CMX Status and Schedule

R. Brock, D. Bao Ta, D. Edmunds, Y. Ermoline, W. Fedorko, P. Laurens, J. Linnemann, Pawel Plucinski, Samuel Silverstein

> Level-1 Calorimeter Trigger Joint Meeting CERN, 8 July 2013

Summary

CMX scope and functionalities

- Phase-I accelerated item, a.k.a. Phase-0
- CMX Prototype RR (07.03.13) outcome
 - responded to review report, all actions addressed, production go-ahead
- CMX development schedule v2.3
 - Last version from 15.05.2013
- Efforts
 - @MSU CMX PCB design
 - ⇒ Raymond Brock, Dan Edmunds, Philippe Laurens
 - @CERN VAT card testing and MSU test rig software
 - ⇒ Yuri Ermoline, Duc Bao Ta
 - @UBC and @Stockholm CMX FW
 - ⇒ Wojtek Fedorko, Pawel Plucinski, Samuel Silverstein
- Next steps

- The CMX functionalities:
 - Be able to perform all tasks currently handled by any CMM.
 - Be able to perform these CMM tasks at higher input and output line rates.
 - Provide more computing power to support additional thresholds.
 - Provide new functionality to send a raw or processed copy of its inputs out optically.

CMX Prototype RR (07.03.13) outcome

- Compatibility with existing L1Calo crate Infrastructure
 - Avago MiniPOD component height clearance verified
 - Front-panel access to the CompactFlash card
- Board Functionality
 - TTCDec outputs required by the BF FPGA were specified by the panel
 - CANbus monitoring includes currents
 - All single-ended processor input signals on CMX use 60 ohms traces
 - Optional Front-panel access to a TTCdec clock

Interfaces with connected systems

- Adding 40.000 MHz crystal clock for G-Link readout to L1Calo RODs
- CMX will provide all necessary hardware support for S-link so that the optional TP could act as its own ROD for DAQ and ROI readout. Note that extensive new FW would be required.
- CMX now only has 2x MTP feedthroughs instead of 5x
 - ⇒ Nearly always: 2x MPT feedthroughs sufficient for 2x 12-fiber ribbons from the BF function
 - ⇒ Exception: 1x 24-fiber output from the BF function and 1x 36-fiber input to the TP function

■ 2013: Prototype fabrication and testing at MSU

- Apr-Jun: Final trace layout
- Jul: Prototype fabrication
- Aug-Sep: Initial testing @MSU
- Oct-Dec: Testing at MSU and system and integration testing @CERN
- Dec: Patterns available for L1Topo
- 2014: Full prototype testing at CERN / final fabrication
 - Jan: Full-crate test at 160 MHz operation
 - Jan: Production Readiness Review (PRR)
 - Feb: Final fabrication
 - Mar: QC production boards @MSU
 - Apr-Jun: Installation and commissioning @CERN
 - Sep-Dec: Test in the USA15 L1Calo system during shutdown

_

full crate test preparation/executior	n -Note D							CMX Schedule 2 2013.05.15	2.3
Apr 1, 2013 – Dec 31, 2013									
high speed backplane signals in			Patterns a Dec 1, 201	vailable fo 3	or L1Top	o -Note E			
				Production readiness review Jan 1, 2014 – Jan 31, 2014					
				testing in situ Jan 1, 2014 – Feb 28, 2014					
te		testing starting with prototypes				ypes			
Ju	Jul 15, 2013 – Aug 15, 2013			final fabrication					
	U -Note B September 30, 2013			Feb 1, 2014 – Feb 28, 2014					
Final trace layout	electrical testing	continued testing -	MSU			Mar 1, 20	014 – Mar 31, 20	14	
April 1, 2013 – June 30, 2013		Oct 1, 2013 – Dec 3 6 Gbs optical patte	1, 2013 rns				installation at	CERN	
test rig arriver	/ISU -Note A ne 30, 2013	system and integra	ntion testin	g @CERN	-Note C		April 1, 2014 –	April 30, 2014	
Protot	ype fabrication	Oct 1, 2013 – Dec 3 6 Gbs optical patte	1, 2013				April 1, 2014 –	July 1, 2014	
Jul 1, 2	2013 – Aug 1, 2013	Putter					installation/co	ommisioning	
New 1 2012 1-11 2012	C 1, 2012	Num 1 2012	1-1	2014	N. 1	2014) (1, 201)	4 L11 2014	

6/17

Highest priority critical project paths

- release of boards at CERN available to provide patterns for L1Topo
- a full-rack test of backplane signals at 160 MHz before a Production RR
- Following receipt of prototypes, testing will commence at MSU and then once electrical and power layout is confirmed, testing will then continue in both MSU and CERN test rigs.
- Notes:
 - A. The shipping of test rig components to MSU can happen at any time
 - B. Initial testing @MSU: power, clocks, configuration, VME access, slow speed I/O through front and back LVDS and the 400 backplane inputs
 - C. The system and integration testing will focus on 6 Gbps optical transmission. This is both a hardware and a firmware test and should be focused initially on satisfying the needs of the L1Topo designers.
 - D. Full-crate test at 160 MHz operation is mandatory prior to a PRR
 - F. Final commissioning and in particular, the replacement of CMM cards with CMX and L1Topo cards requires a lot of coordination and planning.

CMX PCB design

- Trace layout has been underway for the whole CMX board and CMX prototype layout is almost coplete.
- Following receipt of prototypes, testing will commence at MSU and then once electrical and power layout is confirmed, testing will then continue in both MSU and CERN test rigs
 - The goal of the local MSU testing is to see that power supplies and clocks function as expected and that all 3 FPGAs can be configured and that VME read/write to registers works. Finally, once these milestones are accomplished, slow speed I/O through front and back LVDS and the 400 backplane inputs will be confirmed. At that point, boards will be released to CERN for parallel system and integration testing.
- Other news from MSU (next page):
 - Snapshot of the CAD screen (traces)
 - Snapshot of the top side view

Snapshot of the CAD screen (traces)

Snapshot of the top side view

DCS CANbus interface to CMX

Based on obsolete Fujitsu MB90F594 microcontroller

- ⇒ Proprietary micro-controller that was basically sold only to the automotive industry, was no "second source", was never a commodity part
- ⇒ Parts available from resellers for 20-50 times higher price, are often old, have not been stored properly, failed an incoming inspection at the OEM...

Deployment of a new Fujitsu microcontroller

- ⇒ Absence of a backward compatible devices for F2MC-16LX family
- ⇒ New-generation family of 16-bit processors 16FX exists with CAN interfaces
- ⇒ 16FX CPU uses all 16LX machine instructions
- ⇒ Need both HW and microcontroller FW modifications
- Backup option that may be considered
 - ⇒ Factorize DCS functionalities on CMX (analog IO, digital IO, CANbus IO)
 - ⇒ Route DCS functionalities on CMX with current microcontroller and all IO's via connectors for a (possible) daughter card
- Issue currently being investigated

Vat card testing

VME/ACE/TTC (VAT) test card for CMX

- ⇒ Parallel effort and study platform
- ⇒ Lessons and details are merged into CMX

Redesign of CMM with new components

- ⇒ Re-use of Ian and Uli VHDL code
- ⇒ Ancillary functions fit in single Support FPGA
- ⇒ FPGA configuration using JTAG connector and
- ⇒ configuration from CF card via System ACE
- ⇒ VME access to FPGA registers
- ⇒ VAT card operated from TTC clock
- ⇒ Access to TTCrx chip (TTCDec) via VME/I2C
- ⇒ Access to System ACE from VME
- MSU test rig HW and SW
 - CPM replaced by JEM as a data source
 - Duc take over Seth on test rig SW activities

- CMM software model cloned to CMX (Seth thanks to Murrough)
- MSU test rig is up at CERN
- VME read/writes from registers
- Basic tests of loading data and reading data into/from playback memories tried with CPM:
 - Available CPM has FW incompatible with L1Calo SW
 - Will be replaced by JEM
- Duc Bao Ta take over Seth on MSU test rig SW
 - Supplied with documentation left over by Seth
 - Will continue interaction with Murrough
 - First study on the L1Calo test rig in Bld.104

Online SW tasks for CMX (Murrough talk on 06.06.2013)

Efforts @UBC and @Stockholm – CMX FW (1)

Efforts @UBC and @Stockholm – CMX FW (2)

CMX firmware summary						
 Resource usage: Occupied Slices: 5.7k (6%) Slice LUTs: 11.5k (3%) Slice Registers: 11.4k (1%) RAMB18E1s: 58 (4%) BUFGs: 5/32 BUFRs: 16/72 						
 MMCMs: 3/18 Current preliminary latency estimate: Topo path: ~4 BC Counted from appearance of event's first word on backplane (~1BC) Includes serialization budget (½ time CMX parallel GTX interface → Topo parallel GTX interface (no fiber delay included)) CTP: ~7 BC Counted from appearance of event's first word on backplane (~1BC) Preliminary multiplicity adder latency estimate is 6BC 						
8 July 2013 W. Fedorko, P. Plucinski CMX firmware	3					

■ @MSU :

- CMX prototype PCB layout and production
- DCS issue investigation
- @CERN :
 - L1Calo DCS study
 - CMX test procedure description
 - VME interfaces for CMX FPGAs and VME registers map
 - MSU test rig SW for (test data generation JEM-CMX)
- @UBC and @Stockholm :
 - More work to be done...