Upgrading the ATLAS Level-1 Calorimeter Trigger using Topological Information

Yuri ERMOLINE, Michigan State University

TWEPP 2010, Aachen, Germany, 20-24 September 2010

On behalf of the ATLAS TDAQ Collaboration

ATLAS TDAQ Collaboration, The ATLAS Trigger/DAQ Authorlist, version 4.0, ATL-DAQ-PUB-2010-002, CERN, Geneva, 14 May 2010 http://cdsweb.cern.ch/record/1265604

Outline

- Current L1 Calorimeter trigger system, limitations
- New hardware for topology functionality (CMM++)
 - Functionalities
 - Algorithms
 - Development scenario
- Recent R&D
 - Backplane data transfer rates
 - Latency survey
 - Optical link studies
 - Technology demonstrator
 - Firmware studies
- Summary/conclusions

Limitations of current system

- Based only on counts of objects
- Jets and em/tau clusters identified in different subsystems
 - But clusters can also look like jets
 - No way to distinguish when this happens
- Possible solution
 - Include Jet/cluster positions in real time data path
 - Use this information to add topology-based algorithms at Level 1

Ideas on limited short-term topological upgrade

- The current L1Calo will remain mainly unchanged for next few years
 - Remain compatible with rest of running system.
 - Hardware components already 5 7 years old, not much freedom for modifications
- MC simulations indicate some performance degradation of multiplicity-only algorithms at 1-2E34
- A promising solution: drive backplane at higher speed to add ROI positions to the real-time data path, enabling new algorithms based on event topology

Modifications required for limited upgrade

- Modify firmware in processor modules
- Increase data transfer rate over crate backplane (40 Mbit/s -> 160 Mbit/s)
- Replace merging modules with upgraded hardware
- Eventual Topology Processor (TP)

Current CMM (Common Merger Module)

 "Crate" FPGA on each CMM receives backplane data, produces crate/wide sums of indentified features

MICHIGAN STATE

- "System" FPGA collects crate results over LVDS cables, sends trigger output to CTP.
- On L1A, data and ROI readout via G-Links
- All CMMs identical
 - Several different firmware versions
 - Xilinx SystemAce

CMM++ functionality

- Complete backward compatibility
- Feature collection from upgraded CPM/JEM modules and transmitted to toplogy processor
- Supports multiple optical tx and/or rx modules
 - TX: duplicate outputs to multiple processor nodes
 - RX: Data merging for ev. internal topology processing without TP

Topology algorithms study

Examples using local topology information (single calo quadrant)

- Identify spatial overlap between e/tau clusters and jets
- Use local jet Et sum to estimate energy of overlapping e/tau object
 Requires jet energies to be added to real time data path
- Examples using global topology
 - Non back-to-back jets
 - Rapidity gaps in eta and/or phi
 - Invariant transverse mass calculations
 - Jet sphericity
- Initial studies look promising
- N.B. CMM++ only option may limit global topology capabilities

CMM++ development scenario

- Hardware design with all present interfaces plus optical links for the new topological processor, one large FPGA
- Adapt current CMM firmware to the new hardware for initial use, incrementally add new functionality
- Upgrade CPM/JEM and CMM++ modules firmware for new data format and 160 Mb/s data transfer
- Two topology processing scenarios:
 - Separate TP processor crate
 - One CMM++ in system provides limited topological functionality if final TP not yet available

JEM-CMM backplane data transfer

- Each CPM/JEM is sourcing 50 lines into two mergers at 40 Mbit/s
- Scope shots of JEM signals over the longest backplane track

320 Mbits, CMOS 2.5V

BLT

MICHIGAN STATE

Backplane tester (BLT) module was built:

- Data from all CPM/JEM modules
 - \Rightarrow 400 lines, individually deskewed
 - ⇒ Forwarded clock, sink terminated
- Eye > 3.7ns @ 160Mb/s
- Bit error rate tests on backplane data

- CPM tests demonstrate160 Mbit/s with reasonable signal quality
 - Test board alows to probe backplane signals in CMM slot
 - Termination on CMM side improves signal quality,
 - ⇒ but increases dissipated power in CMM slot (a problem if done inside FPGA)
 - Also tested signals with termination on source only

MICHIGAN STATE

■ Latency measurements in the complete L1Calo system:

- Detailed breakdown:
- Part of total L1 latency!

	2006		USA15		3150	
CALORIMETER TRIGGER	ns	BCs	ns	BCs	ns	BCs
PreProcessor						
Preprocessor to CP LVDS bit-stream	350.0					
Cabling to CPM (11.4 m * 5 nsec/m)	57.5	16.3				16.0
СРМ						
CPM logic	269.0					
Backplane	2.5	10.9				13.0
СММ						
Crate+ system CMM logic	141.0	5.6				7.0
Total PPM-CPM-CMM	820.0	32.8	900.0	36.0		36.0
PreProcessor						
Preprocessor to JEP LVDS bit-stream	375.0					
Cabling to JEM (10.2 m * 5 nsec/m)	57.5	17.3				17.0
JEM						
JEM logic	257.0					
Backplane	2.5	10.4				7.0
СММ						
Crate+ system CMM logic	141.0	5.6				8.0
Total PPM-JEM-CMM	833.0	33.3				32.0

10 Gb ethernet-based optical link

Worst case TTC signal Tester PCB TTC Decoder Clock Clock RX PCB TX PCB FPGA FPGA 3 x 10GbE 3 x 10GbE SNAP12 SNAP12 10 m optical fiber

Link board prototype

- Inexpensive 30 Gbit/s link using commercial components
 - Xilinx Spartan-3 FPGA
 - 10Gb Enet transceiver TLK3114SC (XAUI)
 - SNAP12 Tx/Rx pair
- Can run links synchronously with LHC clock
 - Send alignment characters in some LHC bunch gaps for link maintenance
- Can drive multi/Gbit links with TTCrx clock outputs
 - Reduce jitter with LMK03033CISQ clock conditioner

Technology demonstrator project

- GOLD (Generic Optical Link Demonstrator)
- New, state-of-art new FPGAs
 - Xilinx XC6VLXxxxT
 - Xilinx XC6VHX380T
 ⇒ 640 I/O, 48 GTX, 24 GTH
- Optical links (6.4-10 Gbit/s)
 - SNAP12 and
 - Avago optolinks
 - Optical backplane connectors
- ATCA
 - Backplane/form factor
 - Power distribution and local conversion

400

+75

35

+4

+1

40

+66 = 541 pins

+4 = 44 pins

2 = 42 pins

8 + 8 pins

635

- Available I/O (not including transceivers): 640 pins
- Real-time data path:
 - Backplane input:
 - Cables (3 x 25):
 - CTP output (2 x 33):
- Control and timing:
 - VME-- from CPLD
 - TTC (L1A, BCR, deskew 1+2)
 - Crystal clock
 - clrpe, reset, reset_dll, plybk_en
- Readout:
 - Glink data outputs 2 x 20
 - DAV pins
- Indicator LEDs :
- TOTAL: 635 / 640
 - Note: this is <u>after removing</u> spare TTL and test ports!

Aim: port Jet CMM firmware to target Virtex 6 device:

MICHIGAN STATE

- Use existing VHDL with minimal changes
- Update architecture-specific features
- Estimate I/O requirements
- Realistic user constraint file (UCF) for ISE timing simulation
- Results so far
 - Existing VHDL ports easily, uses ~2% of available resources
 - By emulating Glink in FPGA, can keep I/O count below 600/640 pins
 - ⇒ Not including dedicated multi-Gbit links

Summary/conclusions

- Want to improve existing L1Calo system
 - Maintain trigger quality up to 1-2E34 luminocity
 - Provide best possible algorithms for ATLAS
- Add topological trigger capability
 - Minimal changes to existing system
 - Low impact on other ATLAS components
- R&D projects/studies well under way
 - Backplane data transfer rates
 - Technology demonstrator
 - Firmware studies
- Looks promising...