

CMX Hardware Status

Chip Brock, Dan Edmunds, Philippe Laurens@MSU Yuri Ermoline, Duc Bao Ta @CERN Wojciech Fedorko @ UBC

> Michigan State University 25-Oct-2013

Outline

Review of CMX hardware project

□(Some) CMX hardware design features

Current hardware status

Overall project CMX HW/FW/SW

- Efforts in parallel on 5 fronts:
 - MSU CMX design
 - Raymond Brock, Dan Edmunds, Philippe Laurens
 - CERN VAT card, BSPT FPGA firmware, CANbus tests
 - Yuri Ermoline
 - CERN CMX software
 - Duc Bao Ta (previously Seth Caughron)
 - UBC BF FPGA firmware (I/O)
 - Wojtek Fedorko
 - Stockholm BF FPGA firmware (zero-suppression, thresholding, etc)
 - Pawel Plucinski, Samuel Silverstein

CMX is part of L1calo Phase 0 upgrade

CMX == L1Calo Trigger replacement for current Common Merger Module (CMM)
 Phase-I accelerated item a.k.a. Phase-0

MICHIGAN STATE

The CMX was designed to:

MICHIGAN STATE

UNIVERSITY

- 1. Be able to perform all tasks currently handled by any CMM.
- 2. Extend these CMM tasks to higher input and output line rates.
- 3. Offer more computing power for additional thresholds or algorithms using the extended input
- 4. Provide an output to L1topo and send a raw or processed copy of its inputs optically at 6.4Gb.
- 5. Provide optional functionality to perform Topological Processing on CMX platform if needed.

28-Oct-2013 5

Definition: Base-CMX functionality

Extended CMM functionality (Crate CMMs and System CMMs)

- Receive and process 400 JEM/CPM input signals (@4x CMM rate)
- All Crate CMXs send local summary to their System CMX through backplane connectors over LVDS cables (plan is @2x CMM rate)
- System CMXs form and send triggering information to CTP over LVDS cables (plan is no change from CMM rate)
- all CMXs send ROI and DAQ information over G-links (same as CMM)

Source of data for L1topo: send CMX inputs from JEMs or CPMs

- Using 2x Avago miniPOD optical transmitters and 12-fiber ribbons
- Some level of duplication is required (at least 2x copies)
- **One** 12-fiber ribbon @6.4Gbps sufficient for all raw input data
- But plan is to send zero-suppressed data on 6x fibers per CMX
 → optical patch panel required

Definition: **TP-CMX** functionality

- Limited **Topological Processing** capability **on CMX** platform
 - Receive optical inputs from some/all of the 12x CMXs using 3x Avago receivers for up to 36x input fibers
 - Run multiple Topological Algorithms
 - Send Topological Triggering Information to CTP
 - Able to act as its own ROD for DAQ and ROI readout
 → support both G-link and S-link

TP-CMX functionality was a backup plan requested in case L1topo would not be built, or availability was delayed.

The TP-CMX feature now unlikely to be used past the prototypes.

CMX Project Evolution

- Preliminary Design Review Stockholm (June 2011)
 - Initial Specification

MICHIGAN STATE

UNIVERSITY

- **Design Study** → Technical Workshop @RAL (Feb 2012) with decisions:
 - Use 2x separate FPGAs: Base-CMX and TP-CMX
 - Use Virtex 6 XC6VLX550T for both
 - 2x 12-fiber outputs from Base-CMX to l1topo
 - 3x 12-fiber inputs for TP-CMX functionality
- Prototype Design Review (March 2013) corrected assumptions, added requirements:
 - Use higher density MTP connectors
 - 5x MTP connectors were taking too much front panel \rightarrow 2x MTP connectors
 - Higher density if/where needed; production CMXs with only Base Function only need 2x 12-fiber outputs
 - now CF card accessed through front-panel
 - CANbus now required to also monitor power supply currents
 - Both LHC derived Deskew-1 and Deskew-2 clocks from TTCdec sent to both FPGAs
 - Separate fixed 40MHz clock required for for G-link readout (probably better is 120 MHz)
 - TP function needs to be able to act as its own ROD
 - Provide an additional 100MHz clock to FPGA serial links for S-link outputs
 - Instrument the receiver port of the SFP bays (need to use Base-CMX serial inputs)
 - Provide all TTCdec signals to TP-CMX FPGA
- Final Informal Prototype Review (Oct 2013) verified all needed functionality has been included

CMX connectivity

applies to electron, Tau, Energy or Jet data types

Crate CMX

Merger Cables From one of more Crate CMX

System CMX

□ All 12x CMXs in L1calo forward their inputs to L1topo

Only the 4x System CMXs send info to CTP

MICHIGAN STATE

Circuit Diagrams and design details available on the CMX website

http://www.pa.msu.edu/hep/atlas/l1calo/

http://www.pa.msu.edu/hep/atlas/l1calo/cmx/hardware/drawings/circuit_diagrams/ http://www.pa.msu.edu/hep/atlas/l1calo/cmx/hardware/drawings/block_diagrams/ http://www.pa.msu.edu/hep/atlas/l1calo/cmx/hardware/details/

MICHIGAN STATE

Challenge: backplane inputs

- 400x inputs, 60Ω Single-ended, @160 MBps
 - Limited tests done with BLT card
- Initial protocol requirement used a merged forwarded Clock/Parity
 - Now abandoned, but CMX remains compatible
 - implied complications for I/O pin assignment (MMCM usage)
- Initial goal was to route all 400 inputs straight under their FPGA pin with no extra via
 - Doable but not practical. Too many signal layers needed (12)
 - Board too thick, especially because of $9x 60 \Omega$ layers required.
- Compromise: a fraction of the 400 inputs have to switch layer
 - For their last < 2 cm and to \sim 50 Ω . Simulation says ok.
 - Now fewer trace layers (9), especially fewer 60Ω layers (5).
- Make use of Virtex 6 Select IO block features
 - IODELAY to help with relative skews among 25 signals from each input source
 - Provide external reference impedance (if $60 \ \Omega$ termination needed)
 - Provide external VREF (if default VCCO/2 turns out not to be optimal)

LVDS I/O

- 2.5V to 3.3V translator components and LVDS transceiver components used on CMX are specified well in excess of 160Mbps; used for Merger cables and for CTP output
- The 3x Merger cable ports can be independently controlled as Input or Output to help testing of a single CMX
- The 2x CTP cable ports can be independently controlled as Input or Output to help testing of a single CMX

Misc Safety, Backup, Testing Features

- Hardware Oversight Logic
 - Help prevent CMX from hanging VME- bus
 - Help prevent CMX from harming itself until configured
- Spare signals from BF and TP FPGA to BSPT FPGA
- Spare debug connector
 - 10 signals from each FPGA
- Front panel access to 2x signals, from any FPGA
- Separate crystals for DAQ&ROI output BF FPGA vs TP FPGA to support any combination of G-link or S-link protocol

CANbus Backup Feature

- CMX would like to use same CANbus uProcessor (and the same firmware) as CMM but MB90F594 is obsolete
 - Yuri found a promising source and is testing one sample
 - CMX Prototype will use these parts
 - Also added spare connectors to CMX layout as backup plan
 for a mezzanine

CMX Schedule

- **2013:** Prototype fabrication and testing
 - Mar: CMX Prototype Readiness Review
 - Apr-Oct: PCB design and layout
 - Oct-Nov: Prototype fabrication (2x boards with TP, 1x without, 1x with none)

now:

CHIGAN STATE

UNIVERSITY

 Bidding phase complete, Assembly house visited and selected.
 MSU PO about to be issued, some final technical details being worked out with board manufacturing house

– Nov-Dec: Testing first only at MSU, continue in parallel at MSU and CERN

- **2014:** System testing and integration / final fabrication
 - Jan-Feb: Full-crate test (USA15), patterns for L1Topo (bldg 104)
 Production Readiness Review
 - Feb-Mar: Final fabrication (20 production boards, no TP) & QC @MSU
 - Apr-Jul: Installation and commissioning @CERN (M4: July 7-11)
 - Aug-Sep: Test in the USA15 L1Calo system (M5: Sept 8-12)
 - Oct-Dec: Integration with L1Topo (M6: Oct 13-17)

Thank you

(Extra slides)

28-Oct-2013 17

CMX Card with Base-CMX functionality only

CMX Card with Base-CMX functionality and TP-CMX capability

UNIVERSITY

28-Oct-20122-Jan-20139

L1topo will receive Zero-Suppressed data from all CMXs

MICHIGAN STATE

UNIVERSITY

MICHIGAN STATE UNIVERSITY

MICHIGAN STATE UNIVERSITY