# **DS91M040** DS91M040 125 MHz Quad M-LVDS Transceiver Literature Number: SNLS283L #### DS91M040 ## 125 MHz Quad M-LVDS Transceiver #### **General Description** The DS91M040 is a quad M-LVDS transceiver designed for driving / receiving clock or data signals to / from up to four multipoint networks. M-LVDS (Multipoint LVDS) is a new family of bus interface devices based on LVDS technology specifically designed for multipoint and multidrop cable and backplane applications. It differs from standard LVDS in providing increased drive current to handle double terminations that are required in multipoint applications. Controlled transition times minimize reflections that are common in multipoint configurations due to unterminated stubs. M-LVDS devices also have a very large input common mode voltage range for additional noise margin in heavily loaded and noisy backplane environments. A single DS91M040 channel is a half-duplex transceiver that accepts LVTTL/LVCMOS signals at the driver inputs and converts them to differential M-LVDS signal levels. The receiver inputs accept low voltage differential signals (LVDS, BLVDS, M-LVDS, LVPECL and CML) and convert them to 3V LVCMOS signals. The DS91M040 supports both M-LVDS type 1 and type 2 receiver inputs. #### **Features** - DC 125 MHz / 250 Mbps low jitter, low skew, low power operation - Wide Input Common Mode Voltage Range allows up to ±1V of GND noise - Conforms to TIA/EIA-899 M-LVDS Standard - Pin selectable M-LVDS receiver type (1 or 2) - Controlled transition times (2.0 ns typ) minimize reflections - 8 kV ESD on M-LVDS I/O pins protects adjoining components - Flow-through pinout simplifies PCB layout - Small 5 mm x 5 mm LLP-32 space saving package #### **Applications** - Multidrop / Multipoint clock and data distribution - High-Speed, Low Power, Short-Reach alternative to TIA/EIA-485/422 - Clock distribution in AdvancedTCA (ATCA) and MicroTCA (μTCA, uTCA) backplanes #### **Typical Application** 30042202 # **Ordering Information** | Order Number | Receiver Input | Function | Package Type | |--------------|----------------|-------------------------|--------------| | DS91M040TSQ | Type 1 or 2 | Quad M-LVDS Transciever | LLP-32 | # **Connection Diagram** # **Logic Diagram** ## **Pin Descriptions** | Number | Name | I/O, Type | Description | |----------------|----------|-------------|-----------------------------------------------------------------------------------------------| | 1, 3, 5, 7 | RO | O, LVCMOS | Receiver output pin. | | 26, 28, 13, 15 | RE | I, LVCMOS | Receiver enable pin: When RE is high, the receiver is disabled. | | | | | When $\overline{\text{RE}}$ is low, the receiver is enabled. There is a 300 k $\Omega$ pullup | | | | | resistor on this pin. | | 25, 27, 14, 16 | DE | I, LVCMOS | Driver enable pin: When DE is low, the driver is disabled. When | | | | | DE is high, the driver is enabled. There is a 300 $k\Omega$ pulldown | | | | | resistor on this pin. | | 2, 4, 6, 8 | DI | I, LVCMOS | Driver input pin. | | 31, DAP | GND | Power | Ground pin and pad. | | 17, 19, 21, 23 | Α | I/O, M-LVDS | Non-inverting driver output pin/Non-inverting receiver input pin | | 18, 20, 22, 24 | В | I/O, M-LVDS | Inverting driver output pin/Inverting receiver input pin | | 11, 12, 29, 30 | $V_{DD}$ | Power | Power supply pin, +3.3V ± 0.3V | | 32 | FSEN1 | I, LVCMOS | Failsafe enable pin with a 300 k $\Omega$ pullup resistor. This pin | | | | | enables Type 2 receiver on inputs 0 and 2. | | | | | FSEN1 = L> Type 1 receiver inputs | | | | | FSEN1 = H> Type 2 receiver inputs | | 9 | FSEN2 | I, LVCMOS | Failsafe enable pin with a 300 k $\Omega$ pullup resistor. This pin | | | | | enables Type 2 receiver on inputs 1 and 3. | | | | | FSEN2 = L> Type 1 receiver inputs | | | | | FSEN2 = H> Type 2 receiver inputs | | 10 | MDE | I, LVCMOS | Master enable pin. When MDE is H, the device is powered up. | | | | | When MDE is L, the device overrides all other control and powers | | | | | down. | ### **M-LVDS Receiver Types** The EIA/TIA-899 M-LVDS standard specifies two different types of receiver input stages. A type 1 receiver has a conventional threshold that is centered at the midpoint of the input amplitude, $V_{\text{ID}}/2$ . A type 2 receiver has a built in offset that is 100mV greater then $V_{\text{ID}}/2$ . The type 2 receiver offset acts as a failsafe circuit where open or short circuits at the input will always result in the output stage being driven to a low logic state. FIGURE 1. M-LVDS Receiver Input Thresholds ## **Absolute Maximum Ratings** (Note 4) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. -0.3V to +4V Power Supply Voltage -0.3V to $(V_{DD} + 0.3V)$ LVCMOS Input Voltage LVCMOS Output Voltage -0.3V to $(V_{DD} + 0.3V)$ M-LVDS I/O Voltage -1.9V to +5.5V M-LVDS Output Short Circuit **Current Duration** Continuous +140°C Junction Temperature Storage Temperature Range -65°C to +150°C Lead Temperature Range Soldering (4 sec.) +260°C Maximum Package Power Dissipation @ +25°C SQ Package 3.91W 34 mW/°C above +25°C Derate SQ Package Package Thermal Resistance (4-Layer, 2 oz. Cu, JEDEC) $\theta_{JA}$ +29.4°C/W $\theta_{JC}$ +2.8°C/W | ESD Susceptibility | | |--------------------|--------| | HBM (Note 1) | ≥8 kV | | MM (Note 2) | ≥250V | | CDM (Note 3) | ≥1250V | Note 1: Human Body Model, applicable std. JESD22-A114C Note 2: Machine Model, applicable std. JESD22-A115-A Note 3: Field Induced Charge Device Model, applicable std. JESD22-C101-C # Recommended Operating Conditions | | Min | Тур | Max | Units | |--------------------------------------------|------|-----|----------|-------| | Supply Voltage, V <sub>DD</sub> | 3.0 | 3.3 | 3.6 | V | | Voltage at Any Bus Terminal | -1.4 | | +3.8 | V | | (Separate or Common-Mode) | | | | | | Differential Input Voltage V <sub>ID</sub> | | | 2.4 | V | | LVTTL Input Voltage High V <sub>IH</sub> | 2.0 | | $V_{DD}$ | V | | LVTTL Input Voltage Low $V_{\rm IL}$ | 0 | | 8.0 | V | | Operating Free Air | | | | | | Temperature T <sub>△</sub> | -40 | +25 | +85 | °C | ### DC Electrical Characteristics (Note 5, Note 6, Note 7, Note 9) Over recommended operating supply and temperature ranges unless otherwise specified. | Symbol | Parameter | Conditions | | Min | Тур | Max | Units | |-----------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|--------|--------------------|------|--------------------|-------| | M-LVDS D | river | | | • | | | | | IV <sub>AB</sub> I | Differential output voltage magnitude | $R_L = 50\Omega, C_L = 5 pF$ | | 480 | | 650 | mV | | ΔV <sub>AB</sub> | Change in differential output voltage magnitude between logic states | Figures 2, 4 | | -50 | 0 | +50 | mV | | V <sub>OS(SS)</sub> | Steady-state common-mode output voltage | $R_L = 50\Omega$ , $C_L = 5 pF$ | | 0.3 | 1.6 | 2.1 | V | | $ \Delta V_{OS(SS)} $ | Change in steady-state common-mode output voltage between logic states | Figures 2, 3 | | 0 | | +50 | mV | | V <sub>A(OC)</sub> | Maximum steady-state open-circuit output voltage | Figure 5 | | 0 | | 2.4 | V | | V <sub>B(OC)</sub> | Maximum steady-state open-circuit output voltage | | | 0 | | 2.4 | V | | V <sub>P(H)</sub> | Voltage overshoot, low-to-high level output (Note 12) | $R_L = 50\Omega$ , $C_L = 5pF$ , $C_D = 0.5 pF$<br>Figures 7, 8 | | | | 1.2V <sub>SS</sub> | ٧ | | V <sub>P(L)</sub> | Voltage overshoot, high-to-low level output (Note 12) | 3 | | -0.2V <sub>S</sub> | | | ٧ | | I <sub>IH</sub> | High-level input current (LVTTL inputs) | V <sub>IH</sub> = 3.6V | | -15 | | 15 | μA | | I <sub>IL</sub> | Low-level input current (LVTTL inputs) | V <sub>IL</sub> = 0.0V | | -15 | | 15 | μA | | V <sub>CL</sub> | Input Clamp Voltage (LVTTL inputs) | I <sub>IN</sub> = -18 mA | | -1.5 | | | V | | I <sub>os</sub> | Differential short-circuit output current (Note 8) | Figure 6 | | -43 | | 43 | mA | | M-LVDS R | eceiver | | | | | | | | V <sub>IT+</sub> | Positive-going differential input voltage threshold | See Function Tables | Type 1 | | 16 | 50 | mV | | | | | Type 2 | | 100 | 150 | mV | | $V_{IT-}$ | Negative-going differential input voltage threshold | See Function Tables | Type 1 | -50 | 20 | | mV | | | | Type 2 | | 50 | 94 | | mV | | $V_{OH}$ | High-level output voltage (LVTTL output) | I <sub>OH</sub> = -8mA | | 2.4 | 2.7 | | ٧ | | V <sub>OL</sub> | Low-level output voltage (LVTTL output) | I <sub>OL</sub> = 8mA | | | 0.28 | 0.4 | ٧ | | I <sub>OZ</sub> | TRI-STATE output current | V <sub>O</sub> = 0V or 3.6V | | -10 | | 10 | μA | | I <sub>OSR</sub> | Short-circuit receiver output current (LVTTL output) | $V_O = 0V$ | | | -50 | -90 | mA | | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |----------------------|-------------------------------------------------------------|---------------------------------------------------|-----|-----|-----|-------| | M-LVDS B | us (Input and Output) Pins | | | | | | | I <sub>A</sub> | Transceiver input/output current | $V_A = 3.8V, V_B = 1.2V$ | | | 32 | μΑ | | | | $V_A = 0V \text{ or } 2.4V, V_B = 1.2V$ | -20 | | +20 | μΑ | | | | $V_A = -1.4V, V_B = 1.2V$ | -32 | | | μA | | I <sub>B</sub> | Transceiver input/output current | $V_B = 3.8V, V_A = 1.2V$ | | | 32 | μA | | | | $V_B = 0V \text{ or } 2.4V, V_A = 1.2V$ | -20 | | +20 | μA | | | | $V_B = -1.4V, V_A = 1.2V$ | -32 | | | μΑ | | I <sub>AB</sub> | Transceiver input/output differential current $(I_A - I_B)$ | $V_{\Delta} = V_{B}, -1.4V \le V \le 3.8V$ | -4 | | +4 | μA | | I <sub>A(OFF)</sub> | Transceiver input/output power-off current | $V_A = 3.8V, V_B = 1.2V,$ | | | | | | A(OIT) | | DE = 0V | | | 32 | μA | | | | $0V \le V_{DD} \le 1.5V$ | | | | | | | | $V_A = 0V \text{ or } 2.4V, V_B = 1.2V,$ | | | | | | | | DE = 0V | -20 | | +20 | μA | | | | $0V \le V_{DD} \le 1.5V$ | | | | | | | | $V_A = -1.4V, V_B = 1.2V,$ | | | | | | | | DE = 0V | -32 | | | μΑ | | | | $0V \le V_{DD} \le 1.5V$ | | | | | | I <sub>B(OFF)</sub> | Transceiver input/output power-off current | $V_B = 3.8V, V_A = 1.2V,$ | | | | | | | | DE = 0V | | | 32 | μA | | | | $0V \le V_{DD} \le 1.5V$ | | | | | | | | $V_B = 0V \text{ or } 2.4V, V_A = 1.2V,$ | | | | | | | | DE = 0V | -20 | | +20 | μΑ | | | | $0V \le V_{DD} \le 1.5V$ | | | | | | | | $V_B = -1.4V, V_A = 1.2V,$ | | | | | | | | DE = 0V | -32 | | | μA | | | | 0V ≤ V <sub>DD</sub> ≤ 1.5V | | | | | | I <sub>AB(OFF)</sub> | Transceiver input/output power-off differential | $V_A = V_B, -1.4V \le V \le 3.8V,$ | | | | | | | current (I <sub>A(OFF)</sub> – I <sub>B(OFF)</sub> ) | DE = 0V | -4 | | +4 | μA | | | | $0V \le V_{DD} \le 1.5V$ | | | | | | C <sub>A</sub> | Transceiver input/output capacitance | V <sub>DD</sub> = OPEN | | 7.8 | | pF | | C <sub>B</sub> | Transceiver input/output capacitance | | | 7.8 | | pF | | C <sub>AB</sub> | Transceiver input/output differential capacitance | | | 3 | | pF | | $C_{A/B}$ | Transceiver input/output capacitance balance | | | 1 | | | | | (C <sub>A</sub> /C <sub>B</sub> ) | | | | | | | | CURRENT (V <sub>CC</sub> ) | | | _ | 1 _ | | | I <sub>CCD</sub> | Driver Supply Current | $R_L = 50\Omega$ , $DE = H$ , $\overline{RE} = H$ | | 67 | 75 | mA | | I <sub>CCZ</sub> | TRI-STATE Supply Current | $DE = L, \overline{RE} = H$ | | 22 | 26 | mA | | I <sub>CCR</sub> | Receiver Supply Current | $DE = L, \overline{RE} = L$ | | 32 | 38 | mA | | I <sub>CCPD</sub> | Power Down Supply Current | MDE = L | | 3 | 5 | mA | **Note 4:** "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions at which the device is functional and the device should not be operated beyond such conditions. **Note 5:** The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed. Note 6: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except $V_{OD}$ and $\Delta V_{OD}$ . Note 7: Typical values represent most likely parametric norms for $V_{DD} = +3.3V$ and $T_A = +25^{\circ}C$ , and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed. $\textbf{Note 8:} \ \text{Output short circuit current } (I_{OS}) \ \text{is specified as magnitude only, minus sign indicates direction only.}$ Note 9: $\mathbf{C}_{\mathrm{L}}$ includes fixture capacitance and $\mathbf{C}_{\mathrm{D}}$ includes probe capacitance. ### **Switching Characteristics** (Note 10, Note 11, Note 17) Over recommended operating supply and temperature ranges unless otherwise specified. | Symbol | Parameter | Conditions | Min | Тур | Max | Units | |--------------------|-------------------------------------------------------------------|----------------------------------------|----------|------|------|-------| | DRIVER AC | SPECIFICATIONS | | | | | | | t <sub>PLH</sub> | Differential Propagation Delay Low to High | $R_L = 50\Omega, C_L = 5 pF,$ | 1.5 | 3.3 | 5.5 | ns | | t <sub>PHL</sub> | Differential Propagation Delay High to Low | C <sub>D</sub> = 0.5 pF | 1.5 | 3.3 | 5.5 | ns | | t <sub>SKD1</sub> | Pulse Skew (Note 12, Note 13) | Figures 7, 8 | | 30 | 125 | ps | | t <sub>SKD2</sub> | Channel-to-Channel Skew ( <i>Note 12</i> , <i>Note 14</i> ) | | | 100 | 200 | ps | | t <sub>SKD3</sub> | Part-to-Part Skew (Note 12, Note 15) | | | 0.8 | 1.6 | ns | | t <sub>SKD4</sub> | Part-to-Part Skew (Note 12, Note 16) | | | | 4 | ns | | t <sub>TLH</sub> | Rise Time (Note 12) | | 1.2 | 2.0 | 3.0 | ns | | t <sub>THL</sub> | Fall Time (Note 12) | 7 | 1.2 | 2.0 | 3.0 | ns | | t <sub>PZH</sub> | Enable Time (Z to Active High) | $R_L = 50\Omega, C_L = 5 pF,$ | | 7.5 | 11.5 | ns | | t <sub>PZL</sub> | Enable Time (Z to Active Low) | C <sub>D</sub> = 0.5 pF | | 8.0 | 11.5 | ns | | t <sub>PLZ</sub> | Disable Time (Active Low to Z) | Figures 9, 10 | | 7.0 | 11.5 | ns | | t <sub>PHZ</sub> | Disable Time (Active High to Z) | 7 | | 7.0 | 11.5 | ns | | | C SPECIFICATIONS | | <u> </u> | ļ. | Į | | | t <sub>PLH</sub> | Propagation Delay Low to High | C <sub>L</sub> = 15 pF | 1.5 | 3.0 | 4.5 | ns | | t <sub>PHL</sub> | Propagation Delay High to Low | Figures 11, 12, 13 | 1.5 | 3.1 | 4.5 | ns | | t <sub>SKD1A</sub> | Pulse Skew (Receiver Type 1)<br>(Note 12, Note 13) | | | 55 | 325 | ps | | t <sub>SKD1B</sub> | Pulse Skew (Receiver Type 2)<br>(Note 12, Note 13) | | | 475 | 800 | ps | | t <sub>SKD2</sub> | Channel-to-Channel Skew ( <i>Note 12</i> , <i>Note 14</i> ) | | | 60 | 300 | ps | | t <sub>SKD3</sub> | Part-to-Part Skew (Note 12, Note 15) | 7 | | 0.6 | 1.2 | ns | | t <sub>SKD4</sub> | Part-to-Part Skew (Note 16) | 7 | | | 3 | ns | | t <sub>TLH</sub> | Rise Time (Note 12) | 7 | 0.3 | 1.1 | 1.6 | ns | | t <sub>THL</sub> | Fall Time (Note 12) | _ | 0.3 | 0.65 | 1.6 | ns | | t <sub>PZH</sub> | Enable Time (Z to Active High) | $R_1 = 500\Omega, C_1 = 15 \text{ pF}$ | | 3 | 5.5 | ns | | t <sub>PZL</sub> | Enable Time (Z to Active Low) | Figures 14, 15 | | 3 | 5.5 | ns | | t <sub>PLZ</sub> | Disable Time (Active Low to Z) | 1 | | 3.5 | 5.5 | ns | | t <sub>PHZ</sub> | Disable Time (Active High to Z) | 7 | | 3.5 | 5.5 | ns | | | SPECIFICATIONS | 1 | | ! | ! | | | t <sub>WKUP</sub> | Wake Up Time ( <i>Note 12</i> ) (Master Device Enable (MDE) time) | | | | 500 | ms | | f <sub>MAX</sub> | Maximum Operating Frequency (Note 12) | | 125 | | | MHz | Note 10: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed. Note 11: Typical values represent most likely parametric norms for $V_{DD} = +3.3V$ and $T_A = +25$ °C, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed. Note 12: Specification is guaranteed by characterization and is not tested in production. Note 13: t<sub>SKD1</sub>, lt<sub>PLHD</sub> – t<sub>PHLD</sub>I, Pulse Skew, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel. $\textbf{Note 14:} \ \textbf{t}_{SKD2}, \textbf{Channel-to-Channel Skew, is the difference in propagation delay} \ \textbf{(}\textbf{t}_{PLHD} \text{ or } \textbf{t}_{PHLD} \text{)} \ \text{among all output channels}.$ Note 15: t<sub>SKD3</sub>, Part-to-Part Skew, is defined as the difference between the minimum and maximum differential propagation delays. This specification applies to devices at the same V<sub>DD</sub> and within 5°C of each other within the operating temperature range. Note 16: $t_{SKD4}$ , Part-to-Part Skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices over recommended operating temperature and voltage ranges, and across process distribution. $t_{SKD4}$ is defined as IMax – MinI differential propagation delay. Note 17: $C_L$ includes fixture capacitance and $C_D$ includes probe capacitance. Note 18: Measured on a clock edge with a histogram and an acummulation of 1500 histogram hits. Input stimulus jitter is subracted geometrically. ## **Test Circuits and Waveforms** **FIGURE 2. Differential Driver Test Circuit** FIGURE 3. Differential Driver Waveforms FIGURE 4. Differential Driver Full Load Test Circuit FIGURE 5. Differential Driver DC Open Test Circuit FIGURE 6. Differential Driver Short-Circuit Test Circuit FIGURE 7. Driver Propagation Delay and Transition Time Test Circuit FIGURE 8. Driver Propagation Delays and Transition Time Waveforms FIGURE 9. Driver TRI-STATE Delay Test Circuit FIGURE 10. Driver TRI-STATE Delay Waveforms 9 FIGURE 11. Receiver Propagation Delay and Transition Time Test Circuit FIGURE 12. Type 1 Receiver Propagation Delay and Transition Time Waveforms FIGURE 13. Type 2 Receiver Propagation Delay and Transition Time Waveforms FIGURE 14. Receiver TRI-STATE Delay Test Circuit FIGURE 15. Receiver TRI-STATE Delay Waveforms ## **Truth Tables** #### **DS91M040 Transmitting** | Inputs | | | Out | puts | |--------|----|----|-----|------| | RE | DE | DI | В | Α | | Х | Н | Н | L | Н | | Х | Н | L | Н | L | | X | L | Х | Z | Z | #### DS91M040 as Type 1 Receiving | | | Output | | | |------|----|--------|----------|-----------| | FSEN | RE | DE | A – B | RO | | L | L | Х | ≥ +0.05V | Н | | L | L | X | ≤ -0.05V | L | | L | L | X | -0.05V | Undefined | | | | | ≤ A-B ≤ | | | | | | +0.05V | | | L | Ι | Х | X | Z | X — Don't care condition Z — High impedance state #### DS91M040 as Type 2 Receiving | | Output | | | | |------|--------|----|----------|-----------| | FSEN | RE | DE | A – B | RO | | Н | L | Х | ≥ +0.15V | Н | | Н | L | X | ≤ +0.05V | L | | Н | L | X | +0.05V | Undefined | | | | | ≤ A-B ≤ | | | | | | +0.15V | | | Н | Н | Х | X | Z | #### DS91M040 Type 1 Receiver Input Threshold Test Voltages | Applied Voltages | | Resulting Differential Input<br>Voltage | Resulting Common-Mode<br>Input Voltage | Receiver<br>Output | | |---------------------------------|---------|-----------------------------------------|----------------------------------------|--------------------|--| | V <sub>IA</sub> V <sub>IB</sub> | | $V_{ID}$ | V <sub>ICM</sub> | R | | | 2.400V | 0.000V | 2.400V | 1.200V | Н | | | 0.000V | 2.400V | -2.400V | 1.200V | L | | | 3.800V | 3.750V | 0.050V | 3.775V | Н | | | 3.750V | 3.800V | -0.050V | 3.775V | L | | | -1.350V | -1.400V | 0.050V | -1.375V | Н | | | -1.400V | -1.350V | -0.050V | -1.375V | L | | H — High Level L — Low Level #### DS91M040 Type 2 Receiver Input Threshold Test Voltages | Applied Voltages | | Resulting Differential Input<br>Voltage | Resulting Common-Mode<br>Input Voltage | Receiver<br>Output | |------------------|-----------------|-----------------------------------------|----------------------------------------|--------------------| | VIA | V <sub>IB</sub> | V <sub>ID</sub> | V <sub>IC</sub> | R | | 2.400V | 0.000V | 2.400V | 1.200V | Н | | 0.000V | 2.400V | -2.400V | 1.200V | L | | 3.800V | 3.650V | 0.150V | 3.725V | н | | 3.800V | 3.750V | 0.050V | 3.775V | L | | -1.250V | -1.400V | 0.150V | -1.325V | н | | -1.350V | -1.400V | 0.050V | −1.375V | L | H — High Level L — Low Level X — Don't care condition Z — High impedance state X — Don't care condition Z — High impedance state Output state assumes that the receiver is enabled $(\overline{RE} = L)$ Output state assumes that the receiver is enabled $(\overline{RE} = L)$ ## **Typical Performance Characteristics** Driver Rise Time as a Function of Temperature **Driver Fall Time as a Function of Temperature** Driver Output Signal Amplitude as a Function of Resistive Load Driver Propagation Delay (tPLHD) as a Function of Temperature Driver Propagation Delay (tPHLD) as a Function of Temperature Driver Power Supply Current as a Function of Frequency Receiver Power Supply Current as a Function of Frequency Receiver Propagation Delay (tPLHD) as a Function of Input Common Mode Voltage Receiver Propagation Delay (tPHLD) as a Function of Input Common Mode Voltage # Physical Dimensions inches (millimeters) unless otherwise noted Order Number DS91M040TSQ See NS package Number SQA32A (See AN-1187 for PCB Design and Assembly Recommendations) #### **Notes** For more National Semiconductor product information and proven design tools, visit the following Web sites at: | Products | | Design Support | | |--------------------------------|------------------------------|---------------------------------|--------------------------------| | Amplifiers | www.national.com/amplifiers | WEBENCH® Tools | www.national.com/webench | | Audio | www.national.com/audio | App Notes | www.national.com/appnotes | | Clock and Timing | www.national.com/timing | Reference Designs | www.national.com/refdesigns | | Data Converters | www.national.com/adc | Samples | www.national.com/samples | | Interface | www.national.com/interface | Eval Boards | www.national.com/evalboards | | LVDS | www.national.com/lvds | Packaging | www.national.com/packaging | | Power Management | www.national.com/power | Green Compliance | www.national.com/quality/green | | Switching Regulators | www.national.com/switchers | Distributors | www.national.com/contacts | | LDOs | www.national.com/ldo | Quality and Reliability | www.national.com/quality | | LED Lighting | www.national.com/led | Feedback/Support | www.national.com/feedback | | Voltage Reference | www.national.com/vref | Design Made Easy | www.national.com/easy | | PowerWise® Solutions | www.national.com/powerwise | Solutions | www.national.com/solutions | | Serial Digital Interface (SDI) | www.national.com/sdi | Mil/Aero | www.national.com/milaero | | Temperature Sensors | www.national.com/tempsensors | SolarMagic™ | www.national.com/solarmagic | | Wireless (PLL/VCO) | www.national.com/wireless | PowerWise® Design<br>University | www.national.com/training | THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS. EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders. Copyright© 2009 National Semiconductor Corporation For the most current product information visit us at www.national.com National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | Applications | |----------|--------------| |----------|--------------| Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID <u>www.ti-rfid.com</u> OMAP Mobile Processors <u>www.ti.com/omap</u> Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated