CMX status

Yuri Ermoline for the MSU group

Mini-TDAQ week, CERN, 9-11 July 2012,

CMX: CMM upgrade

CMX replaces CMM in L1Calo crate

- Modern hardware implementation
- JEM/CPM to CMX (backplane) rate 40 →160Mbs
 - ⇒ New data format
- Crate CMX to System CMX (cables) rate 40 →160Mbs
- Cluster information sent to TP (Topological Processor) over optical links (12-fiber ribbons @6.4Gbps)
- Optional partial TP capability included
 - Standalone TP is now planned
 - Some TP capability still desired for CMX platform (flexibility)

CMX overview: modular design (Base + TP)

Most cards assembled without TP functionality

CMX development activities

Engineering @MSU + CMX input module firmware @CERN

- Philippe, Dan, Chip and Wojtek
- Real-time data path layout backplane to FPGA signal routing
- Input module firmware currently under test data capture at 160 MBit/s
- Prototype blank card mechanical testing
- VME/ACE/TTC (VAT) interface @CERN
 - Yuri + Seth Caughron (recently joined the efforts from software side)
 - 6U VME test card PCB ready for testing in July
- Power budget estimate
 - Measurements using 6U VME test card
 - \Rightarrow Estimation vs. real consumption

CMX development schedule (still valid)

MICHIGAN STATE

- 2011: Project and engineering specifications
 - CMX project Preliminary Design Review (Done)
 - Preliminary design studies (Ongoing)
 - Test rig installed, checked out at MSU (postponed until 2012)
- 2012: Prototype design and fabrication
 - CMX schematics and PCB layout (ongoing)
 - CMM firmware ported on CMX
 - Prototype fabrication (fall 2012)
 - Basic tests for backward compatibility in test rig at MSU
 - Production Readiness Review
- 2013: Prototype testing/installation/commissioning, final fabrication
 - Full prototype tests in test rig at CERN
 - CMX firmware development and test
 - Test in the L1Calo system during shutdown
 - Fabricate and assemble full set of CMX modules
- 2014: Final commissioning in the L1Calo trigger system in USA15

CERN running Jan 1, 2011 – Jan 1, 2013 **Engineering Specification-Philippe** Jul 1, 2011 – Feb 1, 2012 LHC shutdown Jan 1, 2013 – Jul 1, 2014 Depth Testing/Installation/Commissioning Feb 1, 2013 - Aug 1, 2013 layout-Dan+Philippe Final fabrication, powerup/functionality tests Feb 1, 2012 – Oct 1, 2012 Aug 1, 2013 - Jan 1, 2014 CMX Project Specification prototype fabrication Depth Testing/Installation/Commissioning Jan 1, 2011 – Jun 1, 2011 Oct 1, 2012 – Feb 1, 2013 Jan 1, 2014 – Jul 1, 2014 time 2011 2012 2013 2014 2015

2012

- Prototype design and fabrication
 - CMX schematics and PCB layout (ongoing)
 - ⇒ Dual FPGA design: Base-CMX & TP-CMX (RAL Feb 2012)
 - ⇒ Real-time data path layout (ongoing)
 - ⇒ Input module FW is currently under development and test
 - ⇒ 6U VME test card for VME/ACE/TTC (VAT) interface (PCB ready for testing)
 - ⇒ Power budget estimate

CMM firmware ported on CMX

- ⇒ Most of CMM data path work completed at Stockholm (Pawel & Sam)
 - needs to be adapted to final package choice
- ⇒ Firmware for VAT interface (2 CPLD + TTC FPGA) to Spartan-3AN (Yuri)

Prototype fabrication

- ⇒ mechanical testing (blank card, backplane connectors, front panel tests)
 - □ Will happen before real prototype board, but not urgent yet.
- Basic tests for backward compatibility in test rig at MSU
- Production Readiness Review (L1Calo/TDAQ) Fall/Winter
 - ⇒ After the prototype is tested final check before going into full production

Design challenges:

- 25 backplane traces @ 160 MHz from 16 sources to CMX
- Absolute and Relative skew of incoming Processor input signals
 - \Rightarrow Max skew within signals from one source processor module (2 ns ?)
 - ⇒ Unequal length of the traces (source/backplane/destination)
 - ⇒ There will only be a small difference in trace length on CMX, and it will likely not be the dominant source of skew among signals coming from a given processor module
- 3 possible schemes:
 - forwarded coded clock/parity + 24 data (96 bits)
 - forwarded clock + 24 data (96 bits including 1 to 4 parity bits)
 - parity + 24 data (96 bits, no forwarded clock global clock from TTC)
- Available resources in FPGA:
 - Data phase correction in IODELAY (per trace) up to 2.4ns
 - Clock phase adjustment in MMCM (per source)
 - Clock capable pins, clock buffers and clock distribution networks

Forwarded coded clock/parity + 24 data

Data/clock/parity need to be brought in alignment at the FPGA inputs

- PCB/backplane traces length difference compensated by IODELAY
 - ⇒ Implemented in BLT, software based procedure, done once
- Coded clock/parity signal used as clock and as data
 - Need MMCM (located far from IO pins) to recover clock
 - ⇒ 16 MMCMs out of 18 used, Extra clock delay
 - "Hand-made" FPGA layout
- Need to re-synchronize to CMX internal clock
- 96 data bits available

- Implemented in BLT
 - Tested with up to 8 sources in the crate
- Data/clock/parity need to be brought in alignment at the FPGA inputs
 - PCB/backplane traces length difference compensated by IODELAY
 - ⇒ software based procedure, done once
- Forwarded clock used directly in IO blocks
 - No need for MMCMs
 - Regional clock distribution networks
- Need to re-synchronize to CMX internal clock
- Penalty: < 96 data bits available</p>
 - 1 to 4 parity bits
- $\blacksquare \rightarrow$ Defined as preferable data transfer scheme
 - PCB/FPGA layout should be able to support all 3 schemes
 - ⇒ regional clock input for all input signals from same CPM/JEM
 - ⇒ cleanest/most direct access possible to one MMCM if needed

Test card for VME/ACE/TTC (VAT) part of CMX

ACE FPGA I2C CPLD VME CPLD

- Redesign HW with new components
 - Fit design into single device
- 6U VME test card:
 - HW/SW implementation
 - Main FPGA re-configuration
 - To be merged into CMX design
- PCB is ready for testing, next:
 - VME/ACE/TTC Firmware for VAT and Virtex6 FPGAs:
 - ⇒ Specify new VME register model
 - Test Stand and software

Conclusions

- Original schedule is maintained
 - With minor adjustments
- Prototype effort proceeding in parallel on 3 fronts according to plan
 - Providing necessary information for technical decisions
 - \Rightarrow Increasing level of details
- Technical decisions are made
 - Upon agreement within L1 Calorimeter Trigger
 - ⇒ CMX Base/TP functionality, FPGA choice, link speed, data transfer scheme
- General outlook is optimistic