLS8 R/W XXXXXXXXg
1911 4 Reload Register H PRLH8 R/W 16-bit programmable XXXXXXXXg
1912 | Reload Register L PRLLY R/W | Pulsegenerator8/9 | yyxxxxxxg
1913 4 Reload Register H PRLH9 R/W XXXXXXXXg
1914 Reload Register L PRLLA R/W XXXXXXXXg
1915 4 Reload Register H PRLHA R/W 16-bit programmable XXXXXXXXg
1916, | Reload Register L PRLLB R/W | Pulse generator ABB | yyxxxxxXg
1917 4 Reload Register H PRLHB R/W XXXXXXXXg
1918 to -
191F Use prohibited
1920 { Input Capture Register 0 IPCPO R XXXXXXXXg
1921 Input Capture Register 0 IPCPO R XXXXXXXXpg

Input capture 0/1
1922 Input Capture Register 1 IPCP1 R XXXXXXXXg
1923 | Input Capture Register 1 IPCP1 R XXXXXXXXg
1924 Input Capture Register 2 IPCP2 R XXXXXXXXpg
1925 Input Capture Register 2 IPCP2 R XXXXXXXXg
Input capture 2/3
1926 Input Capture Register 3 IPCP3 R XXXXXXXXg
1927 Input Capture Register 3 IPCP3 R XXXXXXXXpg
1928 Input Capture Register 4 IPCP4 R XXXXXXXXg
1929 Input Capture Register 4 IPCP4 R Input capture 4/5 XXXXXXXXg
192A Input Capture Register 5 IPCP5 R XXXXXXXXpg
192B 4 Input Capture Register 5 IPCP5 R XXXXXXXXg
192D to -
192F |, Use prohibited

422

Table A-2 1/0 Map (19XX Address) (Continued)

APPENDIX A /O Maps

Address Register Abbreviation | Access Peripheral Initial value
1930 Output Compare Register 0 OCCPO R/W XXXXXXXXp
1931 4 Output Compare Register 0 OCCPO R/W XXXXXXXXpg

Output compare 0/1
1932 4 Output Compare Register 1 OCCP1 R/W XXXXXXXXg
1933 4 Output Compare Register 1 OCCP1 R/W XXXXXXXXp
1934 4 Output Compare Register 2 OCCP2 R/W XXXXXXXXpg
1935 4 Output Compare Register 2 OCCP2 R/W XXXXXXXXg
Output compare 2/3
1936 Output Compare Register 3 OCCP3 R/W XXXXXXXXg
1937 Output Compare Register 3 OCCP3 R/W XXXXXXXXpg
1938 4 Output Compare Register 4 OCCP4 R/W XXXXXXXXg
1939 4 Output Compare Register 4 OCCP4 R/W XXXXXXXXp
Output compare 4/5
193A { Output Compare Register 5 OCCP5 R/W XXXXXXXXpg
193B { Output Compare Register 5 OCCP5 R/W XXXXXXXXg
193D to -
193F |4 Use prohibited
Timer Register O/reload TMRO/
19404 Register 0 TMRLRO RIW XXXXXXXXg
16-bit reload timer 0
Timer Register 0/Reload TMRO/
19411 | Register 0 TMRLRO RIW XXXXXXXXg
Timer Register 1/Reload TMR1/
19421 | Register 1 TMRLR1 R/W XXXXXXXXg
16-bit reload timer 1
Timer Register 1/Reload TMR1/
1943 1 Register 1 TMRLR1 R/W XXXXXXXXg
1944 Timer Data Register TCDT R/W 00000000
I/O timer
1945 Timer Data Register TCDT R/W 00000000
1946 4 Frequency Data Register SGFR R/W XXXXXXXXg
1947 4 Amplitude Data Register SGAR R/W XXXXXXXXg
Sound generator
1948 Decrement Grade Register SGDR R/W XXXXXXXXp
1949 4 Tone Count Register SGTR R/W XXXXXXXXg
194A Sub-second Data Register WTBR R/W XXXXXXXXg
194B Sub-second Data Register WTBR R/W XXXXXXXXg
194C 4 Sub-second Data Register WTBR R/W ---XXXXXg
Watch timer
194D Second Data Register WTSR R/W --000000g
194E Minute Data Register WTMR R/W --000000g
194F Hour Data Register WTHR R/W ---00000g

423

APPENDIX

Table A-2 1/0 Map (19XX Address) (Continued)

Address Register Abbreviation | Access Peripheral Initial value
1950 PWM1 Compare Register 0 PWC10 R/W XXXXXXXXpg
1951 PWM2 Compare Register 0 PWC20 R/W Stepping motor XXXXXXXXg
1952, | PWM1 Select Register 0 PWS10 R/W controller 0 --000000g
1953 |4 PWM2 Select Register 0 PWS20 R/W -0000000g
1954 PWM1 Compare 1 PWC11 R/W XXXXXXXXg
1955 PWM2 Compare 1 PWC21 R/W Stepping motor XXXXXXXXg
1956, | PWM1 Select Register 1 PWS11 R/W controller 1 --000000g
1957 PWM2 Select Register 1 PWS21 R/W -0000000g
1958 PWM1 Compare Register 2 PWC12 R/W XXXXXXXXg
1959 PWM2 Compare Register 2 PWC22 R/W Stepping motor XXXXXXXXp
195A | PWM1 Select Register 2 PWS12 R/W controller 2 --000000g
195B PWM2 Select Register 2 PWS22 R/W -0000000g
195C 4 PWM1 Compare Register 3 PWC13 R/W XXXXXXXXg
195D PWM2 Compare Register 3 PWC23 R/W Stepping motor XXXXXXXXg
195E ;| PWM1 Select Register 3 PWS13 R/W controller 3 --000000g
195F 4 PWM2 Select Register 3 PWS23 R/W -0000000g
1960 to £
19FF | Used prohibited
1A00 to . " "
1AFF Reserved for CAN interface 0. See the "CAN Controller Hardware Manual".

H
1B0O0 to . " "
1BFF 4 Reserved for CAN interface 1. See the "CAN Controller Hardware Manual".

1C00 to . " "
1CFF |, Reserved for CAN interface 0. See the "CAN Controller Hardware Manual".
1D00 to . " "
1DEE Reserved for CAN interface 1. See the "CAN Controller Hardware Manual".

H
1E00 to .
1EFF Use prohibited

424

APPENDIX A /O Maps

Table A-2 1/0 Map (19XX Address) (Continued)

Address Register Abbreviation | Access Peripheral Initial value
teFoy, | posmAdtess Deoctor
1EF1 4 ;;Og%:g: Q‘?ﬂﬁgife?gfggo” PADRO RIW XXXXXXXXg
ter2,, | oy sodrss etecton
{EF3 g;og%:é? f?lzrvifm?;t)edion detection function XXXXXXXXg
1EF4 ;;Og%:g: f?ﬂﬁgﬁfggfggon PADR1 RIW XXXXXXXXg
teFs,, | oy Aodrss etecton
11|E:||::|6: t: Use prohibited

¢ |nitial value "?" indicates an unused bit, and "X" indicates an undefined value.

e The addresses between 00004 and 00FFy, which are not listed, have been reserved for the
main functions of the MCU. The result of read access to these reserved addresses is "X".

Write access to these addresses is not allowed.
O Explanation of write and read
R/W: Both read and write enabled
R: Only read enabled
W: Only write enabled

O Explanation of initial values
0: The initial value of this bit is "0".
1: The initial value of this bit is "1".
X: The initial value of this bit is undefined.

-: This bit is not used, and the initial value is undefined.

425

APPENDIX

APPENDIX B Instructions

Appendix B describes the instructions used by the F2MC-16LX.

B.1 "Instruction Types"

B.2 "Addressing"

B.3 "Direct Addressing"

B.4 "Indirect Addressing"
B.5 "Execution Cycle Count"
B.6 "Effective Address Field"

B.7 "How to Read the Instruction List"

B.8 "F2MC-16LX Instruction List"

B.9 "Instruction Map"

426

APPENDIX B Instructions

B.1 Instruction Types

The F2MC-16LX supports 351 types of instructions. Addressing is enabled by using an
effective address field of each instruction or using the instruction code itself.

B Instruction Types

The FPMC-16LX supports the following 351 types of instructions:

41 transfer instructions (byte)

38 transfer instructions (word or long word)

42 addition/subtraction instructions (byte, word, or long word)
12 increment/decrement instructions (byte, word, or long word)
11 comparison instructions (byte, word, or long word)

11 unsigned multiplication/division instructions (word or long word)
11 signed multiplication/division instructions (word or long word)
39 logic instructions (byte or word)

6 logic instructions (long word)

6 sign inversion instructions (byte or word)

1 normalization instruction (long word)

18 shift instructions (byte, word, or long word)

50 branch instructions

6 accumulator operation instructions (byte or word)

28 other control instructions (byte, word, or long word)

21 bit operation instructions

10 string instructions

427

APPENDIX

B.2 Addressing

With the F2MC-16LX, the address format is determined by the instruction effective
address field or the instruction code itself (implied). When the address format is
determined by the instruction code itself, specify an address in accordance with the
instruction code used. Some instructions permit the user to select several types of
addressing.

Bl Addressing
The FPMC-16LX supports the following 23 types of addressing:

¢ Immediate (#imm)

* Register direct

e Direct branch address (addr16)

¢ Physical direct branch address (addr24)

e |/O direct (io)

e Abbreviated direct address (dir)

¢ Direct address (addr16)

e |/O direct bit address (io:bp)

e Abbreviated direct bit address (dir:bp)

e Direct bit address (addr16:bp)

e Vector address (#vct)

* Register indirect (@RWj j=01to 3)

* Register indirect with post increment (@ RWj+ j=0to 3)

* Register indirect with displacement (@ RWi + disp8 i =0to 7, @RWj + disp16 j=0to 3)
* Long register indirect with displacement (@RLi + disp8 i =0 to 3)
* Program counter indirect with displacement (@ PC + disp16)

* Register indirect with base index (@ RWO0 + RW7, @RW1 + RW7)
* Program counter relative branch address (rel)

* Register list (rst)

e Accumulator indirect (@A)

e Accumulator indirect branch address (@A)

¢ Indirectly-specified branch address (@ear)

¢ Indirectly-specified branch address (@eam)

428

APPENDIX B Instructions

Bl Effective Address Field

Table B.2-1 "Effective address field" lists the address formats specified by the effective address
field.

Table B.2-1 Effective address field

Code Representation Address format Default bank
00 RO RWO RLO
01 R1 RWH1 (RLO)
02 R2 RwW2 RL1
03 R3 RW3 (RL1) Register direct: Individual parts correspond
to the byte, word, and long word types in None
04 R4 Rw4 RL2 order from the left.
05 R5 RW5 (RL2)
06 R6 RwW6 RL3
07 R7 Rw7 (RL3)
08 @RWO DTB
09 @RWA1 DTB
Register indirect
0A @RW2 ADB
0B @RW3 SPB
0oC @RWO+ DTB
oD @RW1+ DTB
Register indirect with post increment
OE @RW2+ ADB
OF @RW3+ SPB
10 @RWO-+disp8 DTB
11 @RW1-+disp8 DTB
Register indirect with 8-bit displacement
12 | @RW2+disp8 ADB
13 @RW3+disp8 SPB
14 @RW4-+disp8 DTB
15 @RWS5-+disp8 DTB
Register indirect with 8-bit displacement
16 | @RW6+disps ADB
17 @RW7+disp8 SPB
18 @RWO-+disp16 DTB
19 @RW1-+disp16 DTB
Register indirect with 16-bit displacement
1A @RW2+disp16 ADB
1B @RW3+disp16 SPB
1C @RWO+RW7 DTB
Register indirect with index
1D @RW1+RW7 Register indirect with index DTB
1E @PCudisp16 PQ indirect with 16-bit displacement PCB
Direct address
1F | addr6 DTB

429

APPENDIX

B.3 Direct Addressing

An operand value, register, or address is specified explicitly in direct addressing
mode.

B Direct Addressing

O Immediate addressing (#imm)

Specify an operand value explicitly (#imm4/ #imm8/ #imm16/ #imm32).

Figure B.3-1 Example of immediate addressing (#imm)

MOVW A, #01212H (This instruction stores the operand value in A.)

Before execution A [2233:i4455]

After execution A |[4455:1212]| (Some instructions transfer AL to AH.)

O Register direct addressing

Specify a register explicitly as an operand. Table B.3-1 "Direct addressing registers" lists the
registers that can be specified. Figure B.3-2 "Example of register direct addressing" shows an
example of register direct addressing.

Table B.3-1 Direct addressing registers

General-purpose Byte RO, R1, R2, R3, R4, R5, R6, R7
register

Word RWO0, RW1, RW2, RW3, RW4, R5W,

RW6, RW7

Long word RLO, RL1, RL2, RL3
Special-purpose Accumulator A, AL
register) 1

Pointer SP

Bank PCB, DTB, USB, SSB, ADB

Page DPR

Control PS, CCR, RP, ILM

*1: One of the user stack pointer (USP) and system stack pointer (SSP) is selected and used
depending on the value of the S flag bit in the condition code register (CCR). For branch
instructions, the program counter (PC) is not specified in an instruction operand but is
specified implicitly.

430

APPENDIX B Instructions

Figure B.3-2 Example of register direct addressing

MOV RO, A (This instruction transfers the eight low-order bits of A to the general-purpose
register RO.)

Before execution A |0716i2534| Memory space
RO

?7?

After execution A [0716:i2564]

Memory space

RO

34

O Direct branch addressing (addr16)

Specify an offset explicitly for the branch destination address. The size of the offset is 16 bits,
which indicates the branch destination in the logical address space. Direct branch addressing is
used for an unconditional branch, subroutine call, or software interrupt instruction. Bits 23 to 16
of the address are specified by the program bank register (PCB).

Figure B.3-3 Example of direct branch addressing (addr16)

JMP 3B20H (This instruction causes an unconditional branch by direct branch addressing
in a bank.)

Before execution PC[3C20 PCB

Memory space

4F3C22H 3B
4F3C21H 20
4F3C20H 62 JMP 3B20H

After execution PC|3B20 PCB ; :

4F3B20H | Next instruction

O Physical direct branch addressing (addr24)

Specify an offset explicitly for the branch destination address. The size of the offset is 24 bits.
Physical direct branch addressing is used for unconditional branch, subroutine call, or software
interrupt instruction.

Figure B.3-4 Example of direct branch addressing (addr24)

JMPP 333B20H (This instruction causes an unconditional branch by direct branch 24-bit
addressing.)
Before execution
PCL8C20 PCB Memory space
4F3C23H 33
4F3C22H 3B

4F3C21H 20
4F3C20H 63 JMPP 333B20H

After execution PC[3B20 PCB

333B20H [Next instruction

431

APPENDIX

432

O /0 direct addressing (io)

Specify an 8-bit offset explicitly for the memory address in an operand. The I/O address space
in the physical address space from 000000H to 0000FFH is accessed regardless of the data
bank register (DTB) and direct page register (DPR). A bank select prefix for bank addressing is
invalid if specified before an instruction using I/0 direct addressing.

Figure B.3-5 Example of I/O direct addressing (io)

MOVW A, i:0COH (This instruction reads data by I/O direct addressing and stores it in A.)

Before execution A |0716:2534]

Memory space

0000C1H
0000COH

FF
EE

After execution A |[2534 iFFEE|

Abbreviated direct addressing (dir)

Specify the eight low-order bits of a memory address explicitly in an operand. Address bits 8 to
15 are specified by the direct page register (DPR). Address bits 16 to 23 are specified by the
data bank register (DTB).

Figure B.3-6 Example of abbreviated direct addressing (dir)

MOVW S;20H, A (This instruction writes the contents of the eight low-order bits of A in abbreviated
direct addressing mode.)

Before execution A 4455:1212 Memory space
DTB 776620H | 2?2
After execution A 4455:1212 Memory space

DTB E77 776620H | 12

Direct addressing (addr16)

Specify the 16 low-order bits of a memory address explicitly in an operand. Address bits 16 to
23 are specified by the data bank register (DTB). A prefix instruction for access space
addressing is invalid for this mode of addressing.

Figure B.3-7 Example of direct addressing (addr16)

BRA 3B20H (This instruction causes an unconditional relative branch.)

Before execution PC [3C20] PCB Memory space
4F3C22H| FF
4F3C21H| FE

4F3C20H 60 BRA 3B20H

After execution ~ PC pcB[4F]

4F3B20H

APPENDIX B Instructions

O /0 direct bit addressing (io:bp)

Specify bits in physical addresses 000000H to 0000FFH explicitly. Bit positions are indicated by
":bp", where the larger number indicates the most significant bit (MSB) and the lower number
indicates the least significant bit (LSB).

Figure B.3-8 Example of I/O direct bit addressing (io:bp)

SETB [:0C1H: (This instruction sets bits by 1/O direct bit addressing.)
Memory space

Before execution 0000C1H 00

After execution 0000C1H 01

O Abbreviated direct bit addressing (dir:bp)

Specify the eight low-order bits of a memory address explicitly in an operand. Address bits 8 to
15 are specified by the direct page register (DPR). Address bits 16 to 23 are specified by the
data bank register (DTB). Bit positions are indicated by ":bp", where the larger number indicates
the most significant bit (MSB) and the lower number indicates the least significant bit (LSB).

Figure B.3-9 Example of abbreviated direct bit addressing (dir:bp)

SETB S:10H:0 (This instruction sets bits by abbreviated direct bit addressing.)
Memory space
Before execution DTB DPR 556610H | 00

Memory space

After execution p1g DPR 556610H 01

O Direct bit addressing (addr16:bp)

Specify arbitrary bits in 64 kilobytes explicitly. Address bits 16 to 23 are specified by the data
bank register (DTB). Bit positions are indicated by ":bp", where the larger number indicates the
most significant bit (MSB) and the lower number indicates the least significant bit (LSB).

Figure B.3-10 Example of direct bit addressing (addr16:bp)

SETB 2222H:0 (This instruction sets bits by direct bit addressing.)

Memory space

Before execution DTB 552222H | 00

Memory space

After execution DTB 552222H | 01

433

APPENDIX

434

O Vector Addressing (#vct)

Specify vector data in an operand to indicate the branch destination address. There are two
sizes for vector numbers: 4 bits and 8 bits. Vector addressing is used for a subroutine call or
software interrupt instruction.

Figure B.3-11 Example of vector addressing (#vct)

CALLV #15 (This instruction causes a branch to the address indicated by the interrupt vector
specified in an operand.)

Before execution PC Memory space
PCB FFFFETH[DO
After execution ~ PC FFFFEOH. o0
PCB FFCOOOH| EF .CALLV #15
Table B.3-2 CALLYV vector list
Instruction Vector address L Vector address H

CALLV #0 XXFFFEH XXFFFFy
CALLV #1 XXFFFCy XXFFFDy
CALLV #2 XXFFFAY XXFFFBy
CALLV #3 XXFFF8y XXFFF9y
CALLV #4 XXFFF6y XXFFF7y
CALLV #5 XXFFF4y XXFFF5y
CALLV #6 XXFFF2y XXFFF3y
CALLV #7 XXFFFOy XXFFF1y
CALLV #8 XXFFEEy XXFFEFy
CALLV #9 XXFFECH XXFFEDy
CALLV #10 XXFFEAy XXFFEBy
CALLV #11 XXFFE8 XXFFE9y
CALLV #12 XXFFE6H XXFFE7y
CALLV #13 XXFFE4 XXFFE5y
CALLV #14 XXFFE2y XXFFE3
CALLV #15 XXFFEOH XXFFE1H

Note: A PCB register value is set in XX.

Note:

When the program bank register (PCB) is FFy, the vector area overlaps the vector area of IN
#vct8 (#0 to #7). Use vector addressing carefully (see Table B.3-2 "CALLV vector list").

APPENDIX B Instructions

B.4 Indirect Addressing

In indirect addressing mode, an address is specified indirectly by the address data of
an operand.

B Indirect Addressing

O Register indirect addressing (@RWj j=0 to 3)

Memory is accessed using the contents of general-purpose register RWj as an address.
Address bits 16 to 23 are indicated by the data bank register (DTB) when RWO0 or RW1 is used,
system stack bank register (SSB) or user stack bank register (USB) when RW3 is used, or
additional data bank register (ADB) when RW2 is used.

Figure B.4-1 Example of register indirect addressing (@RWj j =0 to 3)

MOVW A, @RW1 (This instruction reads data by register indirect addressing and stores it in A.)

Before execution A |[0716:2534 Memory space

RW1 |[D30F|DTB 78D310H | FF
78D30TFH EE

After execution A |2534 :FFEE
RW1|[D30F| DTB|[7 8]

O Register indirect addressing with post increment (@RWj+ j =0 to 3)

Memory is accessed using the contents of general-purpose register RWj as an address. After
operand operation, RWj is incremented by the operand size (1 for a byte, 2 for a word, or 4 for a
long word). Address bits 16 to 23 are indicated by the data bank register (DTB) when RWO or
RW1 is used, system stack bank register (SSB) or user stack bank register (USB) when RW3 is
used, or additional data bank register (ADB) when RW2 is used.

If the post increment results in the address of the register that specifies the increment, the
incremented value is referenced after that. In this case, if the next instruction is a write
instruction, priority is given to writing by an instruction and, therefore, the register that would be
incremented becomes write data.

435

APPENDIX

Figure B.4-2 Example of register indirect addressing with post increment
(@RWj+ j=0to 3)

MOVW A, @RW1+ (This instruction reads data by register indirect addressing with post
increment and stores it in A.)

Before execution A |0716:2534 Memory space

RW1[D30F]|DTB 78D310H| FF
78D30TFH EE

After execution A
RW1 DTB

O Register indirect addressing with offset (@ RWi + disp8 i =0 to 7, @RWj + disp16 j=0 to
3)

Memory is accessed using the address obtained by adding an offset to the contents of general-
purpose register RWj. Two types of offset, byte and word offsets, are used. They are added as
signed numeric values. Address bits 16 to 23 are indicated by the data bank register (DTB)
when RWO0, RW1, RW4, or RW5 is used, system stack bank register (SSB) or user stack bank
register (USB) when RW3 or RW7 is used, or additional data bank register (ADB) when RW2 or
RWE6 is used.

Figure B.4-3 Example of register indirect addressing with offset
(@RWi + disp8 i=0to 7, @RWj + disp16 j=010 3)

MOVW A, @RW1+10H (This instruction reads data by register indirect addressing with an
offset and stores it in A.)

Before execution A 0716:2534 Memory space

RW1 |[D30F|DTB 78D320H | FF
78D31FH| EE

(+10H)
After execution A |2534:FFEE
RW1|[D30F|DTB

O Long register indirect addressing with offset (@RLi + disp8 i =0 to 3)

Memory is accessed using the address that is the 24 low-order bits obtained by adding an offset
to the contents of general-purpose register RLi. The offset is 8-bits long and is added as a
signed numeric value.

Figure B.4-4 Example of long register indirect addressing with offset
(@RLi + disp8 i=0to 3)

MOVW A, @RL2+25H (This instruction reads data by long register indirect addressing with an
offset and stores it in A.)

Before execution A [0716:2534 Memory space
RL2 |F382:i4B02 824B28H | FF

824B27H EE
(+25H)

After execution A |2534:FFEE
RL2 [F382:4B02

436

APPENDIX B Instructions

O Program counter indirect addressing with offset (@PC + disp16)

Memory is accessed using the address indicated by (instruction address + 4 + disp16). The
offset is one word long. Address bits 16 to 23 are specified by the program bank register (PCB).
Note that the operand address of each of the following instructions is not deemed to be (next
instruction address + disp16):

e DBNZ eam, rel

e DWBNZ eam, rel

¢ CBNE eam, #imm§, rel

¢ CWBNE eam, #imm186, rel
* MOV eam, #imm8

e MOVW eam, #imm16

Figure B.4-5 Example of program counter indirect addressing with offset (@PC + disp16)

MOVW A, @PC+20H (This instruction reads data by program counter indirect addressing with a
offset and stores it in A.)

Before execution A |0716:2534 Memory space
PCB PC[4556 C5457BH| FF

C5457AH| EE

After execution A |2534:FFEE C5455AH

+20H 545504 [00

+4 MoVW
PCB PC L csasseH [20 | NG

C54557H| 9E
C54556H 73

O Register indirect addressing with base index (@RW0 + RW7, @RW1 + RW7)

Memory is accessed using the address determined by adding RWO0 or RW1 to the contents of
general-purpose register RW7. Address bits 16 to 23 are indicated by the data bank register
(DTB).

Figure B.4-6 Example of register indirect addressing with base index
(@RWO0 + RW7, @RW1 + RW7)

MOVW A, @RW1+RW?7 (This instruction reads data by register indirect addressing with a
base index and stores it in A.)

Before execution A |0716:2534 Memory space

RwW1|D30FRHDTB|78 78D411H FF
+ 78D410H EE
Rw7 (0101 j‘

After execution A
AW DTB
RW7

437

APPENDIX

O Program counter relative branch addressing (rel)

The address of the branch destination is a value determined by adding an 8-bit offset to the
program counter (PC) value. If the result of addition exceeds 16 bits, bank register incrementing
or decrementing is not performed and the excess part is ignored, and therefore the address is
contained within a 64-kilobyte bank. This addressing is used for both conditional and
unconditional branch instructions. Address bits 16 to 23 are indicated by the program bank
register (PCB).

Figure B.4-7 Example of program counter relative branch addressing (rel)

BRA 3B20H (This instruction causes an unconditional relative branch.)

Before execution PC [3C20] PCB Memory space

4F3C22H| FF
4F3C21H| FE
4F3C20H| 60 [BRA 3B20H

After execution PC PCB[4 F]

4F3B20H |Next instrucfon

O Register list (rist)

Specify a register to be pushed onto or popped from a stack.

Figure B.4-8 Configuration of the register list

MSB LSB
|RW7 |RW6 | RW5 | Rw4 |RW3 |RW2 |RW1 |RWO |

A register is selected when the corresponding bit is 1 and deselected when the bit is 0.

438

APPENDIX B Instructions

Figure B.4-9 Example of register list (rlist)

POPW RWO, RW4 (This instruction transfers memory data indicated by the SP to multiple
word registers indicated by the register list.)
SP sp
RWO | x xix x RWO |02:01
RW1 [x x ix x RW1 |x x:ix x
RW2 |x xix x RW2 |x x:x x
RW3 [x xix x RW3 [x xix x
RW4 | x xix x RW4 [04:03
RW5 | x x:x x RW5 | x x:x x
RW6 | x xi x x RWB | x x:x x
RW7 xxixx RW7 xxixx
Memory space Memory space
34FEH SP— 34FEH
04 |[34FDH 04 |[34FDH
03 |[34FCH 03 |34FCH
02 |[34FBH 02 |[34FBH
SP—| 01 34FAH 01 34FAH
Before execution After execution

O Accumulator indirect addressing (@A)

Memory is accessed using the address indicated by the contents of the low-order bytes (16 bits)
of the accumulator (AL). Address bits 16 to 23 are specified by a mnemonic in the data bank
register (DTB).

Figure B.4-10 Example of accumulator indirect addressing (@A)

MOVW A, @A (This instruction reads data by accumulator indirect addressing and stores it in A.)

Before execution A [0716:2534 Memory space
DTB BB2535H| FF
BB2534H EE
After execution A |0716 FFEE
DTB

439

APPENDIX

O Accumulator indirect branch addressing (@A)

The address of the branch destination is the content (16 bits) of the low-order bytes (AL) of the
accumulator. It indicates the branch destination in the bank address space. Address bits 16 to
23 are specified by the program bank register (PCB). For the Jump Context (JCTX) instruction,
however, address bits 16 to 23 are specified by the data bank register (DTB). This addressing is
used for unconditional branch instructions.

Figure B.4-11 Example of accumulator indirect branch addressing (@A)

JMP @A (This instruction causes an unconditional branch by accumulator indirect branch
addressing.)

Before execution PC [{3C20| PCB Memory space

A |6677:3B20 4F3C20H| 61 JMP @A

4F3B20H | Next instrugtion

After execution PC PCB
A |6677:3B20

O Indirect specification branch addressing (@ear)

The address of the branch destination is the word data at the address indicated by ear.

Figure B.4-12 Example of indirect specification branch addressing (@ear)

JMP @ @RWO0 (This instruction causes an unconditional branch by register indirect addressing.)

Before execution PC [3C20] PCB Memory space

4F3C21H| 08
4F3C20H| 73 JVP @@RW0

4F3B20H tion

217F49H 3B
217F48H 20

PWO

After execution PC PCB[4F]
PWO DTB

O Indirect specification branch addressing (@eam)

The address of the branch destination is the word data at the address indicated by eam.

Figure B.4-13 Example of indirect specification branch addressing (@eam)

JMP @RWO (This instruction causes an unconditional branch by register indirect addressing.)

Before execution PC [3C20] PCB Memory space
PWO [3B20 4F3C21H| 00

4F3C20H| 73 |JMP @RWO

After execution pPc [3B20 PCB AF3B20H | Next instrudtion

PWo

440

APPENDIX B Instructions

B.5 Execution Cycle Count

The number of cycles required for instruction execution (execution cycle count) is
obtained by adding the number of cycles required for each instruction, "correction
value" determined by the condition, and the number of cycles for instruction fetch.

Bl Execution Cycle Count

The number of cycles required for instruction execution (execution cycle count) is obtained by
adding the number of cycles required for each instruction, "correction value" determined by the
condition, and the number of cycles for instruction fetch. In the mode of fetching an instruction
from memory such as internal ROM connected to a 16-bit bus, the program fetches the
instruction being executed in word increments. Therefore, intervening in data access increases
the execution cycle count.

Similarly, in the mode of fetching an instruction from memory connected to an 8-bit external bus,
the program fetches every byte of an instruction being executed. Therefore, intervening in data
access increases the execution cycle count. In CPU intermittent operation mode, access to a
general-purpose register, internal ROM, internal RAM, internal 1/O, or external data bus causes
the clock to the CPU to halt for the cycle count specified by the CGO and CG1 bits of the low
power consumption mode control register. Therefore, for the cycle count required for instruction
execution in CPU intermittent operation mode, add the "access count x cycle count for the halt"
as a correction value to the normal execution count.

441

APPENDIX

B Calculating the Execution Cycle Count

Table B.5-1 "Execution cycle counts in each addressing mode" lists execution cycle counts and
Table B.5-2 "Cycle count correction values for counting execution cycles" and Table B.5-3
"Cycle count correction values for counting instruction fetch cycles" summarize correction value
data.

Table B.5-1 Execution cycle counts in each addressing mode

(a) ™
Code Oberand Register access countin
p Execution cycle count in each addressing mode
each addressing mode
00 Ri
I Rwi See the instruction list. See the instruction list.
07 RLi
08
I @RWj 2 1
0B
0C
I @RWij+ 4 2
OF
10
I @RWi+disp8 2 1
17
18
I @RWi+disp16 2 1
1B
1C @RWO0+RW7 4 2
1D @RW1+RW7 4 2
1E @PC+disp16 2 0
1F addr16 1 0

*1: (a) is used for ~ (cycle count) and B (correction value) in B.8 "F?MC-16LX Instruction
List".

442

APPENDIX B Instructions

Table B.5-2 Cycle count correction values for counting execution cycles

(b) byte (") (c) word (') (d) long ("
Operand Cycle Access Cycle Access Cycle Access
count count count count count count
Internal register +0 1 +0 1 +0 2
Internal memory
Even address +0 1 +0 1 +0 2
Internal memory
Odd address +0 1 +2 2 +4 4
External data bus
16-bit even address +1 1 +1 1 +2 2
External data bus
16-bit odd address + 1 +4 2 +8 4
Extfarnal data bus +1 1 a4 5 +8 4
8-bits

*1: (b), (c), and (d) are used for ~ (cycle count) and B (correction value) in B.8 "F2MC-16LX

Instruction List".

Note:

When an external data bus is used, the cycle counts during which an instruction is made to
wait by ready input or automatic ready must also be added.

Table B.5-3 Cycle count correction values for counting instruction fetch cycles

. Word
Instruction Byte boundary boundary
Internal memory - +2
External data bus 16-bits - +3

External data bus 8-bits

+3

Note:

* When an external data bus is used, the cycle counts during which an instruction is made to
wait by ready input or automatic ready must also be added.

e Actually, instruction execution is not delayed by every instruction fetch. Therefore, use the
correction values to calculate the worst case.

443

APPENDIX

B.6 Effective Address Field

Table B.6-1 "Effective address field" shows the effective address field.

Bl Effective Address Field

Table B.6-1 Effective address field

Byte count of

Code Representation Address format extended
address part (‘1
00 RO RWO RLO
01 R1 RW1 (RLO)
02 R2 RwW2 RL1
03 R3 RW3 (RL1) Register direct: Individual parts
correspond to the byte, word, and long -
04 R4 RW4 RL2 word types in order from the left.
05 R5 RW5 (RL2)
06 R6 RW6 RL3
07 R7 RwW7 (RL3)
08 @RWO0
09 @RWA1 . -
Register indirect 0
0A @RW2
0B @RWS3
oC @RWO+
0D ORWI+ Register indirect with post increment 0
OE @RW2+
OF @RW3+
10 @RWO0+disp8
11 @RW1+disp8
12 @RW2+disp8
13 @RW3+disp8 . - . -
) Register indirect with 8-bit displacement 1
14 @RW4+disp8
15 @RWS5+disp8
16 @RW6+disp8
17 @RW?7+disp8
18 @RWO0+disp16
19 @RW1+disp16 Register indirect with 16-bit displacement 2
1A @RW2+disp16
1B @RW3+disp16
1C @RWO0+RW7 Register indirect with index 0
iD @RW1+RW7 Register indirect with index 0
1E @PC+disp16 PC indirect with 16-bit displacement 2
1F addr16 Direct address 2

*1: Each byte count of the extended address part applies to + in the # (byte count) column in B.8

"F2MC-16LX Instruction List".

444

APPENDIX B Instructions

B.7 How to Read the Instruction List

Table B.7-1 "Description of items in the instruction list" describes the items used in

the F2MC-16LX Instruction List, and Table B.7-2 "Explanation on symbols in the
instruction list" describes the symbols used in the same list.

B Description of instruction presentation items and symbols

Table B.7-1 Description of items in the instruction list

Item

Description

Mnemonic

Uppercase, symbol: Represented as is in the assembler.
Lowercase: Rewritten in the assembler.
Number of following lowercase: Indicates bit length in the instruction.

Indicates the number of bytes.

Indicates the number of cycles.
See Table B.2-1 "Effective address field" for the alphabetical letters in
items.

RG

Indicates the number of times a register access is performed during
instruction execution.

The number is used to calculate the correction value for CPU intermittent
operation.

Indicates the correction value used to calculate the actual number of
cycles during instruction execution.

The actual number of cycles during instruction execution can be
determined by adding the value in the ~ column to this value.

Operation

Indicates the instruction operation.

LH

Indicates the special operation for bits 15 to 08 of the accumulator.
Z: Transfers 0.

X: Transfers after sign extension.

-2 No transfer

AH

Indicates the special operation for the 16 high-order bits of the
accumulator.

*: Transfers from AL to AH.

-: No transfer

Z: Transfers 00 to AH.

X: Transfers 00y or FFy to AH after AL sign extension.

445

APPENDIX

446

Table B.7-1 Description of items in the instruction list (Continued)

Item Description
I Each indicates the state of each flag: | (interrupt enable), S (stack), T
(sticky bit), N (negative), Z (zero), V (overflow), C (carry).
S *: Changes upon instruction execution.
T -: No change
Z: Set upon instruction execution.
N X: Reset upon instruction execution.
4
Vv
C
Indicates whether the instruction is a Read Modify Write instruction
(reading data from memory by the I instruction and writing the result to
memory).
RMW : Read Modify Write instruction

- Not Read Modify Write instruction

Note:
Cannot be used for an address that has different meanings between
read and write operations.

Table B.7-2 Explanation on symbols in the instruction list

Symbol Explanation
The bit length used varies depending on the 32-bit accumulator
instruction.

A Byte: Low-order 8 bits of byte AL
Word: 16 bits of word AL
Long word: 32 bits of AL and AH
AH 16 high-order bits of A
AL 16 low-order bits of A
SP Stack pointer (USP or SSP)
PC Program counter
PCB Program bank register
DTB Data bank register
ADB Additional data bank register
SSB System stack bank register
USB User stack bank register
SPB Current stack bank register (SSB or USB)
DPR Direct page register
brg1 DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2 DTB, ADB, SSB, USB, DPR, SPB

APPENDIX B Instructions

Table B.7-2 Explanation on symbols in the instruction list (Continued)

Symbol Explanation
Ri RO, R1, R2, R3, R4, R5, R6, R7
RWi RWO0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj RWO0, RwW1, RW2, RW3
RLi RLO, RL1, RL2, RL3
dir Abbreviated direct addressing
addr16 Direct addressing
addr24 Physical direct addressing
ad24 0-15 Bits 0 to 15 of addr24
ad24 16-23 Bits 16 to 23 of addr24
io I/O area (000000H to 0000FFH)
#imm4 4-bit immediate data
#imm8 8-bit immediate data
#imm16 16-bit immediate data
#imm32 32-bit immediate data
ext (imma8) 16-bit data obtained by sign extension of 8-bit immediate data
disp8 8-bit displacement
disp16 16-bit displacement
bp Bit offset
vct4 Vector number (0 to 15)
vct8 Vector number (0 to 255)
()b Bit address
rel PC relative branch
ear Effective addressing (code 00 to 07)
eam Effective addressing (code 08 to 1F)

rlst

Register list

447

APPENDIX

B.8 F2MC-16LX Instruction List

Table B.8-1 "41 Transfer instructions (byte)" to Table B.8-18 "10 String instructions"
list the instructions used by the F2MC-16LX.

B F2MC-16LX Instruction List

Table B.8-1 41 Transfer instructions (byte)

Mnemonic # ~ RG B Operation LIA|I|S|T|IN|Z|V|C|R
H|H M
w
MOV A,dir 2 3 0 (b) byte (A) <-- (dir) Z|* o
MOV A,addr16 3 4 0 (b) byte (A) <-- (addr16) zZ|* A
MOV A,Ri 1 2 1 0 byte (A) <-- (Ri) zZ|* A
MOV A ear 2 2 1 0 byte (A) <-- (ear) Z| i
MOV A,eam 2+ 3+ (a) 0 (b) byte (A) <-- (eam) zZ|* i
MOV A,io 2 3 0 (b) byte (A) <-- (i0) Z|* N
MOV A, #imm8 2 2 0 0 byte (A) <-- imm8 AN A
MOV A,@A 2 3 0 (b) byte (A) <-- ((A)) zZ| - N
MOV A, @RLi+disp8 3 10 2 (b) byte (A) <-- ((RLi)+disp8) Zl - - -
MOVN A #imm4 1 1 0 0 byte (A) <-- imm4 zZ|* R|*|-
MOVX A,dir 2 3 0 (b) byte (A) <-- (dir) X | EO R
MOVX A,addr16 3 4 0 (b) byte (A) <-- (addr16) X |~ A
MOVX A,Ri 2 2 1 0 byte (A) <-- (Ri) X | N
MOVX A,ear 2 2 1 0 byte (A) <-- (ear) X|* A
MOVX A,eam 2+ 3+ (a) 0 (b) byte (A) <-- (eam) X1 *|-1-1-1*1"
MOVX A,io 2 3 0 (b) byte (A) <-- (i0) X|{*-1-/-1*]"*
MOVX A, #imm8 2 2 0 0 byte (A) <-- imm8 X | * A
MOVX A,@A 2 3 0 (b) byte (A) <-- ((A)) X N
MOVX A, @ RWi+disp8 2 5 1 (b) byte (A) <-- ((RWi)+disp8) X |~ A
MOVX A, @ RLi+disp8 3 10 2 (b) byte (A) <-- ((RLi)+disp8 X |~ N
MOV dir,A 2 3 0 (b) byte (dir) <-- (A) - N
MOV addr16,A 3 4 0 (b) byte (addr16) <-- (A) A
MOV Ri,A 1 2 1 0 byte (Ri) <-- (A) N
MOV ear,A 2 2 1 0 byte (ear) <-- (A) N
MOV eam,A 2+ 3+ (a) 0 (b) byte (eam) <-- (A) i
MOV io,A 2 3 0 (b) byte (io) <-- (A) ot
MOV @RLi+disp8,A 3 10 2 (b) byte ((RLi)+disp8) <-- (A) A
MOV Ri,ear 2 3 2 0 byte (Ri) <-- (ear) N
MOV Ri,eam 2+ 4+ (a) 1 (b) byte (Ri) <-- (eam) N
MOV ear,Ri 2 4 2 0 byte (ear) <-- (Ri) A
MOV eam,Ri 2+ 5+ (a) 1 (b) byte (eam) <-- (Ri) i
MOV Ri,#imm8 2 2 1 0 byte (Ri) <-- imm8 L
MOV io,#imm8 3 5 0 (b) byte (io) <-- imm8
MOV dir,#imm8 3 5 0 (b) byte (dir) <-- imm8
MOV ear,#imm8 3 2 1 0 byte (ear) <-- imm8 L N B N R R
MOV eam,#imm8 3+ 4+ (a) 0 (b) byte (eam) <-- imm8 EO B I I R P
MOV @AL,AH/ MOV @A, T 2 3 0 (b) byte ((A)) <-- (AH) CO R N R A
XCH A ear 2 4 2 0 byte (A) <--> (ear) z
XCH A,eam 2+ 5+ (a) 0 2 x (b) byte (A) <--> (eam) z
XCH Ri,ear 2 7 4 0 byte (Ri) <--> (ear)
XCH Ri,eam 2+ 9+ (a) 2 2 x (b) byte (Ri) <--> (eam)

Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

448

APPENDIX B Instructions

Table B.8-2 38 Transfer instructions (byte)

Mnemonic # ~ RG B Operation LIA|Il |S|T|N|Z|V]|C|R
H|H M
w
MOVW A, dir 2 3 0 (c) word (A) <-- (dir) N R I I e R R B B
MOVW A,addr16 3 4 0 (c) word (A) <-- (addr16) S L I S R T I I S I
MOVW A,SP 3 1 0 0 word (A) <-- (SP) S I I e I I T R I I
MOVW A,RWi 1 2 1 0 word (A) <-- (RWi) S I N I I O B e
MOVW A,ear 2 2 1 0 word (A) <-- (ear) N I I [A I I I G
MOVW A,eam 2+ 3+ (a) 0 (c) word (A) <-- (eam) - * - - - * | o* - - -
MOVW A,io 2 3 0 (c) word (A) <-- (i0) S A I T R I I
MOVW A, @A 2 3 0 (c) word (A) <-- ((A)) O I I I T I I
MOVW A,#imm16 3 2 2 0 word (A) <-- imm16 O I I [I I I G
MOVW A, @ RWi+disp8 2 5 1 (c) word (A) <-- ((RWi)+disp8) SO I I I R I
MOVW A, @RLi+disp8 3 10 2 (c) word (A) <-- ((RLi)+disp8)
MOVW dir,A 2 3 0 (c) word (dir) <-- (A)
MOVW addr16,A 3 4 0 (c) word (addr16) <-- (A)
MOVW SP,A 1 1 0 0 word (SP) <-- (A)
MOVW RWi,A 1 2 1 0 word (RWi) <-- (A)
MOVW ear,A 2 2 1 0 word (ear) <-- (A) L
MOVW eam,A 2+ 3+ (a) 0 (c) word (eam) <-- (A) I I I T I I I
MOVW io,A 2 3 0 (c) word (io) <-- (A) N e e N e e
MOVW @ RWi+disp8,A 2 5 1 (c) word ((RWi)+disp8) <-- (A) e I I e T I L I I
MOVW @ RLi+disp8,A 3 10 2 (c) word ((RLi)+disp8) <-- (A) N e A e
MOVW RWi,ear 2 3 2 0 word (RWi) <-- (ear) O I I I [I I R
MOVW 2+ 4+ (a) 1 (c) word (RWi) <-- (eam) N I I I I I R
MOVW ear,Rwi 2 4 2 0 word (ear) <-- (RWi) - - - - - * | * - - -
MOVW eam,Rwi 2+ 5+ (a) 1 (c) word (eam) <-- (RWi) I I I T I I I
MOVW RWi,#imm16 3 2 1 0 word (RWi) <-- imm16 e I I e I I I N I I
MOVW io,#imm16 4 5 0 (c) word (io) <-- imm16 R e e e e e N N B
MOVW ear,#imm16 4 2 1 0 word (ear) <-- imm16 - - - - - * | o* - - -
MOVW eam, #imm16 4+ 4+ (a) 0 (c) word (eam) <-- imm16 - - - - - - - - - -
MOVW @AL,AH/MOVW @A, T 2 3 0 (c) word ((A)) <-- (AH) B I I e I T I I
XCHW A,ear 2 4 2 0 word (A) <--> (ear) - - - - - - - _ - -
XCHW A,eam 2+ 5+ (a) 0 2x(c) word (A) <-- >(eam) O I I I I R T R
XCHW RWi, ear 2 7 4 0 word (RWi) <--> (ear) R e e
XCHW RWi, eam 2+ 9+ (a) 2 2x(c) word (RWi) <--> (eam) e e e R TR I I B
MOVL A,ear 2 4 2 0 long (A) <-- (ear) e T e e
MOVL A,eam 2+ 5+ (a) 0 (d) long (A) <-- (eam) - - - - - * | o* - - -
MOVL A,#imm32 5 3 0 0 long (A) <-- imm32 N N T T T I I S
MOVL ear,A 2 4 2 0 long (ear1) <-- (A) - - - - - * | _ _ _
MOVL eam,A 2+ 5+ (a) 0 (d) long(eam1) <-- (A) I I I T I I I

Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

449

APPENDIX

Table B.8-3 42 Addition/subtraction instructions (byte, word, long word)

Mnemonic # ~ RG B Operation LIA|I|S|[T|IN|Z|V|C|R
H|H M
w
ADD A #imm8 2 2 0 0 byte (A) <-- (A) + imm8 z|l-1-1-1-1*/*1*7*1-
ADD A, dir 2 5 0 (b) byte (A) <-- (A) + (dir) zl - - - -~ =*|=*]-
ADD A.ear 2 3 1 0 byte (A) <-- (A) + (ear) Zl - -1-1-1*/*|*|*]-
ADD A,eam 2+ 4+ (a) 0 (b) byte (A) <-- (A) + (eam) Z|l - ---1*/*|*]*]-
ADD ear,A 2 3 2 0 byte (ear) <-- (ear) + (A) O I e A I B I I
ADD eam,A 2+ 5+ (a) 0 2x(b) byte (eam) <-- (eam) + (A) Zl - - --1*]*]**|*
ADDC A 1 2 0 0 byte (A) <~ (AH)+(AL)+(©) | Z | - | - |- [-|*|*|"|*|-
ADDC Aear 2 3 1 0 byte (A) <-- (A) + (ear)+ (C) Z|l - -1--1*/*|*]*|-
ADDC A,eam 2+ 4+ (a) 0 (b) byte (A) <-- (A) + (eam)+ (C) Z|l - --1-1*/*|*]*]-
ADDDC A 1 3 0 0 byte (A) <-- (AH) + (AL) + (C) 4% I I I E IR N B I
(decimal)
SUB A #imm8 2 2 0 0 byte (A) <-- (A) - imm8 Z - - -
SUB A,dir 2 5 0 (b) byte (A) <-- (A) - (dir) Z| - -0--1**|*]*]-
sSuUB A,ear 2 3 1 0 byte (A) <-- (A) - (ear) Z - - - - * * * * _
SuB A,eam 2+ 4+ (a) 0 (b) byte (A) <-- (A) - (eam) Z| - - - -] *]*]-
SuUB ear,A 2 3 2 0 byte (ear) <-- (ear) - (A) B N T T I I B I
SuB eam,A 2+ 5+ (a) 0 2x(b) byte (eam) <-- (eam) - (A) O e 0 L L L
Susc A ! 2 0 0 byte (A) <~ (AH)- (AL)-(C) | Z | - | - |- |- |*|*|*|"]|-
SUBC Aear 2 3 1 0 byte (A) <-- (A) - (ear) - (C) Z - - -
SUBC A,eam 2+ 4+ (a) 0 (b) byte (A) <-- (A) - (eam) - (C) Z| - - - -] -
SUBDC A 1 3 0 0 byte (A) <~ (AH)- (AL)-(C) | Z | - | - |- |- |*|*|*|"]|-
(decimal)
ADDW A 1 2 0 0 word (A) <-- (AH) + (AL) -1 -1-1-1T*1*7*71*7-
ADDW Aear 2 3 1 0 word (A) <-- (A) + (ear) O I I T T L I A I I
ADDW A,eam 2+ 4+(a) 0 (c) word (A) <-- (A) + (eam) O R T L O R
ADDW A#Hmm16 3 2 0 0 word (A) <-- (A) + imm16 R U I T O O T
ADDW ear,A 2 3 2 0 word (ear) <-- (ear) + (A) O I A I B I I
ADDW eam,A 2+ 5+(a) 0 2x(c) word (eam) <-- (eam) + (A) B N T T B I B I
ADDCW Aear 2 3 1 0 word (A) <-- (A) + (ear) + (C) [A IR R (U IR B (PR O
ADDCW A,eam 2+ 4+(a) 0 (c) word (A) <-- (A) + (eam) + (C) N I I R A R L L I
SUBW A 1 2 0 0 word (A) <-- (AH) - (AL) R R L R L I
SuBw A,ear 2 3 1 0 word (A) <-- (A) - (ear) B I T T T I I (L L B
SUBW Aeam 2+ 4+(a) 0 (c) word (A) <-- (A) - (eam) O R T A R I
SUBW A #imm16 3 2 0 0 word (A) <-- (A) - imm16 B N N O L
SUBW ear,A 2 3 2 0 word (ear) <-- (ear) - (A) B N T T B I B I
SUBW eam,A 2+ 5+(a) 0 2x(c) word (eam) <-- (eam) - (A) B N N T R I I L I B
SUBCW Aear 2 3 1 0 word (A) <-- (A) - (ear) - (C) E N N N T I IR I I
SUBCW A,eam 2+ 4+(a) 0 (c) word (A) <-- (A) - (eam) - (C) S N A T T I I R I I
ADDL A,ear 2 6 2 0 long (A) <-- (A) + (ear) -1 -T-T1-T*1*7*71T*7-
ADDL A,eam 2+ 7+(a) 0 (d) long (A) <-- (A) + (eam) N I D I I A L (L I
ADDL A #imm32 5 4 0 0 long (A) <-- (A) + imm32 N R L I I
SUBL A,ear 2 6 2 0 long (A) <-- (A) - (ear) N T I T L I I
SUBL A,eam 2+ 7+(a) 0 (d) long (A) <-- (A) - (eam) O T R O I
SUBL A, #imm32 5 4 0 0 long (A) <-- (A) - imm32 O R T T R I
Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

450

APPENDIX B Instructions

Table B.8-4 12 Increment/decrement instructions (byte, word, long word)

Mnemonic # ~ RG B Operation LIA|Il |S|T|N|Z|V|C|R
H|H M
w
INC ear 2 3 2 0 byte (ear) <-- (ear) + 1 EO T I R T I I N I I
INC eam 2+ 5+(a) 0 2 x (b) byte (eam) <-- (eam) + 1 Eo I I O e
DEC ear 2 3 2 0 byte (ear) <-- (ear) - 1 EO T I I T I I R A
DEC eam 2+ 5+(a) 0 2x (b) byte (eam) <-- (eam) - 1 S T I I T I I R T B
INCW ear 2 3 2 0 word (ear) <-- (ear) + 1 CE T T T AU I A A B
INCW eam 2+ 5+(a) 0 2x(c) word (eam) <-- (eam) + 1 S T I I T I I R I B
DECW ear 2 3 2 0 word (ear) <-- (ear) - 1 EE T T R I I I A B
DECW eam 2+ 5+(a) 0 2x(c) word (eam) <-- (eam) - 1 Co N I e B e e
INCL ear 2 7 4 0 long (ear) <-- (ear) + 1 EO T I I T I I R R
INCL eam 2+ 9+(a) 0 2x(d) long (eam) <-- (eam) + 1 Eo N I e A
DECL ear 2 7 4 0 long (ear) <-- (ear) - 1 EO T I I T I I N I I
DECL eam 2+ 9+(a) 0 2x(d) long (eam) <-- (eam) - 1 L R e e e e
Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

Table B.8-5 11 Compare instructions (byte, word, long word)

Mnemonic # ~ RG B Operation LIA|Il |S|T|N|Z|V|C|R
H|H M
w

CMP A 1 1 0 0 byte (AH) - (AL) SO I R T T A B I
CMP Aear 2 2 1 0 byte (A) - (ear) EE T I R T I I A I
CMP Aeam 2+ 3+(a) 0 (b) byte (A) - (eam) EO T I R T I I A B I
CMP A #imm8 2 2 0 0 byte (A) - imm8 N R e T e e
CMPW A 1 1 0 0 word (AH) - (AL) CON R N R N R A N A
CMPW Aear 2 2 1 0 word (A) - (ear) Eo T T I T I R I I I
CMPW Aeam 2+ 3+(a) 0 (c) word (A) - (eam) S T I R T I I I I I
CMPW A#mm16 3 0 0 word (A) -imm16 S T I R T I I I I I
CMPL Aear 2 2 0 long (A) - (ear) S T T I T I I I I I
CMPL Aeam 2+ 7+(a) 0 (d) long (A) - (eam) SO T T I T I I I I I
CMPL A, #imm32 5 3 0 0 long (A) - imm32 N e e e e

Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

451

APPENDIX

Table B.8-6 11 Unsigned multiplication/division instructions (word, long word)

Mnemonic # ~ RG B Operation LIA|I|S|[T|IN|Z|V|C|R

H|H M

w

DIVU A 1 *1 0 0 word (AH) / byte (AL) EE R R T T R N B N
quotient --> byte (AL) remainder --> byte (AH)

DIVU Aear 2 2 1 0 word (A) / byte (ear) EE N T IR R IR I R I

quotient --> byte (A) remainder --> byte (ear)

DIVU Aeam 2+ *3 0 *6 word (A) / byte (eam) EE N T IR R IR I R I
quotient --> byte (A) remainder --> byte (eam)

DIVUW Aear 2 *4 1 0 long (A) / word (ear) EE T I IR R I I A A
quotient --> word (A) remainder --> word (ear)

DIVUW Aeam 2+ *5 0 *7 long (A) / word (eam) EE R I IR R R I R A

quotient --> word (A) remainder --> word (eam)

MULU A 1 *8 0 byte (AH) * byte (AL) --> word (A) ER N N I N N e e N
MULU Aear 2 *9 1 0 byte (A) * byte (ear) --> word (A) CE I I B R N B BT BT
MULU A,eam 2+ *10 0 (b) byte (A) * byte (eam) --> word (A) E N I I e e e R B
MULUW A 1 *11 0 0 word (AH) * word (AL) --> Long (A) N N I I e e B e B
MULUW Aear 2 *12 1 0 word (A) * word (ear) --> Long (A) N N I R e I e e B
MULUW A,eam 2+ *13 0 (c) word (A) * word (eam) --> Long (A) N e e e B

*1: 3: Division by 0 7: Overflow 15: Normal

*2: 4: Division by 0 8: Overflow 16: Normal

*3: 6+(a): Division by 0 9+(a): Overflow 19+(a): Normal
*4: 4: Division by 0 7: Overflow 22: Normal

*5: 6+(a): Division by 0 8+(a): Overflow 26-+(a): Normal
*6: (b): Division by 0 or overflow 2 x (b): Normal

*7: (c): Division by 0 or overflow 2 x (c): Normal

*8: 3: Byte (AH) is 0. 7: Byte (AH) is not 0.

*9: 4: Byte (ear) is 0. 8: Byte (ear) is not 0.

*10: 5+(a): Byte (eam) is 0, 9+(a): Byte (eam) is not 0.
*11: 3: Word (AH) is 0. 11: Word (AH) is not 0.

*12: 4: Word (ear) is 0. 12: Word (ear) is not 0.

*13: 5+(a): Word (eam) is 0. 13+(a): Word (eam) is not 0.

Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

452

APPENDIX B Instructions

Table B.8-7 11 Signed multiplication/division instructions (word, long word)

Mnemonic # ~ RG B Operation LIA|Il |S|T|N|Z|V]|C|R
H|H M
w
DIV A 2 *1 0 0 word (AH) / byte (AL) Zl---1--1-1*]"1-
quotient --> byte (AL) remainder --> byte (AH)
DIV Aear 2 2 1 0 word (A) / byte (ear) Z| - --1-1-1-1"1*1-
quotient --> byte (A) remainder --> byte (ear)
DIV Aeam 2+ *3 0 *6 word (A) / byte (eam) Z| - --1-1-1-1*1*1-
quotient --> byte (A) remainder --> byte (eam)
DIVW Aear 2 *4 1 0 long (A) / word (ear) EO T I I T I I R A
quotient --> word (A) remainder --> word (ear)
DIVW Aeam 2+ *5 0 *7 long (A) / word (eam) CO T I I T I I I A
quotient --> word (A) remainder --> word (eam)
MUL A *8 0 0 byte (AH) * byte (AL) --> word (A) Eo I N N N B N N B
MUL Aear *9 1 0 byte (A) * byte (ear) --> word (A) N I R R R B B
MUL Aeam 2+ *10 0 (b) byte (A) * byte (eam) --> word (A) E T N e e e B N
MULW A 1 0 0 word (AH) * word (AL) --> Long (A) N T I e e i B e
MULW Aear *12 1 0 word (A) * word (ear) --> Long (A) E T e e i B N
MULW Aeam 2+ *13 0 (c) word (A) * word (eam) --> Long (A) N R N N

*1: 3: Division by 0, 8 or 18: Overflow, 18: Normal

*2: 4: Division by 0, 11 or 22: Overflow, 23: Normal

*3: 5+(a): Division by 0, 12+(a) or 23+(a): Overflow, 24+(a): Normal

*4: When dividend is positive; 4: Division by 0, 12 or 30: Overflow, 31: Normal
When dividend is negative; 4: Division by 0, 12 or 31: Overflow, 32: Normal

*5: When dividend is positive; 5+(a): Division by 0, 12+(a) or 31+(a): Overflow, 32+(a): Normal
When dividend is negative; 5+(a): Division by 0, 12+(a) or 32+(a): Overflow, 33+(a): Normal

*6: (b): Division by 0 or overflow, 2 x (b): Normal

*7: (c): Division by 0 or overflow, 2 x (c): Normal

*8: 3: Byte (AH) is 0, 12: result is positive, 13: result is negative

*9: 4: Byte (ear) is 0, 13: result is positive, 14: result is negative

*10: 5+(a): Byte (eam) is 0, 14+(a): result is positive, 15+(a): result is negative

*11: 3: Word (AH) is 0, 16: result is positive, 19: result is negative

*12: 4: Word (ear) is 0, 17: result is positive, 20: result is negative

*13: 5+(a): Word (eam) is 0, 18+(a): result is positive, 21+(a): result is negative

Notes:

The execution cycle count found when an overflow occurs in a DIV or DIVW instruction may
be a pre-operation count or a post-operation count depending on the detection timing.

When an overflow occurs with DIV or DIVW instruction, the contents of the AL are destroyed.

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

453

APPENDIX

Table B.8-8 39 Logic 1 instructions (byte, word)

Mnemonic # ~ RG B Operation LIA|I |S|T|N|Z|V|C|R
H|H M
w
AND A #imm8 2 2 0 0 byte (A) <-- (A) and imm8 -l -0 - IR -] -
AND Aear 2 3 1 0 byte (A) <-- (A) and (ear) -l -0 - IR -] -
AND Aeam 2+ 4+@) | O (b) byte (A) <-- (A) and (eam) -l - - IR -] -
AND ear,A 2 3 2 0 byte (ear) <-- (ear) and (A) -l -0 - IR -] -
AND eam,A 2+ 5+(a) |0 2 x (b) | byte (eam) <-- (eam) and (A) -1 -1 -t IR
OR A #imm8 2 2 0 byte (A) <-- (A) or imm8 -l - - IR -] -
OR Aear 2 3 1 0 byte (A) <-- (A) or (ear) -l -l -t -1 IR] -] -
OR Aeam 2+ 4+(@) | O (b) byte (A) <-- (A) or (eam) -l -l -t - IR] -]
OR ear,A 2 3 2 0 byte (ear) <-- (ear) or (A) -l -t - IR] -
OR eam,A 2+ 5+(a) |0 2 x (b) | byte (eam) <-- (eam) or (A) - -1l IR-]
XOR A #imm8 2 2 0 0 byte (A) <-- (A) xor imm8 -l -0 - IR -] -
XOR Aear 2 3 1 0 byte (A) <-- (A) xor (ear) -l -0 - IR -] -
XOR Aeam 2+ 4+(@) | O (b) byte (A) <-- (A) xor (eam) -l -0 - IR -] -
XOR ear,A 2 3 2 0 byte (ear) <-- (ear) xor (A) -l -l -t -1 IR] - -
XOR eam,A 2+ 5+(@) |0 2 x (b) | byte (eam) <-- (eam) xor (A) N I N T T i B = T A
NOT A 1 2 0 0 byte (A) <-- not (A) -l -l - R -
NOT ear 2 3 2 0 byte (ear) <-- not (ear) -l -l -t -1 IR] -] -
NOT eam 2+ 5+@) |0 2 x (b) | byte (eam) <-- not (eam) -l -l -t TIR] -]
ANDW A 1 2 0 0 word (A) <-- (AH) and (A) o I I I R T A N = O I
ANDW A#mm16 3 2 0 0 word (A) <-- (A) and imm16 -l - - - IR -] -
ANDW Aear 2 3 1 0 word (A) <-- (A) and (ear) -l - - - IR -] -
ANDW Aeam 2+ 4+@) | O (c) word (A) <-- (A) and (eam) -l -1 - IR -] -
ANDW ear,A 2 3 2 0 word (ear) <-- (ear) and (A) -l - - IR -] -
ANDW eam,A 2+ 5+(a) |0 2x(c) | word (eam) <-- (eam) and (A) -1 -0 -0 -1 IR -]
ORW A 1 2 0 word (A) <-- (AH) or (A) o I I I R T R N = O A
ORW A#mm16 3 2 0 0 word (A) <-- (A) orimm16 -l -0 -l IR -] -
ORW Aear 2 3 1 0 word (A) <-- (A) or (ear) N R R T I I = T A
ORW Aeam 2+ 4+(@) | O (c) word (A) <-- (A) or (eam) -l -l -t - IR] - -
ORW ear,A 2 3 2 0 word (ear) <-- (ear) or (A) -l -l -t - IR] -]
ORW eam,A 2+ 5+(@) |0 2x(c) | word (eam) <-- (eam) or (A) N N R T T I B = T A
XORW A 1 2 0 0 word (A) <-- (AH) xor (A) -l - -l -l R -
XORW A#imm16 3 2 0 word (A) <-- (A) xor imm16 -l - - IR -] -
XORW Aear 2 3 1 0 word (A) <-- (A) xor (ear) -l - - IR -] -
XORW Aeam 2+ 4+(@) | O (c) word (A) <-- (A) xor (eam) -l -0 -l IR -] -
XORW ear,A 2 3 2 0 word (ear) <-- (ear) xor (A) -l - -l - IR -] -
XORW eam,A 2+ 5+(@) |0 2 x(c) | word (eam) <-- (eam) xor (A) N I N R T I B = T A
NOTW A 1 2 0 0 word (A) <-- not (A) o I I N R A N = O A
NOTW ear 2 3 2 0 word (ear) <-- not (ear) -l - - - IR -] -
NOTW eam 2+ 5+(@) |0 2x(c) | word (eam) <-- not (eam) I N R e e = B T
Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

454

Table B.8-9 6 Logic 2 instructions (long word)

APPENDIX B Instructions

Mnemonic # ~ RG B Operation Al |S|T|N|Z|V|C|R

H M

w

ANDL Aear 2 6 2 0 long (A) <-- (A) and (ear) EO T I I R I I = T I
ANDL Aeam 2+ 7+(@) |0 (d) long (A) <-- (A) and (eam) -l -l - - IRY -
ORL Aear 2 6 2 0 long (A) <-- (A) or (ear) EE N I I L N I O
ORL Aeam 2+ 7+(@) |0 (d) long (A) <-- (A) or (eam) -l -l -1 *|R|-]-
XORL Aear 2 6 2 0 long (A) <-- (A) xor (ear) -l -l -f-1 ! *|R|-]-
XORL Aeam 2+ 7+@) |0 (d) long (A) <-- (A) xor (eam) -l -l - -] *|R|-]-

Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

Table B.8-10 6 Sign inversion instructions (byte, word)

Mnemonic # ~ RG B Operation Al |S|T|N|Z|V|C|R

H M

w
NEG A 1 2 0 0 byte (A) <-- 0 - (A) I I L I
NEG ear 2 3 2 0 byte (ear) <-- 0 - (ear) - - |- [R R
NEG eam 2+ 5+(@) |0 2 x (b) | byte (eam) <-- 0 - (eam) - - |- O R I
NEGW A 1 2 0 0 word (A) <-- 0 - (A) I e L L
NEGW ear 2 3 2 0 word (ear) <-- 0 - (ear) I I T T I L
NEGW eam 2+ 5+(@) |0 2 x (c) | word (eam) <-- 0 - (eam) O T e I O I

Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

Table B.8-11 1 Normalization instruction (long word)

Mnemonic

#

~

RG

Operation

NRML A,RO

1

long (A) <-- Shifts to the position where '1'is
set for the first time.
byte (RD) <-- Shift count at that time

*1: 4 when all accumulators have a value of 0; otherwise, 6+(R0)

455

APPENDIX

Table B.8-12 18 Shift instructions (byte, word, long word)

Mnemonic # ~ RG B Operation LIA|I |S|T|N|Z|V|C|R

H|H M

w

RORC A 2 2 0 0 byte (A) <-- With right rotation carry N I D I R R L I
ROLC A 0 byte (A) <-- With left rotation carry S N 0 D R L I
RORC ear 2 3 2 0 byte (ear) <-- With right rotation carry S N T A L I
RORC eam 2+ 5+(@) |0 2 x (b) | byte (eam) <-- With right rotation carry N I e L S
ROLC ear 2 3 2 0 byte (ear) <-- With left rotation carry N I A
ROLC eam 2+ 5+(@) |0 2 x (b) | byte (eam) <-- With left rotation carry N i e L S
ASR A,RO 2 *1 1 0 byte (A) <-- Arithmetic right shift (A, 1 bit) S D L IR R N I
LSR ARO 2 *1 1 0 byte (A) <-- Logical right barrel shift (A, RO) O I I T I I I (S I
LSL A,RO 2 1 1 0 byte (A) <-- Logical left barrel shift (A, R0) O I T I L I I (R
ASRW A 1 2 0 0 word (A) <-- Arithmetic right shift (A, 1 bit) T T I A (R N
LSRW A/SHRW A 1 2 0 0 word (A) <-- Logical right shift (A, 1 bit) Sl -l - IR -
LSLW A/SHLW A 1 2 0 0 word (A) <-- Logical left shift (A, 1 bit) N T I A (R N
ASRW A,RO 2 *1 1 0 word (A) <-- Arithmetic right barrel shift (A,R0) | - | - | - [- | * [* | * | - | * | -
LSRW ARO 2 *1 1 0 word (A) <-- Logical right barrel shift (A, RO) S T I I (R R I (R (N B
LSLW A,RO 2 1 1 0 word (A) <-- Logical left barrel shift (A, R0) o N N T S R I B L
ASRL ARO 2 *2 1 0 long (A) <-- Arithmetic right barrel shift (A, RO) EO T I I A O A e B
LSRL ARO 2 *2 1 0 long (A) <-- Logical right barrel shift (A, RO) EO T I I I O A e B
LSLL A,RO 2 2 1 0 long (A) <-- Logical left barrel shift (A, RO) B N N T I R I B L

*1: 6 when RO is 0; otherwise, 5 + (R0)
*2: 6 when RO is 0; otherwise, 6 + (R0)

Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

456

Table B.8-13 31 Branch 1

APPENDIX B Instructions

Operation

>

==

Branch on (Z

Branch on (Z

)
)

Branch on (C)

Branch on (C)
N
N

Branch on
Branch on

1
0
1
0
1
0
1
0
1

Branch on (T

)
)
Branch on (V)
)
)

Branch on (T) =

Branch on (V) nor (N) 1
Branch on (V) nor (N) =0
Branch on ((V) xor (N)) or (Z) =1
Branch on ((V) xor (N)) or (Z) =
Branch on (C) or (Z) =1

Branch on (C) or (Z) =
Unconditional branch

(
(
(
(
(
(
(
Branch on (V
(
(
(
(
(
(
(

word (PC) <-- (A)
word (PC) <-- addr16
word (PC) <-- (ear)
word (PC) <-- (eam)

word (PC) <-- (ear), (PCB) <-- (ear+2)

word (PC) <-- ad24 0-15, (PCB) <-- ad24 16-23

word (PC) <-- (ear)
word (PC) <-- (eam)
word (PC) <-- addr16
Vector call instruction

word (PC) <-- (ear)0-15, (PCB) <-- (ear)16-23
word (PC) <-- (eam)0-15, (PCB) <-- (eam)16-23

)
)
)
)
word (PC) <-- (eam), (PCB) <-- (eam+2)
)
)
)

Mnemonic
BZ/BEQ rel
BNZ/BNE rel
BC/BLO rel
BNC/BHS el
BN rel
BP rel
BV rel
BNV rel
BT rel
BNT rel
BLT rel
BGE rel
BLE rel
BGT rel
BLS rel
BHI rel
BRA rel
JMP @A
JMP addr16
JMP @ear
JMP @eam
JMPP @ear *3
JMPP @eam *3
JMPP addr24
CALL @ear *4
CALL addr16 *5
CALL @eam *4
CALLV #vct4 *5
CALLP @ear *6
CALLP @eam *6
CALLP addr24 *7

word (PC) <-- addr0-15, (PCB) <-- addr16-23

*1: 4 when a branch is made;

*2:3x(c) + (b)

*3: Read (word) of branch destination address

instructions
~ RG B
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
2 *1 0 0
1 2 0 0
3 3 0 0
2 3 1 0
2+ 4+(a) 0 (c)
2 5 2 0
2+ 6+(a) 0 (d)
4 0 0
2 6 1 (c)
2+ 7+(a) 0 2x(c)
3 6 0 ()
1 7 0 2x(c)
2 10 2 2x(c)
2+ 11+@) |0 *2
4 10 0 2x(c)
otherwise, 3

*4: W: Save to stack (word) R: Read (word) of branch destination address

*5: Save to stack (word)

*6: W: Save to stack (long word), R: Read (long word) of branch destination address
*7: Save to stack (long word)

Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the

table.

457

APPENDIX

Table B.8-14 19 Branch 2 instructions

Mnemonic # | ~ | RG B Operation LIA|I|S|T|{N|Z|V|C|R
H|H M
w
CBNE A #imm8,rel 3 *1 |0 0 Branch on byte (A) not equal to imm8 EO R T N N R N B B
CWBNE A #imm16,rel 4 *1 |0 0 Branch on word (A) not equal to imm16 EO R T N N R N N B
CBNE ear,#imm8,rel 4 2 |1 0 Branch on byte (ear) not equal to imm8 EO R T N N R N B B
CBNE eam,#imm8,rel *9 |4+ *3 |0 (b) Branch on byte (eam) not equal to imm8 EO N T R R R I N B
CWBNE ear,#imm16,rel 5 4 |1 0 Branch on word (ear) not equal to imm16 EO B T R N R N N B
CWBNE eam,#imm16,rel*9 |5+ *3 |0 (c) Branch on word (eam) not equal to imm16 E I R R T I I
DBNZ ear,rel 3 5|2 0 Branch on byte (ear) = (ear) - 1, (ear) not equal to 0 S I R T T R I B
DBNZ eam,rel 3+ 6 |2 2 x (b) |Branch on byte (eam) = (eam) - 1, (eam) not equal to 0 S B RN R I N R N B
DWBNZ ear,rel 3 5|2 0 Branch on word (ear) = (ear) - 1, (ear) not equal to 0 Lo R R T R N B B
DWBNZ eam,rel 3+ 6 |2 2 x (c) |Branch on word (eam) = (eam) - 1, (eam) not equal to 0 R R
INT #vct8 2 20 (O 8 x (c) | Software interrupt -1 -|R|S|-|-|-|-]|-]-
INT addr16 3 16 |0 6 x (c) |Software interrupt -1 -|R|S|-|-|-|-1|-]-
INTP addr24 4 17 |0 6 x (c) |Software interrupt -l -|R|S|-|-|-|-1|-]-
INT9 1 20 |0 8 x (c) |Software interrupt -1 -|R|S|-|-|-|-1|-]-
RETI 1 8 |0 *7 Return from interrupt L R T R N B I
LINK #imm8 2 6 0 (c) Saves the old frame pointer in the stack upon entering the EEN BN NS N B N BN NS B
function, then sets the new frame pointer and reserves the
local pointer area.
UNLINK 1 5 0 (c) Recovers the old frame pointer from the stack upon exitingthe | - | - | - | - |- |-|-|-|- |-
function.
RET *10 1 4 0 (c) Return from subroutine E3N BN T R B N BN BT B
RETP *11 1 6 0 (d) Return from subroutine R

*1: 5 when a branch is made; otherwise, 4

*2: 13 when a branch is made; otherwise, 12

*3: 7+(a) when a branch is made; otherwise, 6+(a)

*4: 8 when a branch is made; otherwise, 7

*5: 7 when a branch is made; otherwise, 6

*6: 8+(a) when a branch is made; otherwise, 7+(a)

*7: 3 x (b) + 2 x (c) when jumping to the next interruption request; 6 x (c) when returning from the current interruption
*8: 15 when jumping to the next interruption request; 17 when returning from the current interruption
*9: Do not use RWj+ addressing mode with a CBNE or CWBNE instruction.

*10: Return from stack (word)

*11: Return from stack (long word)

Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

458

Table B.8-15 28 Other control instructions (byte, word, long word)

APPENDIX B Instructions

Mnemonic # ~ RG B Operation Al |S|T|N|Z|V|C|R

H M

w

PUSHW A 1 4 0 (c) word (SP) <-- (SP) - 2, ((SP)) <-- (A) O I R D T D I I
PUSHW AH 1 4 0 (c) word (SP) <-- (SP) - 2, ((SP)) <-- (AH) O I R D I R I I
PUSHW PS 1 4 0 (c) word (SP) <-- (SP) - 2, ((SP)) <-- (PS) O I R D T D I R
PUSHW rist 2 *3 *5 *4 (SP) <-- (SP) - 2n, ((SP)) <-- (rlst) O I R D T D I i
POPW A 1 3 0 (c) word (A) <-- ((SP)), (SP) <-- (SP) + 2 L I (R I B R R
POPW AH 1 3 0 (c) word (AH) <-- ((SP)), (SP) <-- (SP) + 2 EE B R R BT R I R
POPW PS 1 4 0 (c) word (PS) <-- ((SP)), (SP) <-- (SP) + 2 FE L L I L I R R
POPW rist 2 2 *5 *4 (rlst) <-- ((SP)), (SP) <-- (SP) R I R D I T I R
JCTX @A 1 14 0 6 x (c) | Context switch instruction L L L L L IR I
AND CCR,#imm8 | 2 3 0 0 byte (CCR) <-- (CCR) and imm8 O L T L L I L R (e
OR CCR#imm8 | 2 3 0 0 byte (CCR) <-- (CCR) or imm8 O T L L I L (R
MOV RP,#imm8 2 2 0 0 byte (RP) <-- imm8 N O I I I I I i
MOV ILM,#imm8 2 2 0 0 byte (ILM) <-- imm8 O I I S I i (R
MOVEA RWi,ear 2 3 1 0 word (RWi) <-- ear O I R D T R I R
MOVEA RWi,eam 2+ 2+(a) |1 0 word (RWi) <-- eam EE R B IR N T B B
MOVEA A,ear 2 1 0 0 word (A) <-- ear L I IR (U R I R I
MOVEA A,eam 2+ 1+@) |0 0 word (A) <-- eam o - P T I
ADDSP #imm8 2 3 0 0 word (SP) <-- ext(imm8) R I R D T I R
ADDSP #imm16 3 3 0 0 word (SP) <--imm16 R I R D T I R
MoV A,brg1 2 1 0 0 byte (A) <-- (brg1) 200 R R R T N R
MOV brg2,A 2 1 0 0 byte (brg2) <-- (A) P I I T I IR R
NOP 1 1 0 0 No operation N I
ADB 1 1 0 0 Prefix code for AD space access O I L e I
DTB 1 1 0 0 Prefix code for DT space access T e e
PCB 1 1 0 0 Prefix code for PC space access O I R R T T I i
SPB 1 1 0 0 Prefix code for SP space access O I R R T T I i
NCC 1 1 0 0 Prefix code for flag no-change O I R D T D I R
CMR 1 1 0 0 Prefix code for common register bank O I R R T T I i

*1: PCB, ADB, SSB, USB, SPB: 1

DTB, DPR: 2
*2: 7 + 3 x (POP count) + 2 x (POP last register number), 7 when RLST = 0 (no transfer register)
*3: 29 + 3 x (PUSH count) - 3 x (PUSH last register number), 8 when RLST = 0 (no transfer register)
*4: (POP count) x (c) or (PUSH count) x (c)
*5: (POP count) or (PUSH count)

Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the

table.

459

APPENDIX

Table B.8-16 21 Bit operand instructions

Mnemonic # ~ RG B Operation LIA|I |S|T|N|Z|V|C|R
H|H M
w
MovB A,dir:bp 3 5 0 (b) byte (A) <-- (dir:bp)b Z1 -
MovB Aaddrié:bp | 4 5 0 (b) byte (A) <-- (addr16:bp)b Z| - -
MOvVB Ajio:bp 3 4 0 (b) byte (A) <-- (io:bp)b Z| - - -
MovB dir:bp,A 3 7 0 2 x (b) | bit (dir:bp)b <-- (A) Eo N I T R A I I I
MovB addr16:bp,A | 4 7 0 2 x (b) | bit (addr16:bp)b <-- (A) SO N I T R R I I I
MOVB io:bp,A 3 6 0 2 x (b) | bit (io:bp)b <-- (A) CO T T N N T A I I
SETB dir:bp 3 7 0 2 x (b) | bit (dirbp)b <-- 1 SO R I I R I T N N
SETB addr16:bp 4 7 0 2 x (b) | bit (addr16:bp)b <-- 1 Co I I B N T B B N
SETB io:bp 3 7 0 2 x (b) | bit (io:bp)b <-- 1 Eo I I N T I R B
CLRB dir:bp 3 7 0 2 x (b) | bit (dir:bp)b <-- 0 SO R N T B R I B B
CLRB addr16:bp 4 7 0 2 x (b) | bit (addr16:bp)b <-- 0 E I I N N T B R B
CLRB io:bp 3 7 0 2 x (b) | bit (io:bp)b <-- 0 E T I I N I O T B
BBC dir:bp,rel 4 *1 0 (b) Branch on (dir:bp) b =0 o T I N e e e B e
BBC addri16:bp,rel | 5 *1 0 (b) Branch on (addr16:bp) b =0 EO T I I N IR I R R
BBC io:bp,rel 4 *2 0 (b) Branch on (io:bp) b =0 EO T I I R IR I R I
BBS dir:bp,rel 4 *1 0 (b) Branch on (dir:bp) b = 1 T I R e e e e e
BBS addri16:bp,rel | 5 *1 0 (b) Branch on (addr16:bp) b = 1 EO T I I N IR I R I
BBS io:bp,rel 4 *1 0 (b) Branch on (io:bp) b =1 EE N I I R TR R R AR
SBBS addri6:bp,rel | 5 *3 0 2 x (b) | Branch on (addr16:bp) b = 1, bit = 1 Co T I I R T I B I
WBTS io:bp 3 *4 0 *5 Waits until (io:bp) b = 1 S R T R AR IR N R AR
WBTC io:bp 3 *4 0 *5 Waits until (io:bp) b =0 N N e R e e e e

*1: 8 when a branch is made; otherwise, 7
*2: 7 when a branch is made; otherwise, 6
*3: 10 when the condition is met; otherwise, 9
*4: Undefined count

*5: Until the condition is met

Note:

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the
table.

Table B.8-17 6 Accumulator operation instructions (byte, word)

Mnemonic # ~ RG B Operation LIA|I |S|T|N|Z|V|C|R

H|H M

w

SWAP 1 3 0 0 byte (A)0-7 <--> (A)8-15 Co R R T T R B B A
SWAPW / XCHW A, T 1 2 0 0 word (AH) <--> (AL) Eo I R T T R I B I
EXT 1 1 0 0 Byte sign extension X{-1-1-1-1*1*1-1-1-
EXTW 1 2 0 0 Word sign extension X - -] -
ZEXT 1 1 0 0 Byte zero extension Z|-|-|-|-|R|*|-1-1-
ZEXTW 1 1 0 0 Word zero extension -lz| - - -|R|*]-|-]-

460

Table B.8-18 10 String instructions

APPENDIX B Instructions

Mnemonic # ~ RG B Operation Al |S|T|N|Z|V|C|R

H M

w

MOVS / MOVSI 2 *2 *5 *3 byte transfer @ AH+ <-- @ AL+, counter = RW0 - - - - - - - - -
MOVSD 2 *2 *5 *3 byte transfer @ AH- <-- @ AL-, counter = RWO0 -l -] - EO I I N
SCEQ/ SCEQlI 2 *1 *5 *4 byte search @ AH+ <-- AL, counter RW0 -l -] - EO I B I R
SCEQD 2 *1 *5 *4 byte search @ AH- <-- AL, counter RWO EO R I I (R I I T
FILS / FILSI 2 6m+6 | *5 *3 byte fill @ AH+ <-- AL, counter RWO0 EO I N T I I I R
MOVSW / MOVSWI 2 *2 *5 *6 word transfer @ AH+ <-- @ AL+, counter = RWO0 - - - EI I e I N
MOVSWD 2 *2 *5 *6 word transfer @ AH- <-- @AL-, counter = RW0 - - - - - - - - -
SCWEQ / SCWEQI 2 "1 *5 *7 word search @AH+ - AL, counter = RW0 L R R R I I I I
SCWEQD 2 *1 *5 *7 word search @ AH- - AL, counter = RWO0 -l -] - EO I N R R
FILSW / FILSWI 2 6m+6 | *5 *6 word fill @AH+ <-- AL, counter = RWO0 EO I R IR I I I R

*1: 5 when RWO is 0, 4 + 7 x (RWO0) when the counter expires, or 7n + 5 when a match occurs

*2: 5 when RWO is 0; otherwise, 4 + 8 x (RWO0)

*3: (b) x (RWO0) + (b) x (RWO) When the source and destination access different areas, calculate the (b) item individually.

*4: (b) x n
*5: 2 x (RWO0)

*6: (c) x (RWO) + (c) x (RWO0) When the source and destination access different areas, calculate the (c) item individually.

*7:(c)xn

Note:

m: RWO value (counter value), n: Loop count

See Table B.5-1 "Execution cycle counts in each addressing mode" and Table B.5-2 "Cycle
count correction values for counting execution cycles" for information on (a) to (d) in the

table.

461

APPENDIX

B.9 Instruction Map

Each F2MC-16LX instruction code consists of 1 or 2 bytes. Therefore, the instruction
map consists of multiple pages. Table B.9-2 "Basic page map" to Table B.9-21 "XCHW

RWi, ea instruction (first byte = 7Fy)" summarize the F2MC-16LX instruction map.

B Structure of Instruction Map
Figure B.9-1 Structure of instruction map

Basic page map
: Byte 1

Bit operation || Character string _ _ _ _ : Byte 2
instructions || operation instructions || 2-byte instructions| | ea instructions x 9

An instruction such as the NOP instruction that ends in one byte is completed within the basic
page. An instruction such as the MOVS instruction that requires two bytes recognizes the
existence of byte 2 when it references byte 1, and can check the following one byte by
referencing the map for byte 2. Figure B.9-2 "Correspondence between actual instruction code
and instruction map" shows the correspondence between an actual instruction code and
instruction map.

462

APPENDIX B Instructions

Figure B.9-2 Correspondence between actual instruction code and instruction map

Some instructions do

not contain byte 2.

Length varies depending

on the instruction.

Instruction code Byte 1

Byte2 i Operand : Operand

[Basic page map]

XY

N

+Z T~

‘.-".[Extended page map] (*1)

uv|

+W

*1 The extended page map is a generic name of maps for bit operation instructions, character string operation instructions, 2-byte
instructions, and ea instructions. Actually, there are multiple extended page maps for each type of instructions.

An example of an instruction code is shown in Table B.9-1 "Example of an instruction code".

Table B.9-1 Example of an instruction code

Bvte 1 Byte 2
Instruction y (from extended page
(from basic page map)
map)
NOP 00 +0=00 -
AND A, #8 30 +4=34 -
MOV A, ADB 60 +F=6F 00 +0=00
@RW2+d8, #8rel 70 +0=70 FO +2=F2

463

APPENDIX

Table B.9-2 Basic page map

11 ea‘'IMY uononaisur [isp sH v v Ol # v
3 A 3 A PRy 4+
wal L) MHOX Mdod | mHsnd MION | mnINN dsaav MEST
EJ] eo| uoonsul uop ‘
I %] e sS4 Isd oL#Y v v a4
wl_m ... IOX hm—omhmr_o \Sﬂ_Ol >>Im3n_ \SIOX \Smox >>l<>>w \Smw<
o1 IMH ‘88 HY HY 9L#Y v a+
199 MAOW MdOd | MHSNd MHO MHO MIX3zZ
18l ISR=E] uononasul| v v oL#'Y v v
uolesado g o+
319 Aow [! Mdod | mHsnd MANY MANY MIX3 MIST
184 ea'|My V'oLIppe [ZEH#Y 9L#'Y v cEH'Y a+
ERE] MAOW 1134 MAOW IAOW MdNO MdNO IdINO MDIN
ol €314 veippe oLIpPE'Y |9L#'V [oI'oL# o184 s# NI 8#'dd v
119 AOW dINI MAOW MAOW | ‘VaNamo | ‘v aNgo AOW AOW
el ea'IMY 9lippe Vol VP oL#Y v 2eH'Y 64
INg VaAOW INI MAOW MAOW mans mans 1ans MNIINN
EJl ‘ OA: ol ap¢ ¢ ¢ wiwli
I v'g uon | &M I'v 1% oL#'Y v 2EHY U o+
19 4O MAOW| ‘¥ MAOW MAOW MAOW MAOW | -onnsuj es INI MAOW MAOW maav maav Jaav NI
=2 Jppe* ‘
I X 8 uon oLippe’y |v'ds v v s iy
ANE -onJjsul g9 134 XAOW MAOW 1ON NN dsaav ads
el J uon al#ol ds'v 8#'vY v o4
Ad -onJisul g9 diad MAOW MAOW HOX nAld dVMS aav
o1 g uon | 2PPE o'y Py 8#'V 84'400 o4
dg -onuisul g9 d1vo XAOW XAOW 4o o 1x3z a1a
o1 G uop | 2HPPE 8#'ol 8#Ip 8#'v 8#'H00 bt
Ng -onnsu) 89) AOW AOW anvy anv 1x3a g0d
S| e p e fre e e e e s e v - o5 -
v uon €+
SHg/ ONg -onJjsul g8 ddir AOW XAOW dNo dND xLor DaN
i (IECSCE SCITE IRISPEE IEIO ERTSCY EEN (FRISCE SSCERN TYRTOR) RSCERS RCMISS| MSCES MURSY BOOOR — — i
I ¢ uon |9HPP oLippe'Y [8#'v v v v v ot
019/ 09 -onisut B9 dINr AOW AOW ogns oaav oaans oaaay
el zuon | V@ veol V1P 8#'V 1Py N
INg/ZNg -onaisul g9 dINr AOW AOW ans ans 00N 6.LNI
] v v SPHMHED | o1 o'y Py 8#'Y Py
| uon 0+
oag/za| ATIVO NAOW | ‘v XAOW -onJisul ee vdg AOW AOW aav aav HNO dON
o4 03 od 00 og ov 06 08 0L 09 0s oy o oz ol 00

464

APPENDIX B Instructions

t byte = 6Cp)

irs

instruction map (f

on ins

Table B.9-3 Bit operat

dg:gtippe
sadas

le1dq:
9lpe sgg

|l da:lip
sad

leJfdq:
9ipe 0gg

lea'dqg:aip
ogd

dg:9tLipp e
413s

dauip
4138

da:gLipp
e g410

dgup
a410

v'da:9Lippe
aAON

da:gLipp
e'Y GAOW

dqup‘y
aAOIN

4+

3+

a+

o+

a9+

v+

6+

8 +

j1eJda:
ol sgd

ledq:
ol 0dd

L+

9+

S+

v+

€+

¢+

0+

04

0a

og

ov

06

08

0L

0S

0og

ol

465

APPENDIX

t byte = 6ER)

irs

instruction map (f

ion ins

Table B.9-4 Character string operat

8dS'ads

4+
3+
a+
o+
a+
v+
ala'aay
: 6+
SIS SRS SO (TS SES ST S
: 8+
R S N SO B .
: L+
: : 9+
g e o, St
: : : g+
S O o
: : v+
ads ads ads ads 8ds as 4 | | || |1 — adseod | [
T Lt it et itk s b v [T
e e e ot T et ot e T S o ST S e SO i [T
T et st et otk it GO S e g |
IMST IST4 | QO3IMOS | 10IMOS | D3OS| 10308 QMSAOW i IMSAON | OSAOW : ISAOW
04 03 0a 00 og ov 06 08 0L 09 05 ov 0g 0z o 00

466

APPENDIX B Instructions

6Fy)

Table B.9-5 2-byte instruction map (first byte

0H'vY

04y

4+
us1 THST MHST
8p+€1H® v'ep+e(W'Y 04y 0d'y 14
V... MAQW 15D MAON Hsy TdSV] MHSY
0d'y HY VD [vo'y a+
........................... I_S_EZ \S>O§ >>>O—>_
8P+ 14O v'8p+z| Od'Y 04 04y ot
V... MAQW 15D MAON 187 st MIs1
g+
v
v+
NAIQ
v
6+
>>I_D_>_
v 8P+0THO V'8p+0 ot
nw 'Y MAOW [1H® MAOW
v v L+
.. omom OI_OI
8P+E1HO v'gp+|gpteTde | VoY [80dV ot
v....NOW|ETHD AOW| Y XAOW XAOW oW
HY Ve |ve'V ot
.. >O§ >OS_
8P+Z1H® v'80+| 80+21HO | YHdA [ddaV -
'Y AOW|Z1H® AOW| ‘Y XAOW AOW AOW
vasn |asn' et
AOW AOW
8P+ 14O v'gp+|8p+ilde [v'ass [ass'y 2
Y AOW|H1H® AOW| ‘¥ XAOW AOW AOW
veay [gav'y
b+
AOW AOW
8p+0THO vaia [alay 04
'Y AOW|0TH® AOW| ‘Y XAOW AOW AOW
0 03 0a 00 og ov 06 08 0L 09 05 oy 0e 02 ok 00

467

APPENDIX

=70p)

Table B.9-6 ea instruction 1 (first byte

lorgg i panqyoid| ouppe i +cmu@'Y | 9Lppe +EMHOY | 9tippe +EMHOY | 9HpPE +eMd@Y | lerers i payqyoid | 9uppe +EMY@'Y | 9Lppe +EMEO'Y Q4
‘ouppe osn : TaNy 1dND | ‘9rppe
[o1'g# pauqiyoid +ZMHD'Y +ZMHO'Y | [orgL# 34+
‘91p+0d @' asn JaNy 1dNO | ‘9tp+od®
+ A + A 81" :
IMHO'Y IMHOY | 1oL : a+
JaNy 1D | mu+imbe
+ ‘ + ‘ EIX
OMHO'Y OMED'Y | lergLs o+
Jany TdWD | ZME+OMH®
EMHO'Y EMHD'Y | 1oLt 9LP+HEMED | a4+
Jany 1dWO| gLp+emHe :
S ; ;
CL MDY IMHD'Y v
9LP+ZMHO: JaNY TdWO
lor'gy" loI'g# imee'v IMHO'Y TR lIgL# IMHO'Y 64
IIPHIMED: ‘IMHO : THOX JaNY 1dIND IME® 18ns
orgL#
! 8+
orgy -
loi'g : 4
P+
loi'g#
: 9+
‘GPHIMHD |
e
: S+
‘BPHSMHO
Tergy li'g L
: v+
‘BPHMEO ‘MY
loi'gy
: €+
‘GHEMHO
S
H c+
‘GPHIMHO
SN
) b+
80+LMH®
SN
: 0+
‘PHOMHD
TUYTENED
04 03 0a 00 og ov 06 08 oL 09 05 or 0e 0z ok 00

468

APPENDIX B Instructions

=71y)

Table B.9-7 ea instruction 2 (first byte

9Hippe

+EMHO'Y

8#+EMHD

V+EMHO

9lippe

+EMHO'Y

9Hippe

+EMHO

9Hippe

9Lipped

+EMHD @

9Lipped

i fEMH@@

891D} T4
dTIv0 ddir
+ZMHD ® +ZMHD ® a4
4TV ddinr
+ +
IMHO® ® IMH® ® a+
4TV ddir
+OMH®'Y V+OMH® +OMEO'Y +OMH® & { +MHD O o+
VIAOW TAON TAON dTIv0 ddinr
EMHOD'Y EMHD © a+
dTIv0 ddir
IMHO ® IMHD® v
4TV ddinr
IMHO ® IMHO ® 64
4TV ddinr
9IPHOMHD | OMH®® | 9IP+OMHO: OMH®® o4
® dTvo: dTvO| ® ddir: ddir
8+MHO O : £1HO 8+IMHO O ; £1HO L4
dTv0! 4TV ddir: ddinr
‘WHMHOD: EHO | WHMHOD: EHO ot
dTTv0! dTv0 ddir ddinr
‘8ptsMHD O T | 8OHSMHDO | cHO ot
v+
g+
z+
L+
) : : : 0+
¥V VIAOW; V3AOW TONI dT1vo; dTIv0 ddir; ddir
04 03 oa 0 o8 ov 06 08 oL 09 05 oy oe 0z ot 00

469

+EMHO'Y | 9Lippe : 9lippe : 9lLippe : 9lippe

91ippe i HEMHO'Y 9lippe I HEMHO'Y V'OHPPE: V4EMH® | 9Lippe

LME+IMHD : LMUHIMED LME+IMHD
03a 0odod 7104
LMd+OMH® : LMHOMEO : LMHOMED :

LMyt _>>m©m +MHD'Y LMEHIMED @ HIMHO'Y
HOX ‘Y XAOW XAON
+OMHO'Y LMHHOME®

SIP+EMHD EMHD'Y
‘¥ XAOW XAOW
9IPteMd @

SLP+EMHD : ILPEMHD :
0dod 9104
9LP+EMHD : 9LP+eMd @

72y)

8P+EMHO

8PHCMHD
Y XAOW !
8P+IMHD

8PHLMHO :
NI

v+

6+

8+

L+

9+

S+

v+

€+

¢+

L+

Table B.9-8 ea instruction 3 (first byte

APPENDIX

T gproME® oY 8PHOMHD VgP+OM 8o+OMED 8o+OMED
Y HOX: HOX [v xnow : XAOW| H® AOW: AOW : NI OHOH :
04 03 oa 0 og ov 06 08 oL 09 05 or oe 0z ok 00

470

APPENDIX B Instructions

=73n)

Table B.9-9 ea instruction 4 (first byte

Y MHOX

+EMHD'Y
+IMHD'Y
MHOX
+HIMHD'Y

SMHO'Y
MHOX
MDY

0MHO'Y
MHOX

MHOX

9l#'8
MO MAON

9H#'8PHS

MH® MAOW :

M@ MAOW

9L#+ZMY
® MAOW
9L#+Imd

ILHEMHO
MAOW
l¥emde

V'9Lippe ;

Y HEMED
Y+IMH®

MAOW
V+iMdo

VEMHO
MAOIW

9Hppe

T HEMED'Y

+IMHD'Y
MAOW
HMHD'Y

0MHO'Y
MAOW

94ippe

+tEMH®

9Hippe

+EMHD

9Hippe®

1 tEMHOO

+tcMdo @
TIv0
M@ @

9Hppe®

MO @

4+

+MHO ©
dir

3+

a+

o+

a+

v+

6+

8+

L+

9+

S+

v+

€+

¢+

0+

04

03

0oa

0g

06

00

471

74y)

_,mcvumm J+EMH® 9lippe +EMHO'Y | 9LiPPe i +cMy@'Y | oLppe +EMHO'Y 9lippe +EMHO'Y | 9Hippe TEMHD'Y 9lippe

EMHD'Y 9lppe D +emue'Y

............ X % ... 000
9IPHOD | +IMHD'Y
v oday oaay

FHMED | LMUTLMED . UMDY | IMEHIMED FLMHOY | IMUHMHD | HMHOY | M4HIMHO : LMUBY | IMGIMED | HMERY

ZNga oaay

TOMHO'Y

TEMH® 9IP+tEMHD EMHD'Y 9IP+EMHD
ZNga oaav

EMHD'Y 9IPHEMHD | EMHD'Y

cMHD'Y

0MHD'Y
v aav

aav ;

LHY 8PH/MH® 1 HY 8P+LMHD

8PHOMH® @ 9H'V

8P+GMHD

8P+GMU D :

: v oaavi aav
TaptiMED | vHY svmue vy | spomEe vy
v oaav :
" gpvembe grEmuD | eV

8P+HIMHD

: v oaav: aav
8PHOMHO gpFoMGe T ToHY | EpRoMa oY T
Y HO! HO v 00av oaav| v ans: ans| ‘v aav: aav
04 03 0a 00 og ov 06 08 oL 09 08 or 0e 0g ol 00

Table B.9-10 ea instruction 5 (first byte

APPENDIX

472

APPENDIX B Instructions

=75y)

Table B.9-11 ea instruction 6 (first byte

ouppe

9IP+DdO :

voLppe D yemH®
: HOX
VOIPHO | VHEMHO

VOLPPE: V+EMU®
:)

V'9IP+0 : V+ZMHO

(0]

v'9LIppe |

V+EMH®
ANV
V' +ZMH®

V'OMH®
aNY

9lippe

REN
9IP+EMH D
93N
9Ip+teMd@
93N
9IP+IMH D
REN
9IP+OMH D

+EMHO

9uppe

9IP+0d0 :

LMH+OMHO

+EMHOD'Y
oans
+ZMHO'Y

TOMHO'Y

0MHD'Y
o8ns

V'9lippe V+EMHO

4o ans:

VEPHGM |
O ans:

" veprom

4® ans:

V'8PHEM !

4o ans:

V'OLPPE D VEMH®

4+

Y'9IP+O : V'+ZMH®

ERy

a+

o+

a9+

v+

6+

8+

L+

9+

S+

v+

VEPHEM }

HO aav:

€+

¢+

03

0od ov

08

09

0S

0og (4

ok 00

473

APPENDIX

=76p)

Table B.9-12 ea instruction 7 (first byte

T+EMHO

9Lippe

+EMHO'Y

9Hippe

+EMHO'Y

9Hippe

+EMHO'Y

9Lippe

+EMHO'Y

9Hippe +EMHD'Y

9Hippe

+EMHO'Y

9Hippe

+EMHO'Y

4+
3+
I+IME® LMHHLME® : LMHHMY® LMEHLME® LMHIME® LMHHLME® a+
ZNaMa Y MANY Y MdWO ‘v MOaay : YoMans 'Y maav
LMEHOMY® LMEHOMHE® LMEHOMYE® : LNMHHOMYE® : LMEHOMYE® : o+
‘v Moaav : v maay
-+ :
9IP+HEME® : a+
‘¥ Moaav :
v+
6+
8 +
L+
8PHOMH® : 8PHIMHD :
@_ ® : o+
Y MANY ‘v MOaay :
8P+SMY 8P+SMH
o 0: S+
8PHYMED :
: ¥+
v MOaay ;
€+
2+
8P+HMH®
: L+
‘¥ MOdav :
8PHOMH® : 8PHOMH® 8PHOMY® : 8PHOMH® : ot
ZNGMa | ‘Y MHOX MHOX MHO [¥V MaNV: MAONY | Y MdWO: MWD | ¥ MOOQY: ~ MOQQY| v MENs: MaNs| v Maav: maay
o4 03 (q] 00 og ov 06 08 0L 09 0 o o 0z oL 00

474

APPENDIX B Instructions

77y)

Table B.9-13 ea instruction 8 (first byte

9lippe

V'OLPPE } Y+EMH® V'OLPPE! Y4EMHO V'OUPPE! Y4EMH® | OHPPE 1 +EMH® | 9MPPE [+EMHD'Y V'OLIPPE } V+EMH® V'OLPPE D V+EMHO
. : : : 'V MOENS . .

475

VOIP+O |
d® MHOX :

VLMEHIM |
H® MHOX :

LMHHOMHO

4o >>n_z<m 'V moans

VOIPHEM: VEMH® | OIPHEMY®
4O MaNY MaNY MOaN

V'EMHO
maav

IIPHEMHD | EMHB'Y VOIP+EM | VEMHO V'OIP+EM |
‘v Moans: moans| He mansi mans :

V'OIPEM |
H® MHO'

V'OLD+ZM 9IPHIMHD 9IPFIMHD | ZMHD'Y V'ZMH® V'IMHO
: maav
9IPHIMHD | 9IPHIMHD V' IMHO

MOIN v moans

V'OLPHOM :
H® MHOX :

V'EPHM
H® MHOX

PHMEO
‘v MOENS :

V'8PHGM
H® MHO:

V'8PHGM
MHO| H® many:

8P+SMHO
MaNy MOIN |

8P+SMH® :
‘v Mogns

8PHYMHO
MOAN

8PHYMH® -
‘¥ MOENS

VEPHeM
H® MHOX

VEPHM ;
HO MHOX :

8PHOMHD : :
4O MHOX H® MANY 'V MOBNS: MOans [He mans: MENS | H® Mmaav : maay
04 03 0a 00 08 ov 06 08 oL 09 05 or o€ 0z ot 00

APPENDIX

=78y)

Table B.9-14 ea instruction 9 (first byte

9lippe +EMHD'Y 9lippe +EMHO'Y 9Hippe HEMHD'Y 9lippe +EMH®'Y | 9LippE +EMHD'Y | 9Lippe +EMH®'Y | 9HPPE : EMHD'Y 9Hippe +EMHD'Y 4+
Y MAQ mag | v AG NG| Y MOAIGE moad| Y onaai nNd| Y mInw minw] v 1w NN Y MATOWE MNInI
9LP+0d® | +ZMHD'Y 9LP+0d® | +2MHO'Y 9IP+0d@ | +zmHD'Y 91p+Dd® +ZMHO V +ZMHO'Y I+
Y MAId MAG | Y Ad NG| Y MONGE MONG| Y pAGE NG| Y MINW minw] v w NN mnnn

IMEHIME® | +IMED'Y | ZMEHIMED [+HIMHD'Y LMEHIME® | +IMHO'Y | zmu+imu® | +IMHD'Y +IMHO 'Y a+
Y MAId maag | v AG NG| 'V MOAE MOAG| Y AdE NG| Y MINW minal v nw NN M

LMHYOMH® [tOMH®'Y | ZMHHOMHD [+OMHO'Y LMHYOME® | +OMHO'Y | /mu+omue | +OMHO'Y HOMHD'Y o+
Y MAId MAld| Y Ad NG[Y MOAIG: MOAID| Y pAdE NG| Y MINW MINN] Y INw nw _mninn

9IP+FEMH®D | EMHD'Y ILP+EMHD | EMHO'Y EMHO'Y EMHD'Y IP+EMHD | emHD'Y 9IPHEMHD | EMHOD'Y EMHO'Y EMHO'Y g+
Y MAId Mmag | v AG A MNAI nAg| Y MINI minal v nw INW MNININ NN
9LP+ZMH® | emHd'Y 9IP+ZMHD | TMHO'Y cMdo'Y ' cMdo'Y 9IPHEMHD | zMmHD'Y OLP+ZMH® | ZMHD'Y cMHO'Y - 9IPHCMH® : MHD'Y N v+
Y MAI Mag [v AG NG| Y MOND MONG| Yo nAgE naa| v mInw min| v 1w 00

9IP+HIMHD | IMHD'Y IIPHIMED | IMHO'Y GIPHIMED | IMHB Y | 9lp+imH® | HMHB'Y 6+
Y MAIG MAG | Y NG I\ NG| Y MW MINW| v Inw nw

9Ip+oMu® | oMH®'Y OPHIMHO | OMHBY | OIPHOMHO: OMHOY | OIPHOMHO : OMHOY 9IPHOMHD | oMHO'Y | 9Ip+OMH® | OMHO'Y 9IPHOMY ; o+
Y MAQ MAG [Y AQ A naa| v MINW minw] v 1w | v M
8P+/MH®D | LMH'Y WHMHD | L0V | SPHIMHB IMEY | eptMHe LY 8PTLMHO | MY’V 8p+Md® | LHVY I+
Y MAQ MAG | Y Ad NQ nAg| Y MINI minwl v nw NN
8PHOMHD | IMH'Y WIOMHD | 98V | SproMd®: omMdY | epoMd®: 9dv 8prombe | omu'y gproMH® | oHV o4
Y MAIG MAG | Y AQ Aa nAa| Y MW MINW] Y nw nw
8P+SMHD | SMH'Y WISMHD | SHY | SDYGMdD : SMAY | epraMd®e : Sdv 8PHSME® | SmH Y gptsmue | SH'V o4
Y MAIQ MAId Y Ad Ad nAId] 'Y MINN MINWN Y oOINW NN
8PHME®D | YMH'Y 8P+HYME®D | YH'Y 8PHYMHD | yMY Y 8P+yMH® | vV v+
Y MAQ MAaG | Y Ad NQ nAg| Y MINI minw| v nw NN
8P+EMH® | EMH'Y GFEMHD | £V | BPYEMH® . eMHY | SPreMde . edv 8PHEMH® | emu v gp+emHe | ed e+
Y MAIQ Mag | v AG NQ nA| Y MINI min| v 1w 00
8P+eMHD | eM'Y 8DFIMH®D | cHY | GPeMH® : eMHY | 8PveMH® : eHvY 8P+eMH® | zmu v epreMHe | aHY ot
Y MAIQ MAG | Y NG Aa nAG| Y MW MINW] Y Inw nw
8PHMHD | MY SOFIMED | 1Y | ePIMHD : MEY | e IMHe WY 8PHIMED | MY gpHiMH® | 1MV Ly
Y MAIQ MAG [Y AQ A NN Y MINI minnl v nn NN
8P+OMH® | OMH'Y 8DFOMHO | OHV | 8POMH®: OMHY | ePYOMH®: odY 8PHOMHO | omy'v 8p+OMH® | 0d Y : 0+
'Y MAIQ MAIa Y Nd All¢] NAIG| Y MINN MINN YoOINW WY MNINN : MNINN Y NN : NN

04 03 od 00 og ov 06 08 0L 09 0s or 0oe 0c ok 00

476

APPENDIX B Instructions

i, ea instruction (first byte = 79y)

Table B.9-15 MOVEA RW

91ppe‘ +EMY® LM | 91ippE’ i 4EMHO'IM | 9Lippe’ +EMY®‘SM | 9Hppe’ +EME® ‘PM | 91ppE’ +EMY® ‘EM | 91IppE’ +EMY® ‘TM | 9bippe’ +EMY® LMW | 9HpPE’ +EMY® ‘OM a4
AMHYINOW: M VIAOW| SMHVIAON: H VIAOW| SMHVINOWN: W VIAOW| vMHYINOW: W V3AOW H V3NOW H VINOW) IMEYINOW: ¥ VIAON H Y3ION
90D’ 1 +CMHO'LM [9IPFOdB 1 +ZMHO'OM [91P+Ode’ +ZMY®'SM | 91P+0dD’ +ZME® ‘TM +ZMY D ‘EM FIMHBZM [910D’ | +ZMHR'IM +ZME® ‘OM I+
MGYINON: B VINOW | SMEVIAOW: W V3NOW| SM4VIAON: H V3AOW] vMHVINOW: § V3AOW 8_v3hon Y VINON| MMGVIAON: Y VINON 8 won
LMEHIMED' S HLMGD'LM | IMEHIMED' } +IMED'IM +HIMEO'SM | LMEHMED' : +HIMED ‘TM +LMY D 'EM HIMHOTM | LMEHMED': +MED'IM +LME® ‘OM a+
IMJYIAON: H VIAOW [OMHVIAOW: H V3AOW H_ V3O | 4 VIAOW| 4 Y3IAOW H VIAOW [IMHYINON: H VIAOW A
LINGHOMED": OMHO'LM | LMGOMHD' | OMHO'OM | LMHOMY®': +OMHO'SM | LMHOMHO" ! +OMH® 7M. +OMY® ‘EM OMBOTM | LIGHOMED' : +OMHO' 1M +OME® ‘OM a4
IMHVIAON: H V3AON | OMHY3IAON: H V3AOW([SMH V3O 4 YIAON| yMHYV3AON: H Y3IAOW 4 YIAOW 4 YIAON [IMEVIAOWN: H V3AOW 4 VIAOW
IDEMED’ © cMUB'IMH | 9IpeMuD oipemd cMuo'imy | aipiemuo | eweooms [o
9MH VIAOW : YIAON | GMH Y3AO LM VIAOW Y3AOW | OMH YIAOW Y3IAOW
IPRMED’ ZMHO'OMH | SIpIMED oinmdo’ | amuoimy | aivime’ | amdoome [
9MH VIAOW : YIAON | SMH Y3AO LMY YIAOW Y3AOW | OMH VIAOW : Y3IAON
IPFMED’ | IMHO9MH | 9IPHMHD oprimge’ oy [aiprimde | mdoome [
9MH VIAOW : YIAON | SMH Y3AO LM VIAOW Y3IAOW | OMH VIAOW Y3IAON
OIPHOND" | OMHO'LMY | 9IPHONHO' T OM4O 9N | 9ip+OMD oipiomd’ oMo'y | aipiomdo’ | ovdoome [
LMY YIAOW YIAOW | 9MH VIAOW : YIAOW [SMH ¥3AO! LMY YIAOW YIAON | OMH YIAOW YIAOW
sprime’ : MGG | SotMED’ ¢ IMHOME | 8PHMHD' ‘sprmuo’ IMHIMY | SPrMHD’ G mEOME L4
LMY VIAOW Y3IAOWN | 9MY YIAOW YIAON | SMY Y3AO Y3IAOW Y3IAON
sroMHe : IMEIME | SPHOMHD ¢ OMHOMY | SPFOMHD' : OMH'GMH | SDYOMH®' | OMHMH | SPHOMHD’ : OMU'EMH | SPHOMH®' : OMHTMH | SPHOMHD’ | ¢ ameme omgomy ot
LMY YIAOW YIAOWN | 9MY YIAOW YIAON | SMY Y3AO Y3IAOW Y3IAON
IMED | SMHIMY | SPRMHD | SMEOMH | SPHMHO’ SMUSME | epramde’ SMTME aMaemd Mz ama'me amgome ot
LMY YIAOW YIAON | 9MY YIAOW Y3IAON Y3IAON Y3IAOW Y3IAOW | 2MY YIAOW Y3IAON Y3IAOW Y3IAOW
BPHMHED : [spivmue : T T : - PMEOME bt
LMH VIAOW V3IAON | 9Md YIAOW : LMY YIAOW Y3INOW YIAOW
oHEMED” : EMEZMY | BDYEMHD | SMHOMH | sPrEMHD’ eMETMY | spvemde : ‘emeemd [spremde : [‘ep+emuo’ : eMEIME | spremde : emgoMy ot
LMY VIAOW V3IAON | 9MY YIAOW Y3IAON | MY YIAON | Y3IAOW | 2MY YIAON V3IAON | LMY YIAOW Y3AOW | OMH VIAOW YIAOW
aPeMiD” : MU IME | apieMmEe’ T IMEOME | apiMED’ | cMHSME | 8PHIME® Mo | epvemi” DaMgemd | spramdo” eMazmd | epveine” : e Ime oMy ot
LMY VIAOW : V3IAON | 9MY YIAOW V3IAON | MY YIAON : YIAOW | 2MY YIAON * YIAOW | HMH YIAON : Y3INOW YIAOW
riMED : LM ZME | 8P+ “ MESME | BpriMED ! IMETME | apriMED” ECICIN E L ieemd | e imde’ “ L mE [N
LMY VIAOW V3IAON | 9MY YIAOW : YIAON | 7MY YIAOW V3IAON | MY VIAON : Y3IAON | ZMH YIAOW : VIAON | HMY YIAOW : Y3IAOW Y3IAON
SPOMED” : OMHZME | 8P+OMHD : OMHOME | ap+omE®’ T OMESME | BPFOMED T OMETME | 8PrOMHD" : ‘oma’eme | sprome” : OMHZME | SPOMED” : oma'tME | sproMED : OMEOME 0+t
LMY VIAON ; VIAOW | 9MH VIAON YIAOW | SMH YIAOW: VIAOW | ¥MH YIAOW ; VIAOW | EMH YIAOW ; YINOW | 2MH YIAOW : VIAOW | LMY YIAON ; YIAOW | OMH YIAOW : Y3IAON
04 03 0a 00 og ov 06 08 0L 09 0s o og 0z oL 00

477

APPENDIX

i, ea instruction (first byte = 7Ap)

Table B.9-16 MOV R

9Hippe

8PHMED
94 AOW
| epromue

‘94 AOW

8P+OME®
‘94 AOW:

+EMHO

9Hippe

MU |
‘S4 NOW:
8PHEMHO :
S AON'

+EMHO

9Hippe

+EMHO

9lippe

+EMHO

9lippe

9Ip+0do

LMHE+IMEO ;

8P+/MEO
2 AOW:
PHOMED
24 AOW

8PHOME®
H AOW

+EMHO

9lippe

+EMHO

9Hippe

9Ip+0d®

LMYIMHO ;

+EMHO

4+

3+

a+

o+

a+

v+

6+

8+

L+

9+

S+

v+

€+

¢+

0+

0a

0s

478

APPENDIX B Instructions

i, ea instruction (first byte = 7By)

Table B.9-17 MOVW RW

OUPPE'L 1 +EMH®'LM | 9LiPPE'Y EMUO'OM| SUPPE'S D 4EMUD'OM [OLPPEY © +EMUD'M| SLPPR'S 1 +EMH®'SM | OUPPR'Z D EMHO'ZM [OLPPEL D fEMHO'IM | 9bPPEO +emH@OM|
e maon 8, MAON| MY MAON: M. MACW] MY MAON: Y MAQN] ME MAON: 8 IMVOW| MH MAON: Y MAON]| Md MION: ¥ Mmon
9tp+ode’ OIPHOdD’ 1 +ZMHO'OM|OIPHOdD’ 1 +ZMHO'IM [9IP+OdD’ I +ZMHO'TM [OIPHOdD’ [+ZMHO'EM [9IPHOdD’ | +ZMHO'IM |91PHOdD’ | +IMHO'IM | 0iPrOde’ 1 sambeOM| 5
LN MAON OME MAON: ¥ MAOW| SWE MAOW: d MAOW| ¥MH MAOW: d MAON| EMH MAOK: ¥ MAOW] 2Md MAOW: B MAOW | LMH MAON: H MAON MY MAOW; 4, Ao
LMEHMED | LMEHME® | +HMHD'OM| LMEHMED | +LMHD'SM | ZMETIME® | +LMHO'YM | LME+LME® | +LMHO'EM [ZMETIMHD | +IMHD'ZM | LMH+HIME® Pemgeom| g
LI MAOW 'OMH MAOW : H MAOW| ‘SMEMAON: MAOW | ‘/MHMAON: H MAOW | 'EMHMAON: H MAOW | M MAOW: H MAOW [‘IMEMAON: H MAOW | ‘OMH MAOW: H MAOW
LMEOMH® | +OMHO LI | LMH+OME® | +OMH©'OM | LM+OMH® | +OMH'SM | LMH+OMH® | +OMHE'PM | LMH-OMHD | +OMHOEM | LME-OMHD | +OMHOZM | ZMH+OMY® | +OMHD'IM ox
HOYMAON: H MAOW [HOYMAOW: H MAOW| 'SMEMAON: H MAOW| ‘vMHMAON: H MAON | ‘EMIMAOW: H MAOW | ‘ZMHMAOW: Y MAOW | ‘IMEMAON: H MAOW
OIPHENHD | EMHO'LMH |9IPEMED | EMHO M OIPFENMHD | EMHOTMH | SIPHEMHD | MHD'SMH | OIPFEMHD | EMHDTMH | IPEMHD © EMHO LMY a4
‘LMd MAOW } MAOW | ‘9MH MAOW | ‘7ME MAOW } MAOW | ‘EMH MAO : MAOW | ‘ZMH MAON | MAOW | ‘LMY MAOW : MAOW
..&?.N.\,.\,.m._@._..w.?._.@.m?. .&?.N;.m.@:. OIPFIMHD : TMH YMH | OLPZMHD © ZMHO'CMH | OIPYZMHD | ZMHD TMH | OIPHZMHD : SMHD 1M V4
LMY MAOK M MAON : PMSMAON: | MNON] SMEMAON: MO | ‘SN ION: MAOI | LY MAOK
..m.;?._.?._.@:m UPHMED .@.F.??.n@:m WO PMH | 9IPFLMED | IMHO'EMY | 9IPHMHO | IMHOTMY | 9IPHIMED 64
LMY MAOW : "9MH MAON : ‘VMIMAOW: MAOW| ‘EMHMAOWN: MAOW | ‘ZMHMAOW: MAOW | ‘HMH MAOW :
9LPHOMHD | OMHO' LMY | SIPHOMHD | OMH® M SIP+OMHD | OMHO'SME [9IP-OMHO | OMHO'PMH | 9IPHOMH® : OMHO'EMH | SIPHOMHD OMHO'ZMH | SIPHOMHD OMHO' LMY ot
LId MAOW "9MH MAON 'SMUMAOIW: MAOW [‘/MHMAON: MAOW | 'EMHMAOW: MAOW | ZMYMAOW: MAON | ‘LMH MAOW |
SDHMHD' | IMHIME 8YIMED | IMHOMH SDYIMHD | IMWEMH [SDRMHD | LMHTMY [SPHMMD | IMMH L4
LMY MAON | 9MH MAON ;
9+
s+
g [sprme o W |EpHMED .
9MH MAON SMH MAOW ;
: gpeemae’ SPHEMED | EMHTME [sPEmMHD’ ot
vMd MAON: MAOW [EMH MAOW: MAOW | 2MHd MAOW: MAOW | LMH MAOW
SPYIMHD’ I aMHTM |8PRMED | GMH'EME [epcibD’ L amTMY [sprce’ o
vMd MAON: MAOW ([EMH MAON: MAOW | ZMH MAOW: MAOW | LMH MAOW
“ 8P+ MED' ..Emﬁ\sm: 80+’ “.._.\,E.W;.m.: 8P LMED’ : IMEEME|8ptimE D : L
SMH MAON: MAOW| vMY MAOW: MAOW| EMY MAOW: MAOW | 2MH MAOW: MAOW | LMH MAON i
BD¥OMED’ T OMHZME | Bp0MHD”] OMEOME [BRHOMES I oMeTeIE aptomie MK YIE | b*0ide’ T OMHEME T |BRe0iiba’ T ombEme [apsonide’E Oma g : 0+
LMY MAON: MAOW | 9MH MAOW: MAOW| SMH MAOW! MAOW| ¥MH MAOW: MAOW|EMH MAOW: MAOW|2ZWd MAOW: MAOW | LMH MAOW: MAOW | OMH MAOW: MAOW
04 03 0a 00 og ov 06 08 oz 09 08 or oe 0z ot 00

479

APPENDIX

7Ch)

Table B.9-18 MOV ea, Ri instruction (first byte

LH'91PP ;

LH9IPHL
MH® AOW:

LH'BPHIM |

LH'BPHLM
o AOW:

Ld+EMHO

9 +EMHO

SH+EMHO

Yd+EMHO

ETRI
e AOW

o | edolp+D’

U ZMY+L |
MHO® AOW

eaoLpre’

MH® AOW
> | eworpz
MH® AOW:
gaoLpl
MH® AOW:

1 eH+EMHO

cd'9LIpp
e AOW

od LML
MH® AOW

MH® AOW

2d'91pre
MHO® AOW
2d'91pre |
MH® NOW :
EYRIT o
MH® AOW

24'91p+0 :
MH® AOW :

1 cH+EMHO

Qa9+

Ld'9LPp

e AOW

E_o_uim
MH® AOW

_.m.o:u.,rom
MH® AOW

LH'BPGM :
HO AOW:

LHBPHLM :
4O AOW:

IH+EMH@

MH® AOW :

" on'gpraMm
H® AOW:

OH'9LIPP : 0H+EMH®

0H'9LP+0 : 0H'OMH®

0'8P+OM :
H® NOW:

4+

i+

a+

o+

a4+

v+

6+

8 +

L+

9+

S+

v+

€+

¢+

HO AOW: AOW

0+

04

ok 00

480

APPENDIX B Instructions

7Dy)

ML D MU | oMY D omyemd| Myl D GMuteMd | Myl D vMdeMd | emy9l D oMdteMy | mdoL D TMdEMY | HMEOL D IMdemd | omyol Do Omyemd

481

e MoN: 9 MAOW| PP MAOW: ~ ® MAON| P MAON: PR WONE 9 MoK

IMY'91P IMY'9LP : ' : ' 7MY'9IP H) H ' MY'91p H IMYFZMY | IME'LP OMY'9Lp OMY"+2Md
osemon; o Ion 1040 MAOH L FOdOMAON] | @ MAOK . ..10d0 MAOM ¢ .2 o _sodmoni o mon| - * 0.1.@.%.5. .0 hon
LMY LMY+ IMH‘ZMY+ MY LMY+ oMY LM+ LY ZMY+ OMY'"+I MY
s MmOl 140 MO oMW

PME LMY od’Zmgt Rl L OMd'ZMy+ @ OMY+OMH
OMHO® MAOW : OMHO® MAOW ® MAOW| OMH® MAON: ® MAOWN| OMH® MAOW: ® MAOW

MY M :
OMH® MAOW

LMY M
0MH® MAOW:

LME9IP+ SMH‘9Lp+ PME9IP+ oM 9Pt

EnHo ;>o_2 ENHO MAON: tndo ;\62) .m%@.g.\é ..
ot aMe9p+
ZMH® MAOW:) ;>o_2
9P+ SMHOIP GMIMED | peolp e
e g>o_2 LMHO MIOW; IMdo 3\62 Mg >>>o_2
T ndomd | ovgoi § omdomuD]| SMEOI | SMHOMHG | P9It T S
OME® MON: wion | omye mon’ ; OME® MAON :
NP : SMHSPL SMEIME | emdep Tl I gPL OMEEP*L
MHO MAON: MAOM | ME@ MAOW | MH® MAOW) ;>og MHO MAOW : MAON | ME® MAOW MAON| Mo MAOW' MAOW
Tmdrg W..?m_.@;m ey MUY ..N.?.W%::w Tamdomd | \.%,.m?::w gome | o.;mga::n.%@.,\,.m::.
MH® MAOW: MAOW | MH® MAOW MH® MAOW: MH® MAOW MAON | ME® MAOW: MAON | MH® MAOW: IAOW
s ey | o Tomgepts ¢ omaomy Uemdomy | awdeeis oy | e
MH® MAOH MAOW| M5® MAO MW | mee Mo

MAOW

: : e g mdepty
MH® MAOW : : : : MH® MAOW | MAOW | ME® MAON:

IME'BPHE MY 'BPHE LG '8PHE
MH® MAOW : MH® MAOW : MH® MAOW:

IME'BPYE 1 LMHTMY IMH'EPH : MM T EMH'TMY TMY'8P+e : IMHEPr
MH® MAOW: MAON | MHO >>>05 MAOW MAOW| MH® MAOW : MAOW | MH® MAOW

w>>m wui MY '8p+L

MO MAOW : MAON | ME® MAOW: :
MMy MR MEOME [OMBRR0 oMM

IMGEPR0 IMGOMY | omdBRH0 ; aMHOMY SMHEPH0 GMAOM | UME'SPR0 DMHOM | EMHEPR D eMHOM | awdspo
MHO MAOW: MAOW | MH® MAOW MAON| M@ MAOW: MAON | MH® MAOW: MAON | M@ MAOW: MAON | M@ MAON : MAON | MH® MAOW: MAON | MH® MAOW: MAOW
04 03 0a 00 og ov 06 08 oL 09 05 ov 0e 0z ot 00

Table B.9-19 MOVW ea, Rwi instruction (first byte

APPENDIX

i, ea instruction (first byte = 7E)

Table B.9-20 XCHR

9lippe

+EMHO'LH

ouppe

V'OIPEM

8p+teMd @

‘94 HO

BOHMUD

8PHOMHO
‘94 HOX:

+EMH® ‘d

9Hippe

+EMH® ‘G

9kippe

V'OLPHEM

8P+OMHD
‘Yd HO!

+EMHO ‘P

ZMHD'H

9LpPE | +EMH®'EH

LMY+IMH O

V'OLPHEM ¢
‘eY HOX:

8P+ZMH® | 2H'ed
‘ed :

8PHOME® ; 0H'EH
‘ed HOX'

ouppe

V'OLPHEM !

8PHOMHD
24 HOX:

+EMH® 2

9kippe i remy o'y

V'OLPHZM

SPHOMH® ; OH'1Y
4 HOX:

9lippe

8PHOMYD
‘04 HOX:

+EMHD ‘0

4+

i+

a+

o+

a+

v+

6+

8+

L+

9+

S+

v+

€+

¢+

0+

0oa

ov

06

0L 09

0s

0e 0c

ol

00

482

APPENDIX B Instructions

i, ea instruction (first byte = 7F)

Table B.9-21 XCHW RW

91ippe +EMHO M| 91ppe T +EMd@'9M] 9kippe T +EMHD'SM] oLppe +EMHO TM] 94ippe +EMHOEM| 9Lippe D ovemdom] oupre 1 semue'm] ouppe © +emdo'oM]
4 MHOX| ‘omu mHOX: ‘SMHMHOX: H MHOX H o MHOX| MHMHOX: H MHOX| ‘IMHMHOX: H MHOX| ‘OMH MHOX:
o | olpidde; ramdaom| 8IPHOdD: HIMHO'SM 1ZMH® e 9iPHOdD: MMM | 91b*0dD; +eMH® OM 34
H o MHOX| ‘omb mHOX: ‘SMH MHOX: H MHOX ‘LMH MHOX § ‘OMH MHOX:
MO IM ..N;mv.r.\,.\,m@.w. N;mr.\sm@m...:;m@,.m.; LMG+MY O a+
4 MHOX| ‘OMY MHOX: ‘GMH MHOX: H MHOX ‘OMH MHOX:
: : : O+
MY MHOX ‘SMH MHOX ZMY MHOX ; :
oD - OlpEMED! oD | sibiehbe; emdoOMe[o
‘OMH MHOX: ‘SMH MHOX: ‘OMH MHOX | MHOX
Su+§¢@m os&gm@m 9IPHeMHD " 9IpiziED: TME® oM v+
‘IMH MHOX: ‘SMH MHOX: ‘IMH MHOX MHOX | ‘OMH MHOX: MHOX
oipHimEe! IO 'oME| ol IieD: T ike [OBIGD | TG I | GBS} A O 6+
‘OMH MHOX : MHOX| ‘SMH MHOX: MHOX ‘LMY MHOX : MHOX| ‘OMY MHOX: MHOX
"OLpHNED ! OO 'OMH| T OIP+OMD: T It e S OME®EMY | OMHO 2| OIprOMED OMHO INK| T 9IPOME T OMdo OME | o
MY MHOX: MHOX| ‘SMH MHOX: MHOX MHOX | ‘2My MHOX MHOX | ‘LMY MHOX: MHOX | ‘MY MHOX: MHOX
....WEN.;.T_:@.W:N;m,.@.;m........m.?.\sm._@m..imm;m... IMHEME 8PHNHO | LE MY 8PFLNHD: LMH LAY CTELE N
‘OMH MHOX: MHOX| ‘SMH MHOX: MHOX MHOX | ‘ZMH MHOX : MHOX | LMY MHOX ! MHOX | ‘OMH MHOX MHOX
....w?@.\sm@.w BT VT BT m..@%@% @.R%.m.@.m.%m@;mw.u&.;m_@m..o.;m_.._.\,.\a w.%@;m_.@:m. “IMEOME ot
‘IMH MHOX MHOX| ‘SMH MHOX: MHOX ‘OMH MHOX MHOX
....w?w.;m@.m..%m@.;m........m.ua;m_@m:%mgm... : ot
‘OMH MHOX : MHOX| ‘SMH MHOX: MHOX : :
: PEZAE T w?«\sm@.w.%m@.\sm.: CURRE S PIRHEME %+§>m®.m:§m_e§:. SHHHIED " VN T ot
‘OMH MHOX: MHOX MHOX MHOX ‘OMH MHOX: MHOX
: g+
‘OMH MHOX: MHOX
z+
MHOX
fREGAAE T BPHIMED T IMEPME T ebIMED T LG R " : Ly
MHOX MHOX OME MHOX MHOX
:..%é.\,.\,m@.m. TOMEOME T T 80F0ME B m.dim@sm " OME MG : %+o>>m©. ARG ARG %J.roa,m_.@:m. " OMGOME 0+
MY MHOX: MHOX| ‘SMH MHOX: MHOX MY MHOX: MHOX [‘2MH MHOX ! MHOX| ‘LM MHOX: MHOX | ‘OMY MHOX: MHOX
04 03 0a 00 og ov 06 08 oL 09 05 o 0e oz oL 00

483

APPENDIX

APPENDIX C Timing Diagrams in Flash Memory Mode

Each timing diagram for the external pins of the MB90F594A/MB90F594G/MB90F591A
in the Flash Memory mode is shown below.

B Data read by Read Access

Figure C-1 Timing Diagram for Read Access

1

High
impedance

T RC 1
1 U
AQ16 to AQO Address stable
X X
L tacc 1 I
1 1
' 1 1
CE ! 1 1
! f—toe—= : :‘_tDF_':
1 1 1
[| 1
OF L) ! Vi AN
' t ! 1 1 1
I OEH + | 1 !
1 1 1 1 1
WE £ ' ' ' \
! ! "ton
' L toe ! b—m
1
DQ7 10 DQO = High impedance _(< < < { Output defined i> >)—
1 1

B Write, Data polling, Read (WE control)

Figure C-2 Write Data polling Read (WE control)

Third bus cycle
AQ18 ' e ' Data polling ' '
ey A . X A

Le— tywo —=!

' '

tas | taH

1 ! 1
' = taHwL ' ! X .
__ T \ / \ f
OE ! ;I ! | T\ ! J
i :tWP. ! 1] : ! ' : I
, e ! " twHwH1 1 1ot o
| : 1 ' : ! | ! L
_ T
WE | ! | : : h ! 1
1 | et ! 1 1t !
Vtypp! ! ! OE, ! 1
Tlost ! ' - o
by o t 1 1 1 ' tpp!
! 1 'DH 1 | . 1
! | \ g
baz o "0) €D & —
N T
DQoO ! 1
tpg besd ! ¢
: 1 toH
1
5.0\ : h
1
e — oy
'otce

PA: Write address

PD: Write data

DQ7: Reverse output of write data
Doyr: Output of write data

484

APPENDIX C Timing Diagrams in Flash Memory Mode

Note:

The last two bus cycle sequences out of the four are described.

B Write Data Polling Read (CE control)

Figure C-3 Timing Diagram for Write Access (CE Control)

Third bus cycle
' ' Data polling

A , -
]
' twe o tas) tan
, w1 —__|
e /__:/_"_/
1
L 1 ! !
1 e tahwy !
1
N 1
oF Y . ! _/—
il : tcp. ! 1 ' '
1 e : : T twHWH1 |
| 1 1 4 J 1
— / —T\! |H' }_\ 1) —
CE 1 \ \ 1 1
1 | — 1
e N ' topH! \
1 lws 1 1 1
, 1 emlon .
| 1
50710 b0) o7 X %)
tpg !
50V

PA: Write address

PD: Write data

DQ7: Reverse output of write data
Doyr: Output of write data

Note:

The last two bus cycle sequences out of the four are described.

B Chip Erase/sector Erase Command Sequence

Figure C-4 Timing Diagram for Write Access (Chip Erasing/Sector Erasing)

v oTas 1 TaH
L e T e ——
AQ18:

P X 7AIAAAH X 75555, X 7AAAA X 7AAAAY X 75555, X SA" X)C

—

11 !
"/ .Y vV VvV v \V/
[
:"_’f ...ﬂ,!.
ites 'Y,
1 I—HI‘—tDH
DQ7 I I {) {) <) <)
o] \ AAy 554 _/ 80, N/ AAy \/ 55, \—/ 10,/30y
1]
DQo 11— L—tps
1
' 1
T
Vcc/ 1
[

485

APPENDIX

Note:

SA is the sector address at sector erasing. 7AAAAy (or 6AAAAL) is the address at chip

erasing.
B Data Polling
Figure C-5 Timing Diagram for Data Polling
v fon ,
" . :
}
CE 1 I \ /.f
1 ! : toE Ir‘—tDF—HI
1 1 < 1 |
T 1 1 1
o T\ .
1 ' 1
: toen : ! | : !
. ; S 1 '
WE 1 ! ! 1
J —tcg—! | : ! _
] ' 1
: | = High
] ! ! ' impedance
oz) V//5 pr— X - !
DQ7 DQ7 = Valid data
AN\Y Y
—_ 2 . L/,
1 twHwH1 OF ! !
' twHwH2 \ ! :
\ V7754 T D06 1o DA0 RS
DQ6 to DQO Y & DbostoDo- Invallld <’ 7
' toe
Note:

DQ?7 is valid data (The device terminates automatic operation).

H Toggle Bit
Figure C-6 Timing Diagram for Toggle Bit
&/ \
r—= toe
[} LH
WE T
1 1
r—toes—! |
_ 1 '
oF ;F_\ /_\ /_\ /_\ /)
. "
Lo
Data (DQ7 to DQO))—{ DQ6 = Toggle I—— DQ6 = Toggle 34 006 - Stop toggling I o \ic)=
/)
T
Note:

DQ6 stops toggling (The device terminates automatic operation).

486

APPENDIX C Timing Diagrams in Flash Memory Mode

B RY/BY Timing During Writing/erasing

Figure C-7 Timing Diagram for Output of RY/BY Signal during Writing/Erasing

e\ /

_..: Rising edge of last write pulse
1

1

RY/BY

1]
tgusy

H RST and RY/BY timing

Figure C-8 Timing Diagram for Output of RY/BY Signal at Hardware Reset

e\ /

487

APPENDIX

B Enable Sector Protect/verify Sector Protect

Figure C-9 Enable Sector Protect/Verify Sector Protect

AQ18 to AQ9 X SA, X sA,

AQ8, AQ2, and AQ1 X (AQ8, AQ2, AQ1) = (0, 1, 0)

MDO 12Vammmed ==y

1
1
1
1
MD2 12¥ 1 : \
[V A——
T 1 X
1 | !
t
_ Yyt 't VLHT&‘_»:
OE 1 1
I 1
— 7 Nn__ /
1 L |
1 1
WE ! v twep !
1T 1
1 1
1 XI: :/ 1
\ h ' :
CE , ' togsp 1 |
)u\ tosp ! I /—
A 1
DQ7 to DQO :
:)
: N—/
1
L top—n!

SA,: First sector address
SA,: Next sector address

B Temporary Sector Protect Cancellation

Figure C-10 Temporary Sector Protect Cancellation

P A 5V

2Veammaeenn- v

MD1 5 V el |

EE —_/ T\

i \ \+/
1
Le——ty 17T ——sd=——Write/erase command —_—
RY/W sequence

i

488

APPENDIX D List of MB90590 Interrupt Vectors

APPENDIX D List of MB90590 Interrupt Vectors

The interrupt vector table to be referenced for interrupt processing is allocated to
FFFCO004 to FFFFFFy in the memory area and also used for software interrupts.

B List of MB90590 Interrupt Vectors
Table D-1 "MB90590 Interrupt Vectors" lists the interrupt vectors for the MB90590 series.

Table D-1 MB90590 Interrupt Vectors

Software Vector Vector Vector Mode Interrupt Hardware interrupt
interrupt address L | address M | address H register No.
instruction

INT O FFFFECH FFFFEDH FFFFEEH Unused #0 None

INT 7 FFFFEOH FFFFE14 FFFFE2, Unused #7 None

INT 8 FFFFDCH FFFFDDy FFFFDEH FFFFDF #8 (RESET vector)

INT 9 FFFFD8y FFFFD9y FFFFDAH Unused #9 ROM correction

INT 10 FFFFD4y FFFFD5y FFFFD6y Unused #10 <Exception>

INT 11 FFFFDOy FFFFD14 FFFFD2y Unused #11 Timebase timer

INT 12 FFFFCCy FFFFCDy FFFFCEH Unused #12 External interrupt
(INTO to INT7)

INT 13 FFFFC8y FFFFC9y4 FFFFCAH Unused #13 CAN 0 RX

INT 14 FFFFC4y FFFFC5y FFFFCéy Unused #14 CAN 0 TX/NS

INT 15 FFFFCOy FFFFC14 FFFFC24 Unused #15 CAN 1 RX

INT 16 FFFFBCH FFFFBDy FFFFBEH Unused #16 CAN 1 TX/NS

INT 17 FFFFB8y4 FFFFB9y FFFFBAH Unused #17 PPG 0/1

INT 18 FFFFB4y FFFFB5y FFFFB6K Unused #18 PPG 2/3

INT 19 FFFFBOy FFFFB14 FFFFB2, Unused #19 PPG 4/5

INT 20 FFFFACH FFFFADy FFFFAEH Unused #20 PPG 6/7

INT 21 FFFFA8y FFFFA9y FFFFAAL Unused #21 PPG 8/9

INT 22 FFFFA4y FFFFA5, FFFFA6 Unused #22 PPG A/B

INT 23 FFFFAOy FFFFA14 FFFFA2, Unused #23 16-bit reload timer 0

INT 24 FFFF9OCy FFFFODy FFFFOEL Unused #24 16-bit reload timer 1

INT 25 FFFF984 FFFF99 FFFFOA, Unused #25 Input capture 0/1

489

APPENDIX

Table D-1 MB90590 Interrupt Vectors (Continued)

Software Vector Vector Vector Mode Interrupt Hardware interrupt
interrupt address L | address M | address H register No.
instruction

INT 26 FFFF94y FFFF95, FFFF96y Unused #26 Output compare 0/1
INT 27 FFFF9OH FFFF91H FFFF92H Unused #27 Input capture 2/3
INT 28 FFFF8CH FFFF8Dy FFFF8EH Unused #28 Output compare 2/3
INT 29 FFFF88y FFFF89y4 FFFF8AHL Unused #29 Input capture 4/5
INT 30 FFFF84y FFFF85y FFFF86H Unused #30 Output compare 4/5
INT 31 FFFF80y FFFF81y FFFF824 Unused #31 A/D converter
INT 32 FFFF7Cq FFFF7Dy FFFF7EL Unused #32 I/O timer/Watch timer
INT 33 FFFF78 FFFF79y FFFF7Ay4 Unused #33 Serial 110
INT 34 FFFF74y FFFF75y FFFF764 Unused #34 Sound generator
INT 35 FFFF704 FFFF714 FFFF72y Unused #35 UART 0 RX
INT 36 FFFF6CH FFFF6Dy FFFF6EL Unused #36 UART 0 TX
INT 37 FFFF68 FFFF69 FFFF6AHL Unused #37 UART 1 RX
INT 38 FFFF64y FFFF654 FFFF66y Unused #38 UART 1 TX
INT 39 FFFF60H FFFF614 FFFF624 Unused #39 UART 2 RX
INT 40 FFFF5CH FFFF5Dy FFFF5EL Unused #40 UART 2 TX
INT 41 FFFF58y FFFF59y FFFF5AL Unused #41 Flash Memory
INT 42 FFFF54y FFFF55y FFFF564 Unused #42 Delayed interrupt
INT 43 FFFF504 FFFF51y FFFF524 Unused #43 None

INT 254 FFFCO04 FFFCO54 FFFCO064 Unused #254 None

INT 255 FFFCO0y FFFCO1H FFFCO024 Unused #255 None

490

APPENDIX D List of MB90590 Interrupt Vectors

H Interrupt Causes, Interrupt Vectors, and Interrupt Control Registers

Table D-2 "Interrupt Causes, Interrupt Vectors, and Interrupt Control Registers" summarizes the
relationships among the interrupt causes, interrupt vectors, and interrupt control registers of the
MB90590 series.

Table D-2 Interrupt Causes, Interrupt Vectors, and Interrupt Control Registers

) Interrupt vector Interrupt control
Interrupt cause If:lle(:f’ register
Number Address Number Address

Reset N #08 FFFFDCh — —
INT9 instruction N #09 FFFFD8Y — —
Exception N #10 FFFFD4y — —
Timebase timer N #11 FFFFDOy
External interrupt (INTO Y1 #12 FFFFCCH ICROO | 0000BOH
to INT7)
CAN 0 RX N #13 FFFFC8y

ICRO1 0000B1H
CAN 0 TX/NS N #14 FFFFC4y
CAN 1 RX N #15 FFFFCOy

ICR02 0000B2y
CAN 1 TX/NS N #16 FFFFBCy
PPG 0/1 N #17 FFFFB8y

ICRO3 0000B34
PPG 2/3 N #18 FFFFB4y
PPG 4/5 N #19 FFFFBOy

ICRO4 0000B4y
PPG 6/7 N #20 FFFFACH
PPG 8/9 N #21 FFFFA84

ICR0O5 0000B5y
PPG A/B N #22 FFFFA4y
16-bit reload timer 0 Y1 #23 FFFFAOy

ICRO6 0000B6y
16-bit reload timer 1 Y1 #24 FFFFOCH
Input capture 0/1 Y1 #25 FFFF98y

ICRO7 0000B74
Output compare 0/1 Y1 #26 FFFF94y
Input capture 2/3 Y1 #27 FFFF90y

ICRO8 0000B8y
Output compare 2/3 Y1 #28 FFFF8Cy
Input capture 4/5 Y1 #29 FFFF88y

ICRO9 0000B9y
Output compare 4/5 Y1 #30 FFFF844
A/D converter Y1 #31 FFFF80y

ICR10 0000BAK{
I/0 timer/Watch timer N #32 FFFF7Cy
Serial I/O Y1 #33 FFFF78y

ICR11 0000BBy
Sound generator N 34 FFFF74

491

APPENDIX

492

Table D-2 Interrupt Causes, Interrupt Vectors, and Interrupt Control Registers

Interrupt control

2 Interrupt vector .
Interrupt cause E:IIleS register
Number Address Number Address
UART 0 RX Y2 35 FFFF704
ICR12 0000BCH
UART 0 TX Y1 36 FFFF6CH
UART 1 RX Y2 37 FFFF684
ICR13 0000BDy
UART 1 TX Y1 38 FFFF644
UART 2 RX Y2 39 FFFF604
ICR14 0000BER
UART 2 TX Y1 40 FFFF5CH
Flash memory N 41 FFFF58y
ICR15 0000BFy
Delayed interrupt N 42 FFFF54y

Y1: An EI20S interrupt clear signal or EI?OS register read access clears the interrupt

request flag.

Y2: An EI?OS interrupt clear signal or EI2OS register read access clears the interrupt

request flag. A stop request is issued.

N: An EI?0S interrupt clear signal does not clear the interrupt request flag.

Note:

For a peripheral module having two interrupt causes for one interrupt number, an EI20S

interrupt clear signal clears both interrupt request flags.

When EI?0S ends, an EI?0S clear signal is sent to every interrupt flag assigned to each

interrupt number.

EI20S is activated when one of two interrupts assigned to an interrupt control register (ICR)

is caused while EI20S is enabled.

This means that an EI?OS descriptor that should
essentially be specific to each interrupt cause is shared by two interrupts. Therefore, while

one interrupt is enabled, the other interrupt must be disabled.

INDEX

INDEX

The index follows on the next page.
This is listed in alphabetic order.

493

INDEX

Index
Numerics
16-bit free-running timer..........ccccoiviieiiiiieene 126
16-bit free-running timer block diagram................ 129
16-bit free-running timer operation....................... 134
16-bit free-running timer timingccccoceeeees 135
16-bit I/O timer, block diagram ofc..ccceveeee. 127
16-bit reload timer (in internal clock mode), input pin
function of ..o 160
16-bit reload timer (with event count function), outline
OF e 152
16-bit reload timer registerccccceveeiiiiiiiiinnnen. 154
16-bit reload timer, block diagram of.................... 153
16-bit reload timer, internal clock operation of 159
16-bit reload timer, output pin function of............. 162
16-bit reload timer, underflow operation of........... 161
16-bit timer register (TMR)/16-bit reload register
(TMRLR), register layout ofcccceenn.e 158
24-bit operand specificationc.ccceeevccvvvieieennnn. 23
2M-bit flash memory feature..........ccccccoeviiieeennnnn 364
8/16-bit PPG hardware, initial value of................. 190
8/16-bit PPG, function ofccccciiiiiicene, 174
8/16-bit PPG, selecting count clock for 187
A
A/D converter, block diagram of..........ccccceeeeennee 206
acceptance filter, settingcccccevviiieeiiiiiine s 323
acceptance filteringccccoeveei i 319
acceptance mask registers 0 and 1 (AMRO and
AMBT) L 308
acceptance mask select register (AMSR) 306
accumMUIAtOr (A)coveeiceeieeeeiiee e 30
ACHVALION ... 123
address field, effectiveccccceevviiiennnnn. 429, 444
address generation type........ccccceeeerivieeiiniiee e 21
address match detection function, block diagram of

address match detection function, operation of ... 355
address match detection function, system

configuration example ofcccceeeiiineen. 356
AAAIrESSING...uuuereeieieeee e 428
addressing, direCl..........oovviiiiiiiieeee e 430
addressing, indirect ... 435
amplitude data register...........cccceeeeeeiiiiiiiiiiiieeee, 347
analog input enable register.........cccccoovviiiiiieeenn. 205

494

B
bank addressing type.....cccccevveiiiiiiiiiiieeee s 24
bank select prefiX......cooccceeeeeee e 38
bit timing register (BTR)ccccoevoiiiiiiiiieeiieees 291
bit timing, setting.........ccccce 323
block diagram............ceeeeeeiiiiiiii s 5, 83
buffer address pointer (BAP)ccooooeriiiiiiiieenee 63
bus mode setting bit.........ccccooeiiiiiiiiii 104
bus operation stop (HALT = 0), condition for canceling
... 287
bus operation stop (HALT = 1), state during........ 287
bus operation stop (HALT=1), condition for setting
... 287
BVAL bit, caution for disabling message buffers by
... 331
C
calculating execution cycle count.............c...c....... 442
CAN controller, block diagram ofccceeueee. 273
CAN controller, canceling transmission request from
... 316
CAN controller, completing transmission of......... 317
CAN controller, feature ofocccviiviiininineen. 272
CAN controller, reception flowchart of 322
CAN controller, starting transmission of............... 316
CAN controller, transmission flowchart of 317
CE CONIOl .o 485
chip erase/sector erase command sequence....... 485
CLK asynchronous baud rateccccccvvvveeenn. 239
CLK synchronous baud rateccoeeeuvvvnneennn.. 239
clock generator, Note ONcocoiiiiiiiiiiiiiiiiiee, 74
clock selection register (CKSCR)......ccccoccveveernnen. 87
clock selection, status transition of 98
command sequence table............ccccceeviiieieiinnen, 372
common register bank prefix (CMR)..........c.ccc....... 39
compare registers 0 and 1 being used, output
waveform sample when............cccoceeeeneee 141
compare registers, output waveform sample with two
... 142
condition code register (CCR).......ccccceevvvvieeeeninnen. 32
CONtINUOUS MOUE.......coceiiiiiiiieieeee e 216
continuous mode, starting EIPOS in..................... 221
control status register.........ccccccvvviiiiiiiennenn. 131, 146
control status register (ADCS0)c.covcveveerrunenn. 208
control status register (ADCS1)coceevieriiiennns 211

control status register (CSR)........ccccceeveeriieeennnn. 284
control status register (FMCS), flash memory 370
conversion data protection.............c.ccceeeeeeeeeeeeeees 225
counter operation stateccceeeeiiiieeiiiiieenn, 163
CPU memory space, outline ofccccccceeeevevnnnnnen. 21
cycle count, execution........c.ccceeeeeee e 441
D
data counter (DCT) ..ccocveviiiieiiiee e 62
data frame and remote frame, processing for
reception Ofeeveveeiii i 320
data Polling......cccceiiiiieeiee e 486
data polling flag (DQ7) ...coevueriiiiiiiiieeeee e 376
data register.......ccvveiiieiiei e 130
data register x (x =010 15) (DTRX) ...cevvvverruvrnennn. 314
data registers (ADCR1 and ADCRO) 214
decrement grade register........ccccoceeeeeeiniiiiiiinnnes 348
delayed interrupt cause issuance/cancellation
register (DIRR).....ccoovviiiiiiieee e 71
delayed interrupt OCCUITeNncCecccoeeeeiiveeeeenne 72
delayed interrupt, block diagram of...........ccccceeeee 70
direct addresSSiNg......ceeeeieiieriiiiiiiieeeeee e 430
DIV A, Ri and DIVW A, RWi instruction, precautions
foruse of ..o 41
DIV A, RiinStruCtioncceeveviiiiiiiiiiiiieeee e 41
DIV A, Ri instructions without precaution............... 42
DIVW A, RWiinstructioncccooovviviiieiiiiiiiiieeees 41
DIVW A, RWi instructions without precaution 42
DLC register x (x = 0 to 15) (DLCRX).......cc.cceuuueen. 313
DTP operation..........cccceeeiiiiieeei e 199
DTP request, switching between external interrupt
AN .t 200
DTP/external interrupt, note on using 201
E
effective address fieldcccooevvvveeeennnnnnn. 429, 444
EI2OS 0peration fOWc.ceeeerereeereeesreresnes 65
EI20S status register (ISCS)cocvvvereereenen. 64
EI20S, conversion USING ceeeeeeeiiee e 218
enable sector protect/verify sector protect........... 488
€rasing ChiP....ueeeeeeiiiie e 388
erasing flash Memory........ccccoveiiiiiiiieeeees 364
€rasing SECIONcvvviiiiiiiiiiiieeee e 389
erasing sector in flash memoryccccoeceeennee 389
example of program patch processing................. 357
execution cycle count...........ccoveccivciiiiiiiineeee e 441
execution cycle count, calculating...............cc....... 442
extended intelligent I/O service (EIP0S) 45, 60

extended intelligent I/O service descriptor (ISD).... 62

INDEX

extended serial I/O interface, interrupt function of

... 269
external CloCK..........ooooiiiiiii 242
external event counter..........ccccceeveeieeiiiiiiiiieeeeenn. 160
external interrupt operation............ccccooeeviiieeennne 198
external interrupt request...........oovvveiiiiiiiiiiiiieeenn, 200
external shift clock mode..........cccoocviiiiiiieneenee 263
F
FZMC-16LX instruction list.............ccccevuevuererennne, 448
flag change disable prefix (NCC).......ccceevcvveeerennnen. 39
flash memory control signal............cccccoevivierennnne 368
flash memory modeccoviieiiiiieiieee e 368
flash memory register.......ccoccvceiiiiieie i 365
flash memory write/erase, detailed explanation of

... 384
flash memory, block diagram of entire.................. 366
flash memory, writing t0.......ccccceeiiviiiii e 386

flash microcomputer programmer (power supplied
from programmer), example of minimum
€oONNECHON 10 ... 412

flash microcomputer programmer (user power supply
used), example of minimum connection to

... 410
frame format, setting........ccccooieeiiii s 323
frequency data register........ccooceeiiiiiiiiiiiens 346
G
general-purpose registerccocovveieiie e, 29
H
hardware interruptccoo oo 44,53
hardware interrupt operationcccccceeeeeiiiiineennn. 54
hardware interrupt, occurrence and release of....... 55
hardware interrupt, structure ofccccveeeveenennn. 53
hardware sequence flagccccoveiieeiiniieene e, 374
hardware standby mode, releasingc.c.cceueee... 95
hardware standby mode, transition to 95
I
7@ N 44T T o SRR 416
[/O PO 108
1/O port register........oovi i 109
I/O register address pointer (I0A)cccceevceeeeennnes 63
ID register x (x = 010 15) (IDRX)....cceriivereriieeanen. 311
IDE register (IDER)......cccuveieiiiiiieeeniieee e 295
indirect addreSSiNgceeeeveereriiiiiiirrieeeee e e e 435
INPUL CAPTUIEeeeeeeiiiiee e 144
input capture (2 channels per one module).......... 127

INDEX

input capture block diagramcccoeeveeeeeninnenn. 145
input capture data registercccccceveeeiiininns 146
input capture fetch timing, sample of 148
input capture input tiMING ..., 149
input data register (UIDR) and output data register
(UODRY) ..t 235
input iMpedance.............ooeveveeeeeee e 205
iNPUt-OULPUL CIrCUIL......ceeiiiiieiiiiieee e 12
instruction map, structure of...........cccccvvveeeeiiinns 462
instruction presentation item and symbol, description
OF e 445
INSErUCiON tYPe ..ooviiiiie i, 427
intelligent 1/O service (EIZOS) function and interrupt
... 152
intermittent CPU operation............cccccccviveeeeeneeennn. 96
internal and external clock ..., 242
internal shift clock mode........c..occeviiiiienieiiineen. 263
Interrupt cause, interrupt vector, and interrupt control
FEQISTOr e 491
interrupt control registercccoocieiiiiiienie e, 491
interrupt control register (ICR).......cccoooveeiiiienennnn. 48
interrupt disable instructionccoovvviiiiiiiinnnnnn. 40
iNterrupt floOW........oooii e 51
interrupt level mask register (ILM)..........ccccevveeeenn. 34
interrupt Vectorcccceeveieiiiieee 47,491
interrupt, 8/16-bit PPGccooviiieieee e, 189
interrupt, intelligent 1/O service (EIZOS) function and
... 152
interrupt/DTP enable register.........ccooveveeiirnnnnen. 196
interrupt/DTP source register.........cccoccveevereeennen. 196
interval interrupt function.............oocccviiieeennecn, 117
L
last event indicator register (LEIR).........cccceeeee. 288
layout of rate and data register (URD) 236
lower-power control circuit, outline of.................... 82
low-power consumption mode, setting................. 324
low-power mode control register..........ccccoevvveeeenne 84
low-power mode control register (LPMCR) 85
low-power mode control register access, note of...90
low-power mode operation............ccceviveeeeiiiieeeeenne 89
M
machine clock, initializing............cccccoieeieenns 97
main clock and PLL clock, switching between 97
MB90590 interrupt vector, list ofccccoeeiiini. 489

MB90F594A/MB90F594G/MB90F591A/MB9O0F591G
serial programming connection, basic
configuration ofcccoeviiiiiiiiiii e, 402

496

MEMOrY aCCESS MOUE........uueeeiiriieieeeeiiiee e 102
MEMOIY SPACE MAP veeeeeeeeeeeeeeeeeeeeeeeeeereeeeeneeennnnnnnnns 22
memory space, multi-byte data allocation in.......... 26
message buffer ... 310
message buffer (data register), list of 281
message buffer (DLC register and data register), list

OF e 279
message buffer (ID register), list of...........c.....c.... 276

message buffer (x), procedure for reception by... 327
message buffer (x), procedure for transmission by

... 325
message buffer valid register (BVALR)................ 294
MOode data.........oooieiiiiiiiee e 104
[TeTe L= o o S 103
multi-byte data, accessingcccccveviiveeerinineenn. 26
multi-level message buffer, setting configuration of

... 329
multiple interrupt ... 57
N
negative clock operationccccceveiiiiienininnnen. 270
(0]
operation, NOTE ON........uvviiieieiicccceeiee e, 70
oscillating clock frequencycoccceeeieiienecenee 405
oscillation stabilization wait time, setting.......... 94, 95
OUtPUL COMPArE.....ccceeeeeeeeeeeeeeee e 136
output compare (2 channels per one module) 126
output compare block diagram...........ccccceeeennnen 136
output compare register........ccccceeveeeiiiiiiiineneeennn. 137
output compare register 0, clearing counter upon

match with..........ccooiiis 135
output compare timingcccceeevvieeeeeniiieee e, 142
output compare, control status register of............ 138
output data register (UODR).......ccccccevviienerennnnen. 235
overflow, clearing counter byccccoceeieeinnnen. 134
P
package dimensSioNcceeeveiiiiiiiiiiiiieieeee e 7
PACSR....o e 353
PADRO and PADRTccviiiiiiiee e 353
Parity Dit ... 244
PIN @SSIgNMENT ... 6
PIN FUNCHON......oeiiiiii e 8
PLL clock and main clock , switching between...... 97
port data register.........cccccevveeeiiei i 110
port direction register..........ccccevviieeeiiiiiee e, 111
PPGO operation mode control register (PPGCO)

... 178

PPGO, 1 clock select register (PPGO01)................ 182
PPG1 operation mode control register (PPGC1)
... 180
PrefiX COAE ...t 40
prefix code, cONSECUtiVEceeeeieiiiiiiiiiiiiieeee. 40
prefix instruction ... 40
prefix instruction, restriction on interrupt disable
instruction andccccceviiiiiiiiiiiiiie e 40
processor status (PS)cccceveiiieniiiie e 32
program address detection control status register
(PACSR) ...t 353
program address detection register (PADRO and
PADRT)...ciiiiee e 353
program counter (PC)cccooceiriieniiiiieeniee e 35
program patch processing, example of................ 357
PWM control O registercccooviiiiiiiieeeeeeeneenn, 336
PWM1&2 compare register.........ccoceveiniienennnnne. 337
PWM1&2 select registeroooecviiiiieeeieennennn, 338
R
rate and data register (URD) content................... 236
read access, data read by.......c.ccccoooiiiiiiien. 484
read state, setting flash memory to...................... 385
receive and transmit error counter (RTEC).......... 290
FECEIVE OVEITUN c.eiiiiiiiieiie e 320
receive overrun register (ROVRR)..........cccoeenueee. 304
received message, StOrNgccccceeeeeeeviiiivineeeeeenn. 319
reception complete register (RCR)cccocuveennee 302
reception interrupt enable register (RIER) 305
recommended Settingccccceeveeeiiii i 105
register bank ... 36
register bank pointer (RP).......ccccoviieiiiiiiienn e, 33
reload value and pulse width, relationship between 8/
16-DIit PPG ..., 186
remote frame receiving wait register (RFWTR) ... 298
remote frame, processing for reception of 320
remote request receiving register (RRTRR) 303
request level setting register..........cccccocceveennnnen. 197
FESET CAUSE ..ooviieeiiieeiieiee e 78
reset CauSe OCCUITENCE.......cueureurrrrremmnninaaaanaeeeeeens 75
reset input, register not initialized by...................... 76
reset release, operation after...........ccccovvvveeeeneen. 75
reset state, setting flash memory to.................... 385
ROM mirroring module, block diagram of 360
ROM mirroring register (ROMM)........cccceeveennnnenn. 361
RST and RY/BY timingcoevviieeiiiiiiee e, 487
RY/BY timing during writing/erasing 487

INDEX

S
sector configurationcccoccceeiiiie 366
sector erase timer flag (DQ3) ..cccoovvveeieiiiiieeennne 380
sector, restarting erasing of flash memory 392
sector, suspending erasing of flash memory........ 391
serial clock input frequencyccccceevvevcveevieeennn. 405
serial /0O operationcccccvieeveeeeeeeiiicines 262, 264
serial I/O prescaler (CDCR).........ccocevciieiieeninenne 261
serial mode control register (UMC) content.......... 231
serial mode control register (UMC), layout of 231
serial mode control status register (SMCS).......... 256
serial programming connection (power supplied from
programmer), example ofcccccevvieennnne 408
serial programming connection (user power supply
used), example Of c...coevveeriiiiiceee 406
serial shift data register (SDR)ccccccvviieieninenn. 260
set timing of six flagscoovviiiiiin e 245
SEHiNG ID ... 323
SINGIE MOAE ..o 216
single mode, starting EPOS inc.ccovvevuevenn... 219
sleep mode, releasingcceeeveeeeieiiniiiiiiieeeeee, 91
sleep mode, transition t0cccccceiiiiiiiiiiiiiee, 91
software interrupt..........coocciiee e, 45, 58
software interrupt operation..........cccccecoeecnnvinienne.n. 58
sound control register........coccveeeiiieeie e 344
sound generator registerccccceveeeeiiiieiiinnee, 343
sound generator, block diagram ofc......... 342
Special regiSterooiiiiiiiiiieee e 27
status flag during transmit and receive operation
... 249
status register (USR) contentcccooiieeennne 233
status register (USR) layoutcccociiiiinninne 233
stepping motor controller register.............cccueee. 335
stepping motor controller, block diagram of.......... 334
STOP MOTE ...ciiiiiiiee e 217
stop mode, releasingccccuvvveeieiiiie e, 93
stop mode, starting EIPOS inccoceveereeennne, 223
stop mode, transition t0 ... 93
SHUCTUNE ... 61
structure of instruction mapccccceeeveevcivvineennn. 462
sub-second register.......ccccooiiieiiniiee e 170
system stack pointer (SSP), user stack pointer (USP)
AN Lo 31
T
timebase counter ... 117
timebase timer control register (TBTC) 115
timebase timer, block diagram of..............ccocee. 114
timebase timer, outline ofcccoociiiiiiie 114

INDEX

timer control register ... 168
timer control register (TMSCR), register content of
... 155
timer control register (TMSCR), register layout of
... 155
timing limit exceeded flag (DQ5)cccveviverrenenne 379
toggle bit. ... 486
toggle bit flag (DQB)ccevrrcreeirreieree e 378
toggle bit-2 flag (DQ2)eevereeriieieiee e 382
tone count register ..o 349
transfer data format..........ccooooviiiiiiii 243
transition to low-power mode, note on 90
transmission cancel register (TCANR)................. 299
transmission complete register (TCR).................. 300
transmission interrupt enable register (TIER)....... 301
transmission request register (TREQR) 296
transmission RTR register (TRTRR)cc......... 297
type of iNStruction ..o 427

498

)
undefined instruction, exception due to execution of
... 68
undefined instruction, execution ofcccocueeee. 68
user pOWer SUPPIY..oooeveeeee e 406, 410
user stack pointer (USP) and system stack pointer
(SSP) e 31
w
watch mode, releasing........cccccveeeeeeeeeineiiiiiieeeeen. 92
watch mode, transition to..........cccceeeveieiiiiiiiiieeeeen. 92
watch timer register.........cccoviieiiii e 167
watch timer, block diagram ofccccceiiiennns 166
watch-dog counterccuvvieiieieie i 123
watch-dog StOpP......cooiiiiiiiii e 123
watch-dog timer block diagram..............cccvvvieeee. 120
watch-dog timer control register (WDTC) 121
WE CONEIOl ... 484
write data polling read (CE control)...................... 485
write, data polling, read (WE control)................... 484
writing to flash memorycccccoiiiiiinis 364

CM44-10105-4E

FUJITSU SEMICONDUCTOR * CONTROLLER MANUAL

F2MC-16LX

16-BIT MICROCONTROLLER
MB90590 Series
HARDWARE MANUAL

July 2002 the fourth edition

Published FUJITSU LIMITED Electronic Devices

Edited Technical Information Dept.

	TOP
	PREFACE
	CONTENTS
	CHAPTER 1 OVERVIEW
	1.1 Product Overview
	1.2 Features
	1.3 Block Diagram
	1.4 Pin Assignment
	1.5 Package Dimensions
	1.6 Pin Functions
	1.7 Input-Output Circuits
	1.8 Handling Device

	CHAPTER 2 CPU
	2.1 Outline of CPU
	2.2 Memory Space
	2.3 Memory Space Map
	2.4 Linear Addressing
	2.5 Bank Addressing Types
	2.6 Multi-byte Data in Memory Space
	2.7 Registers
	2.7.1 Accumulator (A)
	2.7.2 User Stack Pointer (USP) and System Stack Pointer (SSP)
	2.7.3 Processor Status (PS)
	2.7.4 Program Counter (PC)

	2.8 Register Bank
	2.9 Prefix Codes
	2.10 Interrupt Disable Instructions
	2.11 Precautions for Use of "DIV A, Ri" and "DIVW A, RWi" Instructions

	CHAPTER 3 INTERRUPTS
	3.1 Outline of Interrupts
	3.2 Interrupt Vector
	3.3 Interrupt Control Registers (ICR)
	3.4 Interrupt Flow
	3.5 Hardware Interrupts
	3.5.1 Hardware Interrupt Operation
	3.5.2 Occurrence and Release of Hardware Interrupt
	3.5.3 Multiple interrupts

	3.6 Software Interrupts
	3.7 Extended Intelligent I/O Service (EI2OS)
	3.7.1 Extended Intelligent I/O Service Descriptor (ISD)
	3.7.2 EI2OS Status Register (ISCS)

	3.8 Operation Flow of and Procedure for Using the Extended Intelligent I/O Service (EI2OS)
	3.9 Exceptions

	CHAPTER 4 DELAYED INTERRUPT
	4.1 Outline of Delayed Interrupt Module
	4.2 Delayed Interrupt Register
	4.3 Delayed Interrupt Operation

	CHAPTER 5 CLOCK AND RESET
	5.1 Clock Generator
	5.2 Reset Cause Occurrence
	5.3 Reset Causes

	CHAPTER 6 LOW-POWER CONTROL CIRCUIT
	6.1 Outline of Low-Power Control Circuit
	6.2 Registers
	6.2.1 Low-Power Mode Control Register (LPMCR)
	6.2.2 Clock Selection Register (CKSCR)

	6.3 Low-Power Mode Operation
	6.3.1 Sleep Mode
	6.3.2 Watch Mode
	6.3.3 Stop Mode
	6.3.4 Hardware Standby Mode

	6.4 Intermittent CPU Operation
	6.5 Switching Machine Clocks
	6.6 Status Transition of Clock Selection

	CHAPTER 7 MEMORY ACCESS MODES
	7.1 Outline of Memory Access Modes
	7.2 Mode Pins
	7.3 Mode Data

	CHAPTER 8 I/O PORTS
	8.1 I/O Ports
	8.2 I/O Port Registers
	8.2.1 Port Data Register
	8.2.2 Port Direction Register
	8.2.3 Analog Input Enable Register

	CHAPTER 9 TIMEBASE TIMER
	9.1 Outline of Timebase Timer
	9.2 Timebase Timer Control Register
	9.3 Operations of Timebase Timer

	CHAPTER 10 WATCH-DOG TIMER
	10.1 Outline of Watch-Dog Timer
	10.2 Watch-dog Timer Operation

	CHAPTER 11 16-BIT I/O TIMER
	11.1 Outline of 16-Bit I/O Timer
	11.2 16-Bit I/O Timer Registers
	11.3 16-bit Free-running Timer
	11.3.1 Data Register
	11.3.2 Control Status Register
	11.3.3 16-bit Free-running Timer Operation

	11.4 Output Compare
	11.4.1 Output Compare Register
	11.4.2 Control Status Register of Output Compare
	11.4.3 16-bit Output Compare Operation

	11.5 Input Capture
	11.5.1 Input Capture Register Details
	11.5.2 16-bit Input Capture Operation

	CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)
	12.1 Outline of 16-Bit Reload Timer (with Event Count Function)
	12.2 16-Bit Reload Timer (with Event Count Function)
	12.2.1 Timer Control Status Register (TMCSR)
	12.2.2 Register Layout of 16-bit Timer Register (TMR)/16-bit Reload Register (TMRLR)

	12.3 Internal Clock and External Clock Operations of 16-bit Reload Timer
	12.4 Underflow Operation of 16-bit Reload Timer
	12.5 Output Pin Functions of 16-bit Reload Timer
	12.6 Counter Operation State

	CHAPTER 13 WATCH TIMER
	13.1 Outline of Watch Timer
	13.2 Watch Timer Registers
	13.2.1 Timer Control Register
	13.2.2 Sub-second Registers
	13.2.3 Second/Minute/Hour Registers

	CHAPTER 14 8/16-BIT PPG
	14.1 Outline of 8/16-bit PPG
	14.2 Block Diagram of 8/16-bit PPG
	14.3 8/16-bit PPG Registers
	14.3.1 PPG0 Operation Mode Control Register (PPGC0)
	14.3.2 PPG1 Operation Mode Control Register (PPGC1)
	14.3.3 PPG0, 1 Output Control Register (PPG01)
	14.3.4 Reload Register (PRLL/PRLH)

	14.4 Operations of 8/16-bit PPG
	14.5 Selecting a Count Clock for 8/16-bit PPG
	14.6 Controlling Pin Output of 8/16-bit PPG Pulses
	14.7 8/16-bit PPG Interrupts
	14.8 Initial Values of 8/16-bit PPG Hardware

	CHAPTER 15 DTP/EXTERNAL INTERRUPTS
	15.1 Outline of DTP/External Interrupts
	15.2 DTP/External Interrupt Registers
	15.3 Operations of DTP/External Interrupts
	15.4 Switching between External Interrupt and DTP Requests
	15.5 Notes on Using DTP/External Interrupts

	CHAPTER 16 A/D Converter
	16.1 Features of A/D Converter
	16.2 Block Diagram of A/D Converter
	16.3 A/D Converter Registers
	16.3.1 Control Status Registers (ADCS0)
	16.3.2 Control Status Register (ADCS1)
	16.3.3 Data Registers (ADCR1 and ADCR0)

	16.4 Operations of A/D Converter
	16.5 Conversion Using EI2OS
	16.5.1 Starting EI2OS in Single Mode
	16.5.2 Starting EI2OS in Continuous Mode
	16.5.3 Starting EI2OS in Stop Mode

	16.6 Conversion Data Protection

	CHAPTER 17 UART0
	17.1 Feature of UART0
	17.2 UART Block Diagram
	17.3 UART Registers
	17.3.1 Serial Mode Control Register (UMC)
	17.3.2 Status Register (USR)
	17.3.3 Input Data Register (UIDR) and Output Data Register (UODR)
	17.3.4 Rate and Data Register (URD)

	17.4 UART0 Operation
	17.5 Baud Rate
	17.6 Internal and External Clock
	17.7 Transfer Data Format
	17.8 Parity Bit
	17.9 Interrupt Generation and Flag Set Timings
	17.9.1 Flag Set Timings for a Receive Operation (in Mode 0, 1, or 3)
	17.9.2 Flag Set Timings for a Receive Operation (in Mode 2)
	17.9.3 Flag Set Timings for a Transmit Operation
	17.9.4 Status Flag During Transmit and Receive Operation

	17.10 UART0 Application Example

	CHAPTER 18 SERIAL I/O
	18.1 Outline of Serial I/O
	18.2 Serial I/O Registers
	18.2.1 Serial Mode Control Status Register (SMCS)
	18.2.2 Serial Shift Data Register (SDR)

	18.3 Serial I/O Prescaler (CDCR)
	18.4 Serial I/O Operation
	18.4.1 Shift Clock
	18.4.2 Serial I/O Operation
	18.4.3 Shift Operation Start/Stop Timing
	18.4.4 Interrupt Function of the Extended Serial I/O Interface

	18.5 Negative Clock Operation

	CHAPTER 19 CAN CONTROLLER
	19.1 Features of CAN Controller
	19.2 Block Diagram of CAN Controller
	19.3 List of Overall Control Registers
	19.4 List of Message Buffers (ID Registers)
	19.5 List of Message Buffers (DLC Registers and Data Registers)
	19.6 Classifying the CAN Controller Registers
	19.6.1 Control Status Register (CSR)
	19.6.2 Bus Operation Stop Bit (HALT = 1)
	19.6.3 Last Event Indicator Register (LEIR)
	19.6.4 Receive and Transmit Error Counters (RTEC)
	19.6.5 Bit Timing Register (BTR)
	19.6.6 Message Buffer Valid Register (BVALR)
	19.6.7 IDE register (IDER)
	19.6.8 Transmission Request Register (TREQR)
	19.6.9 Transmission RTR Register (TRTRR)
	19.6.10 Remote Frame Receiving Wait Register (RFWTR)
	19.6.11 Transmission Cancel Register (TCANR)
	19.6.12 Transmission Complete Register (TCR)
	19.6.13 Transmission Interrupt Enable Register (TIER)
	19.6.14 Reception Complete Register (RCR)
	19.6.15 Remote Request Receiving Register (RRTRR)
	19.6.16 Receive Overrun Register (ROVRR)
	19.6.17 Reception Interrupt Enable Register (RIER)
	19.6.18 Acceptance Mask Select Register (AMSR)
	19.6.19 Acceptance Mask Registers 0 and 1 (AMR0 and AMR1)
	19.6.20 Message Buffers
	19.6.21 ID Register x (x = 0 to 15) (IDRx)
	19.6.22 DLC Register x (x = 0 to 15) (DLCRx)
	19.6.23 Data Register x (x = 0 to 15) (DTRx)

	19.7 Transmission of CAN Controller
	19.8 Reception of CAN Controller
	19.9 Reception Flowchart of CAN Controller
	19.10 How to Use the CAN Controller
	19.11 Procedure for Transmission by Message Buffer (x)
	19.12 Procedure for Reception by Message Buffer (x)
	19.13 Setting Configuration of Multi-level Message Buffer
	19.14 Precautions when Using CAN Controller

	CHAPTER 20 STEPPING MOTOR CONTROLLER
	20.1 Outline of Stepping Motor Controller
	20.2 Stepping Motor Controller Registers
	20.2.1 PWM Control 0 register
	20.2.2 PWM1&2 Compare Registers
	20.2.3 PWM1&2 Select Registers

	CHAPTER 21 SOUND GENERATOR
	21.1 Outline of Sound Generator
	21.2 Sound Generator Registers
	21.2.1 Sound Control Register
	21.2.2 Frequency Data register
	21.2.3 Amplitude Data Register
	21.2.4 Decrement Grade Register
	21.2.5 Tone Count Register

	CHAPTER 22 ADDRESS MATCH DETECTION FUNCTION
	22.1 Outline of the Address Match Detection Function
	22.2 Registers of the Address Match Detection Function
	22.3 Operation of the Address Match Detection Function
	22.4 Example of the Address Match Detection Function

	CHAPTER 23 ROM MIRRORING MODULE
	23.1 Outline of ROM Mirroring Module
	23.2 ROM Mirroring Register (ROMM)

	CHAPTER 24 2M/3M-BIT FLASH MEMORY
	24.1 Overview of 2M/3M-bit Flash Memory
	24.2 Block Diagram of the Entire Flash Memory and Sector Configuration of the Flash Memory
	24.3 Write/Erase Modes
	24.4 Flash Memory Control Status Register (FMCS)
	24.5 Starting the Flash Memory Automatic Algorithm
	24.6 Confirming the Automatic Algorithm Execution State
	24.6.1 Data Polling Flag (DQ7)
	24.6.2 Toggle Bit Flag (DQ6)
	24.6.3 Timing Limit Exceeded Flag (DQ5)
	24.6.4 Sector Erase Timer Flag (DQ3)
	24.6.5 Toggle Bit-2 Flag (DQ2)

	24.7 Detailed Explanation of Writing to and Erasing Flash Memory
	24.7.1 Setting The Read/Reset State
	24.7.2 Writing Data
	24.7.3 Erasing All Data (Erasing Chips)
	24.7.4 Erasing Optional Data (Erasing Sectors)
	24.7.5 Suspending Sector Erase
	24.7.6 Restarting Sector Erase

	24.8 Notes on using 2M-bit Flash Memory
	24.9 Reset Vector Address in Flash Memory
	24.10 Example of Programming 2M/3M-bit Flash Memory

	CHAPTER 25 EXAMPLES OF MB90F594A/MB90F594G/ MB90F591A/MB90F591G SERIAL PROGRAMMING CONNECTION
	25.1 Basic Configuration of MB90F594A/MB90F594G/ MB90F591A/MB90F591G Serial Programming Connection
	25.2 Example of Serial Programming Connection (User Power Supply Used)
	25.3 Example of Serial Programming Connection (Power Supplied from the Programmer)
	25.4 Example of Minimum Connection to the Flash Microcomputer Programmer (User Power Supply Used)
	25.5 Example of Minimum Connection to the Flash Microcomputer Programmer (Power Supplied from the...

	APPENDIX
	APPENDIX A I/O Maps
	APPENDIX B Instructions
	B.1 Instruction Types
	B.2 Addressing
	B.3 Direct Addressing
	B.4 Indirect Addressing
	B.5 Execution Cycle Count
	B.6 Effective Address Field
	B.7 How to Read the Instruction List
	B.8 F2MC-16LX Instruction List
	B.9 Instruction Map

	APPENDIX C Timing Diagrams in Flash Memory Mode
	APPENDIX D List of MB90590 Interrupt Vectors

	INDEX
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

